Rotifer responses to increased acidity: long-term patterns during the experimental manipulation of Little Rock Lake

Size: px
Start display at page:

Download "Rotifer responses to increased acidity: long-term patterns during the experimental manipulation of Little Rock Lake"

Transcription

1 Hydrobiologia 387/388: , E. Wurdak, R. Wallace & H. Segers (eds), Rotifera VIII: A Comparative Approach Kluwer Academic Publishers. Printed in the Netherlands. 141 Review paper Rotifer responses to increased acidity: long-term patterns during the experimental manipulation of Little Rock Lake Thomas M. Frost 1, Pamela K. Montz 1, Maria J. Gonzalez 1,2, Beth L. Sanderson 1 & Shelley E. Arnott 1 1 Trout Lake Station, Center for Limnology, University of Wisconsin-Madison, WI 53706, U.S.A. 2 Department of Biological Sciences, Wright State University, Dayton, OH 45435, U.S.A. Key words: Rotifera, community, acidification, whole-lake experiments, Little Rock Lake, Wisconsin Abstract Little Rock Lake, Wisconsin, U.S.A. has been the site of a whole-ecosystem experiment since It was divided into a treatment basin that was acidified in three, two-year stages and a reference basin. The rotifer community in the treatment basin exhibited a variety of responses to the manipulation. Many species decreased in abundance under reduced ph conditions but other rotifers increased at the same time such that there were ultimately increases with acidification in total rotifer biomass, and quite conspicuously, in the proportion that rotifers comprised of total zooplankton biomass. Ten rotifer species decreased at some stage during the acidification (e.g., Kellicottia longispina, Asplanchna priodonta and Keratella cochlearis) while four species increased dramatically (e.g., Synchaeta sp. and Keratella taurocephala ). Similarity indices and total rotifer biomass differences measured between the two basins exhibited very different temporal patterns of response to acidification. Similarity decreased regularly beginning with the earliest stages of acid additions while biomass was nearly the same between the basins until the late stages of the experiment. Comparisons with other nearby lakes indicate, however, that acid conditions are not the only factors generating among-lake differences in rotifer community characteristics. Changes observed with acidification in Little Rock Lake were such that its total rotifer biomass grew more similar to that in a nearby acidicbog lake and different from that in a near-neutral-ph lake. At the same time, abundance patterns for individual rotifer species in Little Rock Lake were not particularly similar to those in the other lakes. It appears that, although they are important, acid conditions alone can not account for all observed rotifer community differences among lakes. Higher proportions of rotifer biomass and high populations of K. taurocephala do seem to be common features of many low ph habitats. Introduction Zooplankton communities vary markedly across lakes of differing acidities (e.g., Baker & Christensen, 1991; Locke, 1992; Yan et al., 1996). The rotifer components of zooplankton communities also exhibit systematic differences along ph gradients when they have been evaluated (e.g., MacIsaac et al., 1987; Brett, 1989; Siegfried et al., 1989). Despite these clear patterns, however, a number of issues remain regarding rotifers and ph including the actual nature of rotifer community responses to increasing acidity, the extent to which acidity versus other factors controls observed zooplankton community differences among lakes, and the mechanisms that underlie among-lake differences. Understanding the effects of changing ph conditions is important because of the widespread occurrence of anthropogenic acid deposition and its effects on lakes and other ecosystems worldwide (Galloway et al., 1984; Schindler, 1988; Charles, 1991). To examine these and other ph-related issues, we have been conducting an acidification experiment in Little Rock Lake (LRL), Wisconsin, USA since 1983 (Watras & Frost, 1989; Brezonik et al., 1993). Following a baseline period in 1984, LRL s treatment basin was acidified, in three, two-year phases from its original ph of 6.1 to a final target level of 4.7 while the lake s reference basin remained at natural

2 142 ph levels. Beginning in 1991, we have been evaluating the lake s recovery from acidification (Sampson et al., 1995; Frost et al., in press). Here, we provide a detailed report of rotifer responses during the acidification phase of the experiment. We present time-series data for the entire LRL rotifer community, detailed information for a few common rotifer species, and several measures representing collective features of the entire rotifer community during the course of the experiment. In addition we compare patterns observed in LRL with those found in two nearby lakes that have been investigated as part of the North Temperate Lakes, Long-Term Ecological Research (NTL-LTER) program (Magnuson et al., 1984). We use these comparisons to test the hypothesis that acidification of LRL s treatment basin shifted its rotifer community from one similar to that occurring in a near-neutral ph lake to one found in a acid-bog system. Accepting this hypothesis would support the notion that ph levels are the primary factor controlling the structure and dynamics of rotifer communities in north temperate lakes. Methods The methods used to generate the data presented in this report have been detailed in previous papers. We only summarize these techniques here and refer to the papers that describe them in greater detail. The Little Rock Lake project was initiated in The lake s two similarly sized basins, each approximately 20 ha in surface area, were separated with a vinyl-plastic curtain in 1984 that minimized any water flow or exchange of organisms between them (Watras & Frost, 1989). Following the baseline period in 1984, acid additions were initiated in the north, treatment basin. Beginning in 1985, sulfuric acid, the dominant acid in human-influenced deposition in much of North America was mixed into the treatment basin by boat as frequently as necessary to maintain target levels during ice-free periods, usually between once every five days and once every three weeks. We maintained target-ph levels of 5.6, 5.2 and 4.7 for two years each with the last acid additions just prior to freezing in 1990 (Brezonik et al., 1993). Each of the acidification periods was initiated immediately after ice out of the first year and continued until ice out at the end of the second year. Thus the completion of the ph 4.7 period occurred in April LRL s south basin was maintained as a reference throughout the course of the experiment to provide an indication of what would have occurred in the treatment basin without the addition of acid. The NTL LTER project was among the first of what is now a worldwide network of more than 20 long-term study programs funded by the US National Science Foundation to evaluate fundamental characteristics of communities and ecosystems (Magnuson et al., 1984). We compare LRL with two of the NTL LTER primary study lakes that have been monitored since 1991 at approximately the same frequency as LRL, Crystal Lake (CL), a clear-water habitat (average Secchi depth = 7.3m ) with dilute chemistry and near neutral ph (6.0), and Crystal Bog (CB), a darkly stained sphagnum-mat dominated habitat (average Secchi Depth = 1.6 m) with high dissolved organic carbon levels and with an acidic ph (5.0). Extensive information on CL, CB and five other nearby lakes is available from the NTL LTER database through Zooplankton in all lakes were sampled, using Schindler Patalas traps equipped with 53-µm mesh buckets, at two-week intervals during ice-free periods and every five to six weeks when the lakes were ice covered. In LRL, the trap was approximately 1 m in length and samples were collected at 3 depths in each basin (Frost & Montz, 1988). Samples were processed individually but data were subsequently pooled to estimate the mean density of animals throughout the water column. For the NTL-LTER lakes, the trap was approximately 2.5 m in length and samples were usually pooled prior to counting. For these lakes, too, our data represent an estimate of the overall average density of animals within the water column (Frost & Montz, 1988). For comparisons of species among lakes, we consider only those taxa which were present on more than 5 sampling dates. Rotifer data are reported here for CL from 1984 through 1991 and for CB from 1983 through Rotifers were identified, to species in most cases, using a dissecting microscope at 50 or 100 magnification following Ruttner-Kolisko (1974) or Stemberger (1979). Biomasses of rotifers were estimated following Ruttner-Kolisko (1974) or Downing & Rigler (1984). We report data on the abundance of individual rotifer taxa in the treatment and reference basins of LRL and emphasize comparisons between the two basins as an indication of responses to acidification. We calculated a measure of community similarity for rotifers to compare the treatment and reference basins of LRL using the technique described in Frost et al.

3 143 (1995). It is based on the total of the minimum proportion of total rotifer biomass for each species in either basin of LRL. We also report rotifer species richness as the total number of taxa observed within a year and rates of species turnover indicating the appearance or disappearance of a species in a basin in any one year. Species turnovers are calculated for each year by determining the number of rotifer taxa that were recorded in a basin at any time within a year but which were then absent during the subsequent year along with the number of taxa that exhibited the opposite pattern, appearing only during the second year of a pair. The total number of appearing and disappearing taxa was then divided by the total number of taxa present at any time in the basin during the first year plus those present during the second year. This number was then multiplied by 100 to obtain the percentage change. Both species richness and turnover measures are presented in detail in Arnott et al. (in preparation). Assessing differences due to a treatment in a whole ecosystem experiment is a contentious area in terms of statistics. We have developed two methods specifically for testing such differences (Carpenter et al., 1989; Rasmussen et al., 1993) but even these have received some criticism (e.g., Stewart-Oaten et al., 1992). For this report we emphasize simple, primarily graphical, presentations of our data and have avoided any strictly statistical assessments of the significance of treatment effects. Results Responses to Acidification in LRL A total of 26 rotifer taxa were observed on at least three sampling dates in either the treatment or reference basins of LRL during the period (Table 1). Ten of these taxa appeared to decline at some stage of the acidification. Four appeared to increase, and 12 exhibited no systematic change (Table 1). Patterns of decline differed among rotifer species including those bykellicottia longispina, which decreased in 1987 during the early stages of the ph 5.2 manipulation stage (Figure 1A); Asplanchna priodonta, which declined during the ph 5.6 stage, recovered during the ph 5.2 stage, and was essentially extirpated during the ph 4.7 stage (Figure 1B); and Keratella cochlearis which declined just past midway through the second year of the ph 5.6 period (Figure 2B, Gonzalez & Frost, 1994). Patterns of increase, which frequently involved a substantially higher abundance in the treatment basin compared to the reference basin, are illustrated by Synchaeta sp. (Figure 3A) and, most dramatically, by Keratella taurocephala which shifted from a fairly minor component of overall rotifer biomass to a major portion of the rotifer community by ph 4.7 (Figure 2A, Gonzalez & Frost, 1994). The pattern for Polyarthra vulgaris typified those 12 species for which no discernible trends with acidification were detectable (Figure 3B). In contrast with the patterns for individual species, there were only subtle responses to acidification in terms of the number of species observed in either basin during any of the acidification periods. Overall, the annual species richness observed in the treatment or reference basin during each period ranged between 15 and 21 taxa and both basins were generally quite similar throughout the experiment. The number of taxa observed only declined in the treatment basin during the ph 4.7 period when 17 taxa and 15 taxa occurred in year 1 and 2, respectively, compared with 21 and 20 taxa in the reference basin during the same periods. Consistent with a response to acidification, however, the overall turnover rate for species was somewhat higher in the treatment basin compared to the reference basin (Figure 4). Overall, the net effects of changes for the entire rotifer community were such that no differences in total rotifer biomass were at all obvious between the two basins during the ph 5.6 and 5.2 phases (Figure 5A). By ph 4.7, however, the overall change was fairly dramatic and a net increase in rotifer biomass was pronounced. This pattern is even more striking, however, when the proportion of rotifers in total zooplankton biomass is considered. The increase of rotifers coupled with the decrease by other zooplankters, particularly the copepods (Frost et al., 1995), shifted the proportion of rotifer biomass from less than 20% prior to the ph 4.7 period to values that frequently exceeded 50% (Figure 6). A low proportion of rotifer biomass persisted in the LRL reference basin throughout the experiment (Figure 6). Overall, the zooplankton community decreased in total biomass by the ph 4.7 period (Frost et al., 1995) but it was increasingly dominated by rotifers as the LRL treatment basin became more acidic. The rotifer community exhibited the same overall trends as reported previously for the total LRL zooplankton assemblage (Frost et al., 1995). Responses by individual rotifers to acidification were much more dramatic than those by collective features

4 144 Figure 1. Average biomass (µg/l) of Kellicottia longispina (A) and Asplanchna priodonta (B) in the water columns of the treatment (thick line) and reference (thin line) basins of Little Rock Lake, Wisconsin, U.S.A. of the total rotifer community. Rotifer community similarity between the treatment and reference basins provides perhaps the most straightforward evidence of these differences between species-based and more collectively based variables. This similarity exhibited a strong and systematic decrease through all stages of the acidification (Figure 5B) much more pronounced than the trend in biomass difference (Figure 5A). Comparisons among lakes In terms of presence/absence, the rotifer assemblages in the LRL, Crystal Bog (CB), and Crystal Lake (CL)

5 145 Figure 2. Average biomass (µg/l) of Keratella taurocephala (A) and Keratella cochlearis (B) in the water columns of the treatment (thick line) and reference (thin line) basins of Little Rock Lake and in Crystal Bog (A) or Crystal Lake (B) (dotted lines) in Wisconsin, U.S.A. are largely similar (Table 1). We recorded 28 taxa in CLand25inCBcomparedwiththe26inLRL.Only two taxa,collotheca mutabilis and Notomata sp. were present in LRL but absent in both CB and CL. Three genera were absent from LRL but present in one of the other lakes; Anuraeopsis sp. in CL and Brachionus quadridentatus and Cephalodella sp. in CB. Otherwise, among-lake differences involved other taxa of genera that were common to at least two lakes, primarily Keratella which was more specious in CB and Polyarthra which had more species in CL. Overall, 15 taxa occurred in all three lakes (Table 1). Comparisons of abundances of individual taxa did not reveal the same common conditions among

6 146 Figure 3. Average biomass (µg/l) of Synchaeta sp. (A) and Polyarthra vulgaris (B) in the water columns of the treatment (thick line) and reference (thin line) basins of Little Rock Lake, Wisconsin, U.S.A. the lakes. For Keratella taurocephala, which had increased so substantially with acidification in the LRL treatment basin, we recorded abundances in CB that were intermediate between those in the treatment basin and those in the reference basin (Figure 2A). Its maximum abundance in CB was substantially lower than that occurring in the LRL treatment basin even during 1989 when its ph level of 5.2 was higher than the 5.0 average value for CB. For K. cochlearis, abundances in the LRL

7 Table 1. Annual average biomass values for rotifer species (µg/l throughout the water columns) in the treatment and reference basins during each of the periods during the experimental acidification Little Rock Lake, Wisconsin, U.S.A. These are followed by the slopes of standard linear regressions of annual average abundance vs. each year of the experiment for each species, the coefficient of determination, R 2, for this relationship, and our assessment of what the overall trend in the relationship was during the experiment. Also reported are whether each species was present (P), absent (A), or if another species in the same genus was present (G) in Crystal Bog (CB) and Crystal Lake (CL) Period Baseline 5.6 (I) 5.6 (II) 5.2 (III) 5.2 (II) 4.7 (I) 4.7 (II) SLOPE R 2 Change Presence in Species Basin CB CL Ascomorpha sp. T P P R Ascomorpha ovalis T G P R Asplanchna priodonta T P A R Collotheca mutabilis T A A R Conochiloides sp. T A P R Conochilus unicornis T P P R Gastropus hyptopus T G P R Gastropus stylifer T G P R Kellicottia bostoniensis T P P R Kellicottia longispina T P P R Keratella cochlearis T P P R Keratella crassa T P A R Keratella hiemalis T P P R Keratella taurocephala T P P R Lecane sp. T P P R Monostyla sp. T A P R Notomata sp. T A A R Ploesoma sp. T A P R Polyarthra dolichoptera T A P R Polyarthra renata T P P R Polyarthra vulgaris T P P R Continued on p. 148

8 148 Table 1. Continued. Period Baseline 5.6 (I) 5.6 (II) 5.2 (III) 5.2 (II) 4.7 (I) 4.7 (II) SLOPE R 2 Change Presence in Species Basin CB CL Symchaeta spp. T P P R Trichocerca sp. T G P R Trichocerca cylindrica T G P R Trichocerca multicrimis T G P T Trichocerca birostris T O G P R Figure 4. Inter-annual species turnover rates for the rotifer community in the treatment and reference basins of Little Rock Lake, Wisconsin, U.S.A. treatment basin reached peaks comparable to those observed in CL during the first three years of the experiment but they were substantially lower during more acid stages of the experiment than those occurring during some CL periods (Figure 2B). K. cochlearis abundances in the LRL reference basin were usually lower than the peaks reached in the other two basins and were substantially lower than the high values that were recorded during some periods in CL, particularly For both of these Keratella species, which we considered to be key indicators of responses in the LRL experiment (Gonzalez & Frost, 1994), these comparisons provide little support for the hypothesis that acidification simply shifted the LRL rotifers from a situation occurring in CL to one in CB. Considering the proportion of rotifer biomass in the zooplankton community gives a somewhat different impression, however. The proportion of rotifer biomass was fairly similar among CL, LRL reference basin, and LRL treatment basin during the initial stages of the experiment (Figures 6 and 7). The rotifer proportion of biomass was lowest in CL. Acidification did appear to shift the biomass of the total rotifer assemblage in the LRL treatment basin to be similar to that occurring in Crystal Bog (Figures 6 and 7). Overall, we accept our hypothesis regarding the comparisons among the lakes at the community level, in terms of the proportional biomass of the rotifers in the zooplankton community, but not at the species level, because there were substantial differences in the occurrence patterns of individual rotifer taxa among the habitats we considered. Discussion Several rotifer taxa exhibited early and dramatic responses to the acidification of LRL. These changes were generally consistent with patterns observed in other low-ph lakes. Reduced abundance of K. cochlearis and high populationsof K. taurocephala s have been reported in several acid lakes (e.g., Brett, 1989; Siegfried et al., 1989). The inability of laboratory bioassays conducted in parallel with the LRL manipulation to predict the K. taurocephala response (Gonzalez & Frost, 1994) is all the more surprising given the common dominance of this species in acid situations. It certainly appears to exhibit high populations in many low ph habitats. Measures of the collective rotifer community s responses to acidification gave a different impression than the individual-species reactions. Changes in total rotifer biomass were only evident during the most acid phase of the experiment (Figure 5A). There were no differences between the treatment and reference

9 149 Figure 5. Five-point moving average values for (A) the difference in total rotifer biomass (mg/l) for the treatment reference basins and (B) similarity indices calculated between the two basins of Little Rock Lake, Wisconsin, U.S.A. basins in either the ph 5.6 or 5.2 stages but total rotifer biomass increased markedly during the ph 4.7 stage. This increase occurred despite the declines of numerous rotifer taxa and could be attributed largely to a shift in the abundance of K. taurocephala (Frost et al., 1995). Community-level responses supported

10 150 Figure 6. Proportion of rotifer biomass in the total zooplankton community (excluding Chaoborus spp.) in the water columns of the treatment (thick line) and reference (thin line) basins of Little Rock Lake, Wisconsin, U.S.A. Figure 7. Proportion of rotifer biomass in the total zooplankton community (excluding Chaoborus spp.) in the water columns of Crystal Bog (solid line) and of Crystal Lake (dotted line), Wisconsin, U.S.A. the hypothesis that acidification shifted LRL s rotifer assemblage from one resembling that in Crystal lake to one like that in Crystal Bog. Species-level analyses did not support this hypothesis, however. This reinforces our previous conclusions that different scales of taxonomic resolution can give very different impressions of ecosystem patterns, particularly responses to stress (Frost et al., 1995). Acid stress can shift a community to increasing rotifer dominance but ph alone can not explain the fundamental composition of rotifer communities. It is important to note that surveys of rotifers intended to detect acidification effects would have very different sensitivities depending upon whether they were focused on individual species or on the collective properties of the rotifer community. The mechanisms that underlie the increases we recorded in total rotifer community biomass with acidification are not clear. In general, and as reported previously for several biotic responses that were investigated during the LRL experiment, direct reactions to acidification were difficult to detect and most changes could best be explained by indirect, food-web related mechanisms (Webster et al., 1992). Decreases in predation seem a likely mechanism but there are conflicting indications in the treatment basin in terms of the possible changes of rotifer predators. Increases in rotifer biomass occurred at the same time as there was a major increase of the abundance of one major rotifer predator in the treatment basin, Chaoborus (Fischer & Frost, 1997). At the same time, however, there was a concomitant reduction in the populations of other potential rotifer predators, Mesocyclops edax (Brezonik et al., 1993) and Asplanchna priodonta (Figure 1). The M. edax decline has been linked with the Chaoborus increase (Fischer & Frost, 1997) indicating a shift in food-web interactions with acidification in LRL. There was also a change in the body form of K. taurocephala that was consistent with a response to a reduced signal of predation pressure, a reduction in spine length (Gonzalez, 1992). These changes could have resulted from factors in addition to predation shifts as well. Resource availability for rotifers may have increased with acidification. There were no systematic changes in chlorophyll or primary production with acidification (Brezonik et al., 1993) but there was a decline in cladoceran biomass suggesting a potential increase in the availability of rotifer-food resources. Given this combination of events, it is only clear at this point that some shifts in the LRL food web are responsible for the overall increase in rotifer biomass. General features of the rotifer community responses in LRL are quite consistent with previous reports of patterns for the entire zooplankton community (Brezonik et al., 1993; Frost et al., 1995). The contrasting patterns in total community biomass and similarity indices are very much the same for the rotifers (Figure 5) and for all zooplankton. Decreases for several species but buffered responses by the total biomass of portions of the zooplankton community were reported for cladocerans and copepods as well as for rotifers (Frost et al., 1995). Only the marked increase that we report here (Figure 6) is specific to the rotifer elements of the community.

11 151 Responses to acidification in LRL are consistent with previous studies of low ph systems. Several of the patterns that we described here are similar to those reported in previous surveys of acid-stressed lakes (e.g., MacIssac et al., 1987; Brett, 1989). Systematic comparisons with other whole-lake manipulations also revealed a high degree of consistency in such large-scale experiments (Schindler et al., 1991). This suggests that it will be reasonable to predict the patterns to be expected for rotifer communities in other low-ph lakes from LRL and previous reports. Overall, it appears that the basic importance of rotifers in lake ecosystems increases with acidity. At the same time, the nature of species-specific responses are likely to vary among habitats. Rotifer responses to low-ph conditions appear to be consistent at a community but not necessarily a species level. Acknowledgments This research was supported by grants from the U.S. National Science Foundation Long-Term Research in Environmental Biology and Long-Term Ecological Research Programs and by the U.S. Environmental Protection Agency. It was also supported by the Wisconsin Department of Natural Resources. We thank P. Brezonik, J. Fischer, D. Knauer, S. Knight, T. Kratz, T. Meinke, M. Sierszen, C. Watras, K. Webster, and many others for their assistance throughout this project. References Baker, J. P. & S. W. Christensen, Effects of acidification on biological communities in aquatic ecosystems. In D. F. Charles (ed.), Acidic Deposition and Aquatic Ecosystems: Regional Case Studies, pp Springer-Verlag, New York, 747 pp. Brett, M. T., The rotifer communities of acid-stressed lakes of Maine. Hydrobiologia 186/187: Brezonik, P. L., J. G. Eaton, T. M. Frost, P. J. Garrison, T. K. Kratz, C. E. Mach, J. H. McCormick, J. A. Perry, W. A. Rose, C. J. Sampson, B. C. L. Shelley, W. A. Swenson, & K.E. Webster, Experimental acidification of Little Rock Lake, Wisconsin: Chemical and biological changes over the ph range 6.1 to 4.7. Can. J. Fish. aquat. Sci. 50: Carpenter, S. R., T. M. Frost, D. Heisey & T. K. Kratz, l989. Randomized intervention analysis and the interpretation of wholeecosystem experiments. Ecology 70: Charles, D. F. (ed.), Acidic Deposition and Aquatic Ecosystems: Regional Case Studies. Springer-Verlag, New York, 747 pp. Downing, J. A. & F. H. Rigler, A manual on methods for the assessment of secondary productivity in freshwaters. Blackwell, Oxford, England. Fischer, J. M. & T. M. Frost, Indirect effects of lake acidification on Chaoborus population dynamics: the role of food limitation and predation. Can. J. Fish. aquat. Sci. 54: Frost, T. M. & P. K. Montz, l988. Early zooplankton response to experimental acidification in Little Rock Lake, Wisconsin, USA. Verh. int. Ver. Limnol. 23: Frost, T. M., S. R. Carpenter, A. R. Ives & T. K. Kratz, Species compensation and complementarity in ecosystem function. In C. G. Jones & J. H. Lawton (eds), Linking Species and Ecosystems. Chapman and Hall, New York: Frost, T. M., P. K. Montz & T. K. Kratz. Zooplankton community responses during recovery from acidification: limited persistence by acid-favored species in Little Rock Lake, Wisconsin. Restoration Ecology. (In press). Galloway, J. N., G. E. Likens, & M. E. Hawley, Acid precipitation: natural versus anthropogenic components. Science 226: Gonzalez, M. J., Effects of experimental acidification on zooplankton populations: A multiple-scale approach. Ph.D. Dissertation, Oceanography and Limnology Graduate Program, University of Wisconsin, Madison, WI. Gonzalez, M. J. & T. M. Frost, Comparisons of laboratory bioassays and a whole-lake experiment: Rotifer responses to experimental acidification. Ecol. Appl. 4: Locke, A., Factors influencing community structure along stress gradients: zooplankton responses to acidification. Ecology 73: MacIssac, H. J., T. C. Hutchinson & W. Keller, Analysis of plankton rotifer assemblages from Sudbury, Ontarioa, area lakes of varying chemical composition. Can. J. Fish. aquat. Sci. 44: Magnuson, J. J., C. J. Bowser & T. K. Kratz, Long-term ecological research on north temperate lakes (LTER). Verh. int. Ver. Limnol. 22: Rasmussen, P. W., D. M. Heisey, E. V. Nordheim & T. M. Frost, Time-series intervention analysis: Unreplicated large-scale experiments. In: S. M. Scheiner & J. Gurevitch (eds), Design and Analysis of Ecological Experiments. Chapman and Hall, Inc., New York: Ruttner-Kolisko, A., Plankton rotifers, biology and taxonomy. Die Binnengewässer 26 (1) Supplement: 146 pp. E. Schweizerbart sche Verlagsbuchandlung, Stuttgart, Germany. Sampson, C. L., P. L. Brezonik, T. M. Frost, K. E. Webster & T. D. Simonson, Experimental Acidification of Little Rock Lake, Wisconsin: The First Four Years of Chemical and Biological Recovery. Wat. Air Soil Pollut. 85: Schindler, D. W., Effects of acid rain on freshwater ecosystems. Science 239: Schindler, D. W., T. M. Frost, K. H. Mills, P. S. S. Chang, I. J. Davies, L. Findlay, D. F. Malley, J. A. Shearer, M. A. Turner, P. J. Garrison, C. J. Watras, K. E. Webster, J. M. Gunn, P. L. Brezonik & W. A. Swenson, Comparisons between experimentallyand atmospherically-acidified lakes during stress and recovery. Proc. Soc. Edinb. 97B: Siegfried, C. A., J. A. Bloomfield & J. W. Sutherland, Planktonic rotifer community structure in Adirondack, New York, U.S.A. lakes in relation to acidity, trophic status and related water quality characteristics. Hydrobiologia 175: Stemberger, R. S A guide to the rotifers of the Laurentian Great Lakes. US EPA 600/ , 185 pp. Stewart-Oaten, A., J. R. Bence & C. W. Osenberg, Assessing effects of unreplicated perturbations: no simple solutions. Ecology 73:

12 152 Watras, C. J. & T. M. Frost, Little Rock Lake: Perspectives on an experimental approach to acidification. Arch. envir. Contam. Toxicol. 18: Webster, K. E., T. M. Frost, C. J. Watras, W. A. Swenson, M. Gonzalez & P. J. Garrison, Complex biological responses to the experimental acidification of Little Rock Lake, Wisconsin, USA. Envir. Pollut. 78: Yan, N. D., W. Keller, K. M. Somers, T. W. Pawson, & R. E. Girard, Recovery of crustacean zooplankton communities from acid and metal contamination: comparing manipulated and reference lakes. Can. J. Fish. aquat. Sci. 53:

Vancouver Lake Biotic Assessment

Vancouver Lake Biotic Assessment Vancouver Lake Biotic Assessment Washington State University Vancouver Aquatic Ecology Laboratory Dr. Stephen M. Bollens Dr. Gretchen Rollwagen-Bollens Co-Directors Problem: Noxious cyanobacteria blooms

More information

Bi-directional plasticity: Rotifer prey adjust spine. length to different predator regimes

Bi-directional plasticity: Rotifer prey adjust spine. length to different predator regimes Supporting information Bi-directional plasticity: Rotifer prey adjust spine length to different predator regimes Huan Zhang, Johan Hollander, Lars-Anders Hansson Department of Biology, Aquatic Ecology,

More information

BIOS 569: Practicum in Field Biology. Impact of DOC in the Zooplankton Community Composition. Amarilis Silva Rodriguez. Advisor: Patrick Kelly

BIOS 569: Practicum in Field Biology. Impact of DOC in the Zooplankton Community Composition. Amarilis Silva Rodriguez. Advisor: Patrick Kelly BIOS 569: Practicum in Field Biology Impact of DOC in the Zooplankton Community Composition Amarilis Silva Rodriguez Advisor: Patrick Kelly 2013 Abstract: Dissolved organic carbon (DOC) plays an important

More information

Porifera. Thomas M. Frost Trout Lake Station Center for Limnology University of Wisconsin Madison, Wisconsin '"'. , ' I.

Porifera. Thomas M. Frost Trout Lake Station Center for Limnology University of Wisconsin Madison, Wisconsin ''. , ' I. , ' Porifera Thomas M. Frost Trout Lake Station Center for Limnology University of Wisconsin Madison, Wisconsin 53706 4 '"'. Chapter Outline I. INTRODUCTION II. ANATOMY AND PHYSIOLOGY A. External Morphology

More information

Comparison of nets and pump sampling gears to assess zooplankton vertical distribution in stratified lakes

Comparison of nets and pump sampling gears to assess zooplankton vertical distribution in stratified lakes Comparison of nets and pump sampling gears to assess zooplankton vertical distribution in stratified lakes STÉPHANE MASSON 1, *, BERNADETTE PINEL-ALLOUL 2,3, GINETTE MÉTHOT 2,3 AND NANCIE RICHARD 2,3 1

More information

Identification and Quantification of Zooplankton in NE Ohio Drinking Water Reservoirs

Identification and Quantification of Zooplankton in NE Ohio Drinking Water Reservoirs The University of Akron IdeaExchange@UAkron Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors College Winter 2016 Identification and Quantification of Zooplankton in NE Ohio Drinking

More information

Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species?

Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species? Hydrobiologia 387/388: 349 353, 1998. E. Wurdak, R. Wallace & H. Segers (eds), Rotifera VIII: A Comparative Approach. 1998 Kluwer Academic Publishers. Printed in the Netherlands. 349 Population growth

More information

DNA BARCODING FRESHWATER ROTIFERA OF MEXICO

DNA BARCODING FRESHWATER ROTIFERA OF MEXICO DNA BARCODING FRESHWATER ROTIFERA OF MEXICO Alma Estrella García Morales Manuel Elías Gutiérrez Zooplankton Laboratory El Colegio de la Frontera Sur, Chetumal, Mexico INTRODUCTION Systematics in Rotifera

More information

PRELIMINARY ASPECTS CONCERNING ZOOPLANKTON STRUCTURE IN ECOSYSTEMS OF THE FISH FARMS

PRELIMINARY ASPECTS CONCERNING ZOOPLANKTON STRUCTURE IN ECOSYSTEMS OF THE FISH FARMS PRELIMINARY ASPECTS CONCERNING ZOOPLANKTON STRUCTURE IN ECOSYSTEMS OF THE FISH FARMS Adina Popescu 1*, Maria Fetecau 1, V. Cristea 1 1 Dunărea de Jos University of Galaţi, Faculty of Food Science and Engineering,

More information

Rotifer fecundity in relation to components of microbial food web in a eutrophic reservoir

Rotifer fecundity in relation to components of microbial food web in a eutrophic reservoir Hydrobiologia 504: 167 175, 2003. V. Straškrábová, R.H. Kennedy, O.T. Lind, J.G. Tundisi & J. Hejzlar (eds), Reservoir Limnology and Water Quality. 2003 Kluwer Academic Publishers. Printed in the Netherlands.

More information

Outline. Water The Life Giving Molecule. Water s Abundance. Water

Outline. Water The Life Giving Molecule. Water s Abundance. Water Chapter 3 Water and Life Outline I. Water A. Properties of water II. Acids and Bases Water The Life Giving Molecule Water s Abundance Why are we so interested in finding evidence of water on Mars? What

More information

Metacommunities Spatial Ecology of Communities

Metacommunities Spatial Ecology of Communities Spatial Ecology of Communities Four perspectives for multiple species Patch dynamics principles of metapopulation models (patchy pops, Levins) Mass effects principles of source-sink and rescue effects

More information

Kristina Enciso. Brian Leung. McGill University Quebec, Canada

Kristina Enciso. Brian Leung. McGill University Quebec, Canada Embracing uncertainty to incorporate biotic interactions into species distribution modeling: creating community assemblages using interactive community distribution models Kristina Enciso Brian Leung McGill

More information

ERGEBNISSE DER LIMNOLOGIE

ERGEBNISSE DER LIMNOLOGIE ARCHIV F()R HYDRO BIO LOG IE Organ der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie B EIH E FT 8 2008 AGI-Information Management Consultants May be used for personal purporses

More information

The effect of Daphnia interference on a natural rotifer and ciliate community: Short-term bottle experiments

The effect of Daphnia interference on a natural rotifer and ciliate community: Short-term bottle experiments Limnol. Oceanogr., 34(3), 1989, 606-6 1 I (0 1989, by the American Society of Limnology and Oceanography, Inc. The effect of Daphnia interference on a natural rotifer and ciliate community: Short-term

More information

Distribution of Brachionus species (Phylum Rotifera) in Cochin backwaters, Kerala, India

Distribution of Brachionus species (Phylum Rotifera) in Cochin backwaters, Kerala, India 130 J. Mar. Biol. Ass. India, 53 (1) : 130-134, January - June 2011 Distribution of Brachionus species (Phylum Rotifera) in Cochin backwaters, Kerala, India Central Marine Fisheries Research Institute,

More information

BODY SIZE, FOOD AVAILABILITY AND SEASONAL ROTIFER COMMUNITY STRUCTURE IN DEER LAKE, BRITISH COLUMBIA. Dorothee Schreiber. B.A. Dartmouth College, 1995

BODY SIZE, FOOD AVAILABILITY AND SEASONAL ROTIFER COMMUNITY STRUCTURE IN DEER LAKE, BRITISH COLUMBIA. Dorothee Schreiber. B.A. Dartmouth College, 1995 BODY SIZE, FOOD AVAILABILITY AND SEASONAL ROTIFER COMMUNITY STRUCTURE IN DEER LAKE, BRITISH COLUMBIA by Dorothee Schreiber B.A. Dartmouth College, 1995 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

More information

Mobrand to Jones and Stokes. Sustainable Fisheries Management Use of EDT

Mobrand to Jones and Stokes. Sustainable Fisheries Management Use of EDT Sustainable Fisheries Management Use of EDT Ecosystem Diagnosis and Treatment EDT EDT designed to provide a practical, science-based approach for developing and implementing watershed plans. Provides decision

More information

Epilimnetic rotifer community responses to Bythotrephes longimanus invasion in Canadian Shield lakes

Epilimnetic rotifer community responses to Bythotrephes longimanus invasion in Canadian Shield lakes Limnol. Oceanogr., 51(2), 06, 1004 1012 06, by the American Society of Limnology and Oceanography, Inc. Epilimnetic rotifer community responses to Bythotrephes longimanus invasion in Canadian Shield lakes

More information

Fine-scale Survey of Right and Humpback Whale Prey Abundance and Distribution

Fine-scale Survey of Right and Humpback Whale Prey Abundance and Distribution DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Fine-scale Survey of Right and Humpback Whale Prey Abundance and Distribution Joseph D. Warren School of Marine and Atmospheric

More information

Effects to Communities & Ecosystems

Effects to Communities & Ecosystems Biology 5868 Ecotoxicology Effects to Communities & Ecosystems April 18, 2007 Definitions Ecological Community an assemblage of populations living in a prescribed area or physical habitat [It is] the living

More information

LINKING PREDATION RISK MODELS WITH BEHAVIORAL MECHANISMS: IDENTIFYING POPULATION BOTTLENECKS'

LINKING PREDATION RISK MODELS WITH BEHAVIORAL MECHANISMS: IDENTIFYING POPULATION BOTTLENECKS' Ecology; 74(2). 1993. pp. 320-331 Q 1993 by the Ecological Society of America LINKING PREDATION RISK MODELS WITH BEHAVIORAL MECHANISMS: IDENTIFYING POPULATION BOTTLENECKS' CRAIG E. WILLIAMSON Department

More information

ABUNDANCE AND COMPOSITION OF ROTIFERS IN A POND NEAR BALLOKI HEADWORKS ABSTRACT

ABUNDANCE AND COMPOSITION OF ROTIFERS IN A POND NEAR BALLOKI HEADWORKS ABSTRACT Sulehria et al., The Journal of Animal & Plant Sciences, 22(4): 2012, Page: J. 1065-1069 Anim. Plant Sci. 22(4):2012 ISSN: 1018-7081 ABUNDANCE AND COMPOSITION OF ROTIFERS IN A POND NEAR BALLOKI HEADWORKS

More information

15 4 Vol. 15, No Journal of Lake Sciences Dec., 2003

15 4 Vol. 15, No Journal of Lake Sciences Dec., 2003 15 4 Vol. 15, No. 4 2003 12 Journal of Lake Sciences Dec., 2003 346 15 1 Fig.1 Sampling station of zooplankton in Poyang Lake 4 347 Tab.1 Specific list of the zooplankton from Poyang Lake 1 Arcella sp.

More information

Seasonal Variations in the Zooplankton Diversity of River Achencovil

Seasonal Variations in the Zooplankton Diversity of River Achencovil International Journal of Scientific and Research Publications, Volume 2, Issue 11, November 2012 1 Seasonal Variations in the Zooplankton Diversity of River Achencovil Reeja Jose, M.G. Sanalkumar Postgraduate

More information

Biodiversity Classwork Classwork #1

Biodiversity Classwork Classwork #1 Biodiversity Classwork Classwork #1 1. What is biodiversity? 2. In the boxes below, create two ecosystems: one with low biodiversity and one with high biodiversity. Explain the difference. Biodiversity

More information

Observed changes in climate and their effects

Observed changes in climate and their effects 1 1.1 Observations of climate change Since the TAR, progress in understanding how climate is changing in space and time has been gained through improvements and extensions of numerous datasets and data

More information

The Effect of Phosphorus Concentration on the Intrinsic Rate of Increase. for Salvinia minima. Aaron Jacobs

The Effect of Phosphorus Concentration on the Intrinsic Rate of Increase. for Salvinia minima. Aaron Jacobs The Effect of Phosphorus Concentration on the Intrinsic Rate of Increase for Salvinia minima Aaron Jacobs Partners: Andrew Watts Derek Richards Jen Thaete Introduction: Salvinia minima is an aquatic fern,

More information

CHAPTER 3 WATER AND THE FITNESS OF THE ENVIRONMENT. Section B: The Dissociation of Water Molecules

CHAPTER 3 WATER AND THE FITNESS OF THE ENVIRONMENT. Section B: The Dissociation of Water Molecules CHAPTER 3 WATER AND THE FITNESS OF THE ENVIRONMENT Section B: The Dissociation of Water Molecules 1. Organisms are sensitive to changes in ph 2. Acid precipitation threatens the fitness of the environment

More information

INTERACTIVE EFFECTS OF PREDATION AND DISPERSAL ON ZOOPLANKTON COMMUNITIES

INTERACTIVE EFFECTS OF PREDATION AND DISPERSAL ON ZOOPLANKTON COMMUNITIES Ecology, 82(2), 200, pp. 30 36 200 by the Ecological Society of America INTERACTIVE EFFECTS OF PREDATION AND DISPERSAL ON ZOOPLANKTON COMMUNITIES JONATHAN B. SHURIN Department of Ecology and Evolution,

More information

2001 State of the Ocean: Chemical and Biological Oceanographic Conditions in the Newfoundland Region

2001 State of the Ocean: Chemical and Biological Oceanographic Conditions in the Newfoundland Region Stock Status Report G2-2 (2) 1 State of the Ocean: Chemical and Biological Oceanographic Conditions in the Background The Altantic Zone Monitoring Program (AZMP) was implemented in 1998 with the aim of

More information

SHIFTING SEASONS, CLIMATE CHANGE & ECOSYSTEM CONSEQUENCES

SHIFTING SEASONS, CLIMATE CHANGE & ECOSYSTEM CONSEQUENCES SHIFTING SEASONS, CLIMATE CHANGE & ECOSYSTEM CONSEQUENCES Stephen Thackeray*, Peter Henrys, Deborah Hemming, Chris Huntingford, James Bell, David Leech & Sarah Wanless *sjtr@ceh.ac.uk Phenology & the global

More information

NOTES: CH 4 Ecosystems & Communities

NOTES: CH 4 Ecosystems & Communities NOTES: CH 4 Ecosystems & Communities 4.1 - Weather & Climate: WEATHER = day-to-day conditions of Earth s atmosphere CLIMATE= refers to average conditions over long periods; defined by year-afteryear patterns

More information

Phylogenetic diversity and conservation

Phylogenetic diversity and conservation Phylogenetic diversity and conservation Dan Faith The Australian Museum Applied ecology and human dimensions in biological conservation Biota Program/ FAPESP Nov. 9-10, 2009 BioGENESIS Providing an evolutionary

More information

Survey of Invertebrate Species in Vernal Ponds at UNDERC. Joseph Lucero. 447 Knott Hall. University of Notre Dame

Survey of Invertebrate Species in Vernal Ponds at UNDERC. Joseph Lucero. 447 Knott Hall. University of Notre Dame Survey of Invertebrate Species in Vernal Ponds at UNDERC Joseph Lucero 447 Knott Hall University of Notre Dame Advisors: Dr. Ronald Hellenthal & Dr. Karen Francl 2004 Abstract Vernal ponds are an important

More information

A top-down approach to modelling marine ecosystems in the context of physical-biological. modelling. Alain F. Vezina,, Charles Hannah and Mike St.

A top-down approach to modelling marine ecosystems in the context of physical-biological. modelling. Alain F. Vezina,, Charles Hannah and Mike St. A top-down approach to modelling marine ecosystems in the context of physical-biological modelling Alain F. Vezina,, Charles Hannah and Mike St.John The Ecosystem Modeller s s Universe Empiricists Data

More information

Compensatory dynamics in planktonic community responses to ph perturbations

Compensatory dynamics in planktonic community responses to ph perturbations Fairfield University DigitalCommons@Fairfield Biology Faculty Publications Biology Department 1-1-2000 Compensatory dynamics in planktonic community responses to ph perturbations Jennifer L. Klug Fairfield

More information

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to:

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to: Chapter 8 Biogeographic Processes Chapter Objectives Upon completion of this chapter the student will be able to: 1. Define the terms ecosystem, habitat, ecological niche, and community. 2. Outline how

More information

The importance of Daphnia in determining mortality rates of protozoans and rotifers in lakes

The importance of Daphnia in determining mortality rates of protozoans and rotifers in lakes LIMNOLOGY AND OCEANOGRAPHY July 1994 Volume 39 Number 5 Limnol. Oceanogr., 39(5), 1994, 985-996 0 1994, by the American Society of Limnology and Oceanography, Inc. The importance of Daphnia in determining

More information

Monitoring and evaluation of benthic macroinvertebrates in the Big Hole River and tributaries

Monitoring and evaluation of benthic macroinvertebrates in the Big Hole River and tributaries Monitoring and evaluation of benthic macroinvertebrates in the Big Hole River and tributaries Michael A. Bias Big Hole River Foundation Introduction BMI used to evaluate stream biological health Quantifies

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/322/5899/258/dc1 Supporting Online Material for Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics Robert K. Colwell,* Gunnar

More information

Module 3. Basic Ecological Principles

Module 3. Basic Ecological Principles Module 3. Basic Ecological Principles Ecosystem Components Abiotic Biotic Species & Habitat The Biomes of North America Communities Energy & Matter Cycles in Ecosystems Primary Productivity Simple Ecosystem

More information

Communities Structure and Dynamics

Communities Structure and Dynamics Communities Structure and Dynamics (Outline) 1. Community & niche. 2. Inter-specific interactions with examples. 3. The trophic structure of a community 4. Food chain: primary, secondary, tertiary, and

More information

Community phylogenetics review/quiz

Community phylogenetics review/quiz Community phylogenetics review/quiz A. This pattern represents and is a consequent of. Most likely to observe this at phylogenetic scales. B. This pattern represents and is a consequent of. Most likely

More information

Georgia Performance Standards for Urban Watch Restoration Field Trips

Georgia Performance Standards for Urban Watch Restoration Field Trips Georgia Performance Standards for Field Trips 6 th grade S6E3. Students will recognize the significant role of water in earth processes. a. Explain that a large portion of the Earth s surface is water,

More information

Ontario Science Curriculum Grade 9 Academic

Ontario Science Curriculum Grade 9 Academic Grade 9 Academic Use this title as a reference tool. SCIENCE Reproduction describe cell division, including mitosis, as part of the cell cycle, including the roles of the nucleus, cell membrane, and organelles

More information

Dynamic and Succession of Ecosystems

Dynamic and Succession of Ecosystems Dynamic and Succession of Ecosystems Kristin Heinz, Anja Nitzsche 10.05.06 Basics of Ecosystem Analysis Structure Ecosystem dynamics Basics Rhythms Fundamental model Ecosystem succession Basics Energy

More information

CORRELATION ANALYSIS BETWEEN PALAEMONETES SHRIMP AND VARIOUS ALGAL SPECIES IN ROCKY TIDE POOLS IN NEW ENGLAND

CORRELATION ANALYSIS BETWEEN PALAEMONETES SHRIMP AND VARIOUS ALGAL SPECIES IN ROCKY TIDE POOLS IN NEW ENGLAND CORRELATION ANALYSIS BETWEEN PALAEMONETES SHRIMP AND VARIOUS ALGAL SPECIES IN ROCKY TIDE POOLS IN NEW ENGLAND Douglas F., Department of Biology,, Worcester, MA 01610 USA (D@clarku.edu) Abstract Palamonetes

More information

Diversity of Zooplankton in some Reserviours in and around Karwar- Uttara Kannada District Karnataka

Diversity of Zooplankton in some Reserviours in and around Karwar- Uttara Kannada District Karnataka Int. J. of Life Sciences, 2015, Vol. 3(2): 171-175 ISSN: 2320-7817 eissn: 2320-964X 215 RESEARCH ARTICLE Diversity of Zooplankton in some Reserviours in and around Karwar- Uttara Kannada District Karnataka

More information

Population dynamics of planktonic rotifers in the southern coastal area of Bangladesh

Population dynamics of planktonic rotifers in the southern coastal area of Bangladesh International Journal of Natural and Social Sciences 1 (214) 53-6 ISSN: 2313-4461 Population dynamics of planktonic rotifers in the southern coastal area of Bangladesh Mst Ruhina Margia Khanam 1 *, Md.

More information

Aggregations on larger scales. Metapopulation. Definition: A group of interconnected subpopulations Sources and Sinks

Aggregations on larger scales. Metapopulation. Definition: A group of interconnected subpopulations Sources and Sinks Aggregations on larger scales. Metapopulation Definition: A group of interconnected subpopulations Sources and Sinks Metapopulation - interconnected group of subpopulations sink source McKillup and McKillup

More information

ANIMAL ECOLOGY (A ECL)

ANIMAL ECOLOGY (A ECL) Animal Ecology (A ECL) 1 ANIMAL ECOLOGY (A ECL) Courses primarily for undergraduates: A ECL 312: Ecology (Cross-listed with BIOL, ENSCI). (3-3) Cr. 4. SS. Prereq: BIOL 211, BIOL 211L, BIOL 212, and BIOL

More information

EXTINCTION CALCULATING RATES OF ORIGINATION AND EXTINCTION. α = origination rate Ω = extinction rate

EXTINCTION CALCULATING RATES OF ORIGINATION AND EXTINCTION. α = origination rate Ω = extinction rate EXTINCTION CALCULATING RATES OF ORIGINATION AND EXTINCTION α = origination rate Ω = extinction rate 1 SPECIES AND GENERA EXTINCTION CURVES INDICATE THAT MOST SPECIES ONLY PERSIST FOR A FEW MILLION YEARS.

More information

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology Biology 11 Unit 1: Fundamentals Lesson 1: Ecology Objectives In this section you will be learning about: ecosystem structure energy flow through an ecosystem photosynthesis and cellular respiration factors

More information

Name Date Academic Biology: Midterm Study Guide

Name Date Academic Biology: Midterm Study Guide Name Date Academic Biology: Midterm Study Guide Directions: This packet contains an extensive study guide that will help you prepare for the upcoming Midterm Exam. Pace yourself and be prepared to work

More information

Ecology. Outline Principles of Ecology. Definition of ecology Hierarchy of relationships. Ecosystems & Energy Flow Populations & Exponential Growth

Ecology. Outline Principles of Ecology. Definition of ecology Hierarchy of relationships. Ecosystems & Energy Flow Populations & Exponential Growth Ecology - 10 Questions Outline Principles of Ecology 1. What is ecology? 2. What is a population? 3. What is a community? 4. What is an ecosystem? 5. What is a biome? 6. What is the biosphere? 7. What

More information

UNIT 5: ECOLOGY Chapter 15: The Biosphere

UNIT 5: ECOLOGY Chapter 15: The Biosphere CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

The Impact of Changing Sea Ice and Hydrographic Conditions on Biological Communities in the Northern Bering and Chukchi Seas

The Impact of Changing Sea Ice and Hydrographic Conditions on Biological Communities in the Northern Bering and Chukchi Seas The Impact of Changing Sea Ice and Hydrographic Conditions on Biological Communities in the Northern Bering and Chukchi Seas Jacqueline M. Grebmeier 1, Lee W. Cooper 1, and Karen E. Frey 2 1 University

More information

Advanced Placement Biology Union City High School Summer Assignment 2011 Ecology Short Answer Questions

Advanced Placement Biology Union City High School Summer Assignment 2011 Ecology Short Answer Questions Summer Assignment 2011 Ecology Short Answer Questions 1. Each of the terrestrial biomes have very different characteristics that determine the niches of the organisms that live within that biome. (a) Select

More information

Modeling Fish Assemblages in Stream Networks Representation of Stream Network Introduction habitat attributes Criteria for Success

Modeling Fish Assemblages in Stream Networks Representation of Stream Network Introduction habitat attributes Criteria for Success Modeling Fish Assemblages in Stream Networks Joan P. Baker and Denis White Western Ecology Division National Health & Environmental Effects Research Laboratory U.S. Environmental Protection Agency baker.joan@epa.gov

More information

Ecosystems and Communities

Ecosystems and Communities Ecosystems and Communities Chapter 4 Section Outline Section 4-1 4 1 The Role of Climate A. What Is Climate? 1. Weather is day to day at a particular time and place 2. Climate is year-to-year averages

More information

ARTICLE IN PRESS. Limnologica

ARTICLE IN PRESS. Limnologica Limnologica () 7 Contents lists available at ScienceDirect Limnologica journal homepage: www.elsevier.de/limno The relative importance of physicochemical factors and crustacean zooplankton as determinants

More information

Unit 2: Ecology. Big Idea...

Unit 2: Ecology. Big Idea... Name: Block: Unit 2: Ecology Big Idea... The natural world is defined by organisms and life processes which conform to principles regarding conservation and transformation of matter and energy. Knowledge

More information

BioMEDIA ASSOCIATES LLC HIDDEN BIODIVERSITY Series Rotifers

BioMEDIA ASSOCIATES LLC HIDDEN BIODIVERSITY Series Rotifers BioMEDIA ASSOCIATES LLC HIDDEN BIODIVERSITY Series Rotifers Study Guide Written and Photographed by Rubén Duro Pérez Supplement to Video Program All Text and Images Copyright 2015 BioMEDIA ASSOCIATES LLC

More information

Ecosystems. 1. Population Interactions 2. Energy Flow 3. Material Cycle

Ecosystems. 1. Population Interactions 2. Energy Flow 3. Material Cycle Ecosystems 1. Population Interactions 2. Energy Flow 3. Material Cycle The deep sea was once thought to have few forms of life because of the darkness (no photosynthesis) and tremendous pressures. But

More information

Overview. How many species are there? Major patterns of diversity Causes of these patterns Conserving biodiversity

Overview. How many species are there? Major patterns of diversity Causes of these patterns Conserving biodiversity Overview How many species are there? Major patterns of diversity Causes of these patterns Conserving biodiversity Biodiversity The variability among living organisms from all sources, including, inter

More information

ASSESSING THE ROLE OF DECLINING CALCIUM IN BIOLOGICAL RECOVERY ON ZOOPLANKTON IN HISTORICALLY ACIDIFIED LAKES

ASSESSING THE ROLE OF DECLINING CALCIUM IN BIOLOGICAL RECOVERY ON ZOOPLANKTON IN HISTORICALLY ACIDIFIED LAKES ASSESSING THE ROLE OF DECLINING CALCIUM IN BIOLOGICAL RECOVERY ON ZOOPLANKTON IN HISTORICALLY ACIDIFIED LAKES by Alexander John Ross A thesis submitted to the Department of Biology In conformity with the

More information

IV ASSESSING REGIME SHIFTS IN ECOSYSTEM EXPERIMENTS. Introduction. It is easier to test for multiple regimes in long-term data if the ecosystems are

IV ASSESSING REGIME SHIFTS IN ECOSYSTEM EXPERIMENTS. Introduction. It is easier to test for multiple regimes in long-term data if the ecosystems are IV ASSESSING REGIME SHIFTS IN ECOSYSTEM EXPERIMENTS Introduction It is easier to test for multiple regimes in long-term data if the ecosystems are manipulated experimentally (Chapter III). We have also

More information

UNIT 5. ECOSYSTEMS. Biocenosis Biotope Biotic factors Abiotic factors

UNIT 5. ECOSYSTEMS. Biocenosis Biotope Biotic factors Abiotic factors UNIT 5. ECOSYSTEMS 1. Define: ecosystem, biocenosis, biotope, abiotic factor, biotic factor 2. Complete using this word: ecosphere, biosphere, ecology, ecosystem a) The is all of the living thing on Earth.

More information

Taxonomy and Systematics: a broader classification system that also shows evolutionary relationships

Taxonomy and Systematics: a broader classification system that also shows evolutionary relationships Taxonomy: a system for naming living creatures Carrolus Linnaeus (1707-1778) The binomial system: Genus and species e.g., Macrocystis pyrifera (Giant kelp); Medialuna californiensis (halfmoon) Taxonomy

More information

Carolina TM Origin of Life Kit for AP Biology

Carolina TM Origin of Life Kit for AP Biology NAME DATE Carolina TM Origin of Life Kit for AP Biology Imagine that you are a scientist interested in studying the origin of life in a lab setting. This has never been accomplished before, but you have

More information

Short Communication Temporal pattern of feeding response of Chaobonis larvae to starvation

Short Communication Temporal pattern of feeding response of Chaobonis larvae to starvation Journal of Plankton Research Vol.8 no.l pp.229-233, 1986 Short Communication Temporal pattern of feeding response of Chaobonis larvae to starvation Rakesh Minocha 1 and James F. Haney Department of Zoology,

More information

Curriculum Vitae of John J. Gilbert

Curriculum Vitae of John J. Gilbert Curriculum Vitae of John J. Gilbert (prepared March 2018) Born July 18, 1937, Southampton, New York. B.A. with Honors in Biology, June 1959, Williams College. Ph.D. in Biology, June 1963, Yale University.

More information

Jeffrey Polovina 1, John Dunne 2, Phoebe Woodworth 1, and Evan Howell 1

Jeffrey Polovina 1, John Dunne 2, Phoebe Woodworth 1, and Evan Howell 1 Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming Jeffrey Polovina 1, John Dunne 2, Phoebe Woodworth

More information

Weather is the day-to-day condition of Earth s atmosphere.

Weather is the day-to-day condition of Earth s atmosphere. 4.1 Climate Weather and Climate Weather is the day-to-day condition of Earth s atmosphere. Climate refers to average conditions over long periods and is defined by year-after-year patterns of temperature

More information

CAMPBELL BIOLOGY IN FOCUS Overview: Communities in Motion Urry Cain Wasserman Minorsky Jackson Reece Pearson Education, Inc.

CAMPBELL BIOLOGY IN FOCUS Overview: Communities in Motion Urry Cain Wasserman Minorsky Jackson Reece Pearson Education, Inc. CAMPBELL BIOLOGY IN FOCUS Overview: Communities in Motion Urry Cain Wasserman Minorsky Jackson Reece 41 A biological community = ex: carrier crab : Species Interactions Lecture Presentations by Kathleen

More information

DISCUSSION. The present study revealed some interesting facts about the nematode community

DISCUSSION. The present study revealed some interesting facts about the nematode community DISCUSSION The present study revealed some interesting facts about the nematode community of the park. The nematode counts over the sampling sites ranged drastically from 180-3260 per 400 ml of soil, showing

More information

Lecture 24 Plant Ecology

Lecture 24 Plant Ecology Lecture 24 Plant Ecology Understanding the spatial pattern of plant diversity Ecology: interaction of organisms with their physical environment and with one another 1 Such interactions occur on multiple

More information

Zooplankton of turbid and hydrologically dynamic prairie rivers

Zooplankton of turbid and hydrologically dynamic prairie rivers Freshwater Biology (2005) 50, 1474 1491 doi:10.1111/j.1365-2427.2005.01422.x Zooplankton of turbid and hydrologically dynamic prairie rivers JAMES H. THORP* AND SARA MANTOVANI *Kansas Biological Survey

More information

Most natural ecosystems are in a state of equilibrium. This means that their biotic and abiotic features remain relatively constant over time.

Most natural ecosystems are in a state of equilibrium. This means that their biotic and abiotic features remain relatively constant over time. Most natural ecosystems are in a state of equilibrium. This means that their biotic and abiotic features remain relatively constant over time. The major biomes, for example, usually maintain a characteristic

More information

Properties of Water. Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life

Properties of Water. Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life Properties of Water Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life Polarity of Water In a water molecule two hydrogen atoms form single polar

More information

Ecorisk Dilemma. ES/RP 532 Applied Environmental Toxicology. EPA Approach. EPA Objective. Hazard Identification. Hazard ID

Ecorisk Dilemma. ES/RP 532 Applied Environmental Toxicology. EPA Approach. EPA Objective. Hazard Identification. Hazard ID Ecorisk Dilemma ES/RP 53 Applied Environmental Toxicology Lecture Pesticides: Ecological Risk Assessment Too many species to protect Must accept some adverse effects (practically speaking) Habitat destruction

More information

Communities Structure and Dynamics

Communities Structure and Dynamics Communities Structure and Dynamics (Outline) 1. Community & niche. 2. Inter-specific interactions with examples. 3. The trophic structure of a community 4. Food chain: primary, secondary, tertiary, and

More information

Ecological Succession

Ecological Succession Ecological Succession Most natural ecosystems are in a state of equilibrium. This means that their biotic and abiotic features remain relatively constant over time. The major biomes, for example, usually

More information

Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities

Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL., NO.. () Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities Randall D. Willoughby and Wendy B. Anderson Department of Biology

More information

Properties of Water. Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life

Properties of Water. Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life Water Properties of Water Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life Polarity of Water In a water molecule two hydrogen atoms form single

More information

2017 Pre-AP Biology Ecology Quiz Study Guide

2017 Pre-AP Biology Ecology Quiz Study Guide 2017 Pre-AP Biology Ecology Quiz Study Guide 1. Identify two processes that break-down organic molecules and return CO 2 to the atmosphere: 2. Identify one process that removes CO 2 from the atmosphere

More information

Phanerozoic Diversity and Mass Extinctions

Phanerozoic Diversity and Mass Extinctions Phanerozoic Diversity and Mass Extinctions Measuring Diversity John Phillips produced the first estimates of Phanerozoic diversity in 1860, based on the British fossil record Intuitively it seems simple

More information

LOCAL AND REGIONAL ZOOPLANKTON SPECIES RICHNESS: A SCALE-INDEPENDENT TEST FOR SATURATION

LOCAL AND REGIONAL ZOOPLANKTON SPECIES RICHNESS: A SCALE-INDEPENDENT TEST FOR SATURATION Ecology, 81(11), 2000, pp. 3062 3073 2000 by the Ecological Society of America LOCAL AND REGIONAL ZOOPLANKTON SPECIES RICHNESS: A SCALE-INDEPENDENT TEST FOR SATURATION JONATHAN B. SHURIN, 1,4 JOHN E. HAVEL,

More information

Curriculum Vitae of John J. Gilbert

Curriculum Vitae of John J. Gilbert Curriculum Vitae of John J. Gilbert (prepared April 2013) Born July 18, 1937, Southampton, New York. B.A. with Honors in Biology, June 1959, Williams College. Ph.D. in Biology, June 1963, Yale University.

More information

Trophic Cascades and Compensation: Differential Responses of Microzooplankton in Whole-Lake Experiments

Trophic Cascades and Compensation: Differential Responses of Microzooplankton in Whole-Lake Experiments Trophic Cascades and Compensation: Differential Responses of Microzooplankton in Whole-Lake Experiments Michael L. Pace; Jonathan J. Cole; Stephen R. Carpenter Ecology, Vol. 79, No. 1. (Jan., 1998), pp.

More information

Chapter 4: Ecosystems and Communities Section 4.1 Climate

Chapter 4: Ecosystems and Communities Section 4.1 Climate Chapter 4: Ecosystems and Communities Section 4.1 Climate What is Weather? Weather can change on a day to day basis What is climate? Defined by year after year patterns What is a microclimate? When Environmental

More information

* Department of Zoology, Govt. Arts College (Autonomous), Kumbakonam ** Department of Botany, Govt. Arts College (Autonomous), Kumbakonam

* Department of Zoology, Govt. Arts College (Autonomous), Kumbakonam ** Department of Botany, Govt. Arts College (Autonomous), Kumbakonam * Department of Zoology, Govt. Arts College (Autonomous), Kumbakonam 612001 ** Department of Botany, Govt. Arts College (Autonomous), Kumbakonam 612001 Present investigation was carried out in the College

More information

Quantum Dots: A New Technique to Assess Mycorrhizal Contributions to Plant Nitrogen Across a Fire-Altered Landscape

Quantum Dots: A New Technique to Assess Mycorrhizal Contributions to Plant Nitrogen Across a Fire-Altered Landscape 2006-2011 Mission Kearney Foundation of Soil Science: Understanding and Managing Soil-Ecosystem Functions Across Spatial and Temporal Scales Progress Report: 2006007, 1/1/2007-12/31/2007 Quantum Dots:

More information

Asplanchna-induced polymorphism in the rotifer Keratella slacki1

Asplanchna-induced polymorphism in the rotifer Keratella slacki1 Limnol. Oceanogr., 29(6), 1984, 1309-l 3 16 0 1984, by the American Society of Limnology and Oceanography, Inc. Asplanchna-induced polymorphism in the rotifer Keratella slacki1 John J. Gilbert and Richard

More information

Diversity of Rotifer in Asolamendha Lake, Dist. Chandrapur, Maharashtra, India

Diversity of Rotifer in Asolamendha Lake, Dist. Chandrapur, Maharashtra, India OPEN ACCESS Int. Res. J. of Science & Engineering, 2018; Vol. 6 (2): 35-39 ISSN: 2322-0015 UGC Approved Journal No. 63628 RESEARCH ARTICLE Diversity of Rotifer in Asolamendha Lake, Dist. Chandrapur, Maharashtra,

More information

A COMPARATIVE STUDY OF OKLAHOMA'S PRECIPITATION REGIME FOR TWO EXTENDED TIME PERIODS BY USE OF EIGENVECTORS

A COMPARATIVE STUDY OF OKLAHOMA'S PRECIPITATION REGIME FOR TWO EXTENDED TIME PERIODS BY USE OF EIGENVECTORS 85 A COMPARATIVE STUDY OF OKLAHOMA'S PRECIPITATION REGIME FOR TWO EXTENDED TIME PERIODS BY USE OF EIGENVECTORS Elias Johnson Department of Geography, Southwest Missouri State University, Springfield, MO

More information

Year Two Annual Report (March 2008 February 2009) Introduction. Background

Year Two Annual Report (March 2008 February 2009) Introduction. Background Plankton Monitoring and Zooplankton Grazing Assessment in Vancouver Lake, WA Stephen Bollens and Gretchen Rollwagen-Bollens Washington State University Vancouver Year Two Annual Report (March 28 February

More information

SPECIES INTERACTION AND COMMUNITY STRUCTURE BONAVITACOLA, DOLOROSO, QUEVEDO, VALLEJOS

SPECIES INTERACTION AND COMMUNITY STRUCTURE BONAVITACOLA, DOLOROSO, QUEVEDO, VALLEJOS SPECIES INTERACTION AND COMMUNITY STRUCTURE BONAVITACOLA, DOLOROSO, QUEVEDO, VALLEJOS WHO EATS WHO? Feeding relationships Most documented species interaction FOOD WEB Community portrait based on feeding

More information