Protein domains, function and associated prediction. Experimental. Protein function categories. Issue when elucidating function experimentally

Size: px
Start display at page:

Download "Protein domains, function and associated prediction. Experimental. Protein function categories. Issue when elucidating function experimentally"

Transcription

1 C E T R E F O R I T E G R A T I V E B I O I F O R M A T I C S V U Lecture 14: Protein domains, function and associated prediction Introduction to Bioinformatics Metabolomics fluxomics Functional Genomics Systems Biology TERTIARY STRUCTURE (fold) TERTIARY STRUCTURE (fold) Genome Expressome Proteome Metabolome Experimental Structural genomics Functional genomics Protein-protein interaction Metabolic pathways Expression data Issue when elucidating function experimentally Typically done through knock-out experiments Partial information (indirect interactions) and subsequent filling of the missing steps egative results (elements that have been shown not to interact, enzymes missing in an organism) Putative interactions resulting from computational analyses Protein function categories Catalysis (enzymes) Binding transport (active/passive) Protein-DA/RA binding (e.g. histones, transcription factors) Protein-protein interactions (e.g. antibody-lysozyme) (experimentally determined by yeast two-hybrid (Y2H) or bacterial two-hybrid (B2H) screening ) Protein-fatty acid binding (e.g. apolipoproteins) Protein small molecules (drug interaction, structure decoding) Structural component (e.g. γ-crystallin) Regulation Signalling Transcription regulation Immune system Motor proteins (actin/myosin) Catalytic properties of enzymes K m k cat Michaelis-Menten equation: Moles/s V max V max/2 E + S ES E + P E = enzyme S = substrate K m ES = enzyme-substrate complex (transition state) P = product K m = Michaelis constant K cat = catalytic rate constant (turnover number) K cat /K m = specificity constant (useful for comparison) V max [S] V = K m + [S] [S] 1

2 Protein interaction domains Energy difference upon binding Examples of protein interactions (and of functional importance) include: Protein protein (pathway analysis); Protein small molecules (drug interaction, structure decoding); Protein peptides, DA/RA The change in Gibb s Free Energy of the protein-ligand binding interaction can be monitored and expressed by the following equation: G = H T S (H=Enthalpy, S=Entropy and T=Temperature) Protein function Many proteins combine functions Some immunoglobulin structures are thought to have more than 100 different functions (and active/binding sites) Alternative splicing can generate (partially) alternative structures Protein function & Interaction Active site / binding cleft Protein function evolution Chymotrypsin From a simple ancestral active site for cutting protein chains to a more elaborate active site with four different features, all helping to optimise proteolysis (cleavage) Shape complementarity Gene duplication has resulted in two-domain protein 2

3 Protein function evolution Chymotrypsin The active site lies between the two domains. It consists of residues on the same two loops (firstly between beta-strands 3 and 4, secondly between beta strands 5 and 6) of each of the two barrel domains. Four features of the active site are indicated in the figure. The Substrate Specificity Pocket Main Chain Substrate-binding The Oxyanion Hole (white) Catalytic triad Chymotrypsin cleaves peptides at the carboxyl side of tyrosine, tryptophan, and phenylalanine because those three amino acids contain phenyl rings. How to infer function Experiment Deduction from sequence Multiple sequence alignment conservation patterns Homology searching Deduction from structure Threading Structure-structure comparison Homology modelling A domain is a: Compact, semi-independent unit (Richardson, 1981). Stable unit of a protein structure that can fold autonomously (Wetlaufer, 1973). Recurring functional and evolutionary module (Bork, 1992). ature is a tinkerer and not an inventor (Jacob, 1977). Smallest unit of function Delineating domains is essential for: Obtaining high resolution structures (x-ray but particularly MR size of proteins) Sequence analysis Multiple sequence alignment methods Prediction algorithms (SS, Class, secondary/tertiary structure) Fold recognition and threading Elucidating the evolution, structure and function of a protein family (e.g. Rosetta Stone method) Structural/functional genomics Cross genome comparative analysis Domain connectivity linker Structural domain organisation can be nasty Pyruvate kinase Phosphotransferase β barrel regulatory domain α/β barrel catalytic substrate binding domain α/β nucleotide binding domain 1 continuous + 2 discontinuous domains 3

4 Domain size The size of individual structural domains varies widely from 36 residues in E-selectin to 692 residues in lipoxygenase-1 (Jones et al., 1998) the majority (90%) having less than 200 residues (Siddiqui and Barton, 1995) with an average of about 100 residues (Islam et al., 1995). Small domains (less than 40 residues) are often stabilised by metal ions or disulphide bonds. Large domains (greater than 300 residues) are likely to consist of multiple hydrophobic cores (Garel, 1992). 4

5 Analysis of chain hydrophobicity in multidomain proteins Analysis of chain hydrophobicity in multidomain proteins Domain characteristics Domains are genetically mobile units, and multidomain families are found in all three kingdoms (Archaea, Bacteria and Eukarya) underlining the finding that ature is a tinkerer and not an inventor (Jacob, 1977). The majority of genomic proteins, 75% in unicellular organisms and more than 80% in metazoa, are multidomain proteins created as a result of gene duplication events (Apic et al., 2001). Domains in multidomain structures are likely to have once existed as independent proteins, and many domains in eukaryotic multidomain proteins can be found as independent proteins in prokaryotes (Davidson et al., 1993). Protein function evolution - Gene (domain) duplication - Active site Chymotrypsin 5

6 Pyruvate phosphate dikinase 3-domain protein Two domains catalyse 2-step reaction A B C Third so-called swivelling domain actively brings intermediate enzymatic product (B) over 45Å from one active site to the other Pyruvate phosphate dikinase 3-domain protein Two domains catalyse 2-step reaction A B C Third so-called swivelling domain actively brings intermediate enzymatic product (B) over 45Å from one active site to the other / The DEATH Domain Present in a variety of Eukaryotic proteins involved with cell death. Six helices enclose a tightly packed hydrophobic core. Some DEATH domains form homotypic and heterotypic dimers. Detecting Structural Domains A structural domain may be detected as a compact, globular substructure with more interactions within itself than with the rest of the structure (Janin and Wodak, 1983). Therefore, a structural domain can be determined by two shape characteristics: compactness and its extent of isolation (Tsai and ussinov, 1997). Measures of local compactness in proteins have been used in many of the early methods of domain assignment (Rossmann et al., 1974; Crippen, 1978; Rose, 1979; Go, 1978) and in several of the more recent methods (Holm and Sander, 1994; Islam et al., 1995; Siddiqui and Barton, 1995; Zehfus, 1997; Taylor, 1999). Detecting Structural Domains However, approaches encounter problems when faced with discontinuous or highly associated domains and many definitions will require manual interpretation. Detecting Domains using Sequence only Even more difficult than prediction from structure! Consequently there are discrepancies between assignments made by domain databases (Hadley and Jones, 1999). 6

7 Integrating protein multiple sequence alignment, secondary and tertiary structure prediction in order to predict structural domain boundaries in sequence data Protein structure hierarchical levels PRIMARY STRUCTURE (amino acid sequence) SECODARY STRUCTURE (helices, strands) VHLTPEEKSAVTALWGKVVDE VGGEALGRLLVVYPWTQRFFE SFGDLSTPDAVMGPKVKAHG KKVLGAFSDGLAHLDLKGTFA TLSELHCDKLHVDPEFRLLG VLVCVLAHHFGKEFTPPVQAAY QKVVAGVAALAHKYH SnapDRAGO Richard A. George George R.A. and Heringa, J. (2002) J. Mol. Biol., 316, QUATERARY STRUCTURE TERTIARY STRUCTURE (fold) Protein structure hierarchical levels PRIMARY STRUCTURE (amino acid sequence) SECODARY STRUCTURE (helices, strands) Protein structure hierarchical levels PRIMARY STRUCTURE (amino acid sequence) SECODARY STRUCTURE (helices, strands) VHLTPEEKSAVTALWGKVVDE VGGEALGRLLVVYPWTQRFFE SFGDLSTPDAVMGPKVKAHG KKVLGAFSDGLAHLDLKGTFA TLSELHCDKLHVDPEFRLLG VLVCVLAHHFGKEFTPPVQAAY QKVVAGVAALAHKYH VHLTPEEKSAVTALWGKVVDE VGGEALGRLLVVYPWTQRFFE SFGDLSTPDAVMGPKVKAHG KKVLGAFSDGLAHLDLKGTFA TLSELHCDKLHVDPEFRLLG VLVCVLAHHFGKEFTPPVQAAY QKVVAGVAALAHKYH QUATERARY STRUCTURE TERTIARY STRUCTURE (fold) QUATERARY STRUCTURE TERTIARY STRUCTURE (fold) Protein structure hierarchical levels PRIMARY STRUCTURE (amino acid sequence) SECODARY STRUCTURE (helices, strands) VHLTPEEKSAVTALWGKVVDE VGGEALGRLLVVYPWTQRFFE SFGDLSTPDAVMGPKVKAHG KKVLGAFSDGLAHLDLKGTFA TLSELHCDKLHVDPEFRLLG VLVCVLAHHFGKEFTPPVQAAY QKVVAGVAALAHKYH SAPDRAGO Domain boundary prediction protocol using sequence information alone (Richard George)! "# $ ##! % #"#! &'((( ) % $ # ##"# ' #% $ # $$ QUATERARY STRUCTURE TERTIARY STRUCTURE (fold) *+, # " '+-!.'/!(,/0 7

8 SnapDragon SAPDRAGO Domain boundary prediction protocol using sequence information alone (Richard George) # 12,-3& # ((4 "$ % " -&5 6&* ((! %132 7* '((( 8 ) 17& *+, # " '+-!.'/!(,/0 Domain prediction using DRAGO Distance Regularisation Algorithm for Geometry Optimisatio (Aszodi & Taylor, 1994) Folded protein models based on the requirement that (conserved) hydrophobic residues cluster together. First construct a random high dimensional Cα distance matrix. Distance geometry is used to find the 3D conformation corresponding to a prescribed target matrix of desired distances between residues. SAPDRAGO Domain boundary prediction protocol using sequence information alone (Richard George) 9: &'(() "# $ ## ; " % ## <##% # ; 1 "# %$ %$ #" β, ; 2" ## 6α 6β = ; "#!" %=" %$ %>% DRAGO = Distance Regularisation Algorithm for Geometry Optimisatio Cα distance matrix Target matrix 3 9)9 100 randomised initial matrices 100 predictions 3 Input data 1- The Cα distance matrix is divided into smaller clusters. Separately, each cluster is embedded into a local centroid. The final predicted structure is generated from full embedding of the multiple centroids and their corresponding local structures. 8

9 # " " 1# # ##, 1-1- Taylor method (1999) DOMAI-3D Taylor method (1999)! % #" #! &'((( Easy and clever method Uses a notion of spin glass theory (disordered magnetic systems) to delineate domains in a protein 3D structure Steps: 1. Take sequence with residue numbers (1..) 2. Look at neighbourhood of each residue (first shell) 3. If ( average nghhood residue number > res no) resno = resno+1 else resno = resno-1 4. If (convergence) then take regions with identical residue number as domains and terminate repeat until convergence if 41 < ( )/5 then Res (up 1) else Res (down 1) Taylor,WR. (1999) Protein structural domain identification. Protein Engineering 12 : Taylor method (1999) Iterate until convergence initial situation SAPDRAGO Domain boundary prediction protocol using sequence information alone (Richard George) ) % $ # ##"# ' #% $ # $ $ continuous discontinuous? i A? E 2"$ *+, # " '+-!.'/!(,/0 W i i 9

10 SAPDRAGO "F 8 6<G H, 8 2" I# % " F 8 & ##% < %" ##%< 8 G0 % # 8 G "# 8 6 <"#% %<#0 8 2"% <G I <" # % SnapDRAGO prediction assessment Test set of 414 multiple alignments;183 single and 231 multiple domain proteins. Boundary predictions are compared to the region of the protein connecting two domains (maximally ±10 residues from true boundary) SnapDRAGO prediction assessment Baseline method I: Divide sequence in equal parts based on number of domains predicted by SnapDRAGO Baseline method II: Similar to Wheelan et al., based on domain length partition density function (PDF) PDF derived from 2750 non-redundant structures (deposited at CBI) Given sequence, calculate probability of onedomain, two-domain,.., protein Highest probability taken and sequence split equally as in baseline method I Average prediction results per protein SnapDRAGO Baseline 1 Baseline 2 Continuous set Discontinuous set Full set Coverage 63.9 (± 43.0) 35.4 (± 25.0) 51.8 (± 39.1) Success 46.8 (± 36.4) 44.4 (± 33.9) 45.8 (± 35.4) Coverage 43.6 (± 45.3) 20.5 (± 27.1) 34.7 (± 40.8) Success 34.3 (± 39.6) 22.2 (± 29.5) 29.6 (± 36.6) Coverage 45.3 (± 46.9) 22.7 (± 27.3) 35.7 (± 41.3) Success 37.1 (± 42.0) 23.1 (± 29.6) 31.2 (± 37.9) Coverage is the % linkers predicted (TP/TP+F) Success is the % of correct predictions made (TP/TP+FP) Average prediction results per protein Protein-protein interaction networks 10

11 Protein Function Prediction How can we get the edges (connections) of the cellular networks? We can predict functions of genes or proteins so we know where they would fit in a metabolic network There are also techniques to predict whether two proteins interact, either functionally (e.g. they are involved in a two-step metabolic process) or directly physically (e.g. are together in a protein complex) Protein Function Prediction The state of the art it s not complete Many genes are not annotated, and many more are partially or erroneously annotated. Given a genome which is partially annotated at best, how do we fill in the blanks? Of each sequenced genome, 20%-50% of the functions of proteins encoded by the genomes remains unknown! How then do we build a reasonably complete networks when the parts list is so incomplete? Protein Function Prediction For all these reasons, improving automated protein function prediction is now a cornerstone of bioinformatics and computational biology ew methods will need to integrate signals coming from sequence, expression, interaction and structural data, etc. Classes of function prediction methods (recap) Sequence based approaches protein A has function X, and protein B is a homolog (ortholog) of protein A; Hence B has function X Structure-based approaches protein A has structure X, and X has so-so structural features; Hence A s function sites are. Motif-based approaches a group of genes have function X and they all have motif Y; protein A has motif Y; Hence protein A s function might be related to X Function prediction based on guilt-by-association gene A has function X and gene B is often associated with gene A, B might have function related to X Phylogenetic profile analysis Function prediction of genes based on guilt-byassociation a non-homologous approach The phylogenetic profile of a protein is a string that encodes the presence or absence of the protein in every sequenced genome Because proteins that participate in a common structural complex or metabolic pathway are likely to co-evolve, the phylogenetic profiles of such proteins are often ``similar' This means that such proteins have a good chance of being physically or metabolically connected Phylogenetic profile analysis Phylogenetic profile (against genomes) For each gene X in a target genome (e.g., E coli), build a phylogenetic profile as follows If gene X has a homolog in genome #i, the ith bit of X s phylogenetic profile is 1 otherwise it is 0 11

12 gene Phylogenetic profile analysis Example phylogenetic profiles based on 60 genomes genome orf1034: orf1036: orf1037: orf1038: orf1039: orf104: orf1040: orf1041: orf1042: orf1043: orf1044: orf1045: orf1046: orf1047: orf105: orf1054: By correlating the rows (open reading frames (ORF) or genes) you find out about joint presence or absence of genes: this is a signal for a functional connection Genes with similar phylogenetic profiles have related functions or functionally linked D Eisenberg and colleagues (1999) Phylogenetic profile analysis Phylogenetic profiles contain great amount of functional information Phlylogenetic profile analysis can be used to distinguish orthologous genes from paralogous genes Example: Subcellular localization: 361 yeast nucleusencoded mitochondrial proteins were identified at 50% accuracy with 58% coverage through phylogenetic profile analysis Functional complementarity: By examining inverse phylogenetic profiles, one can find functionally complementary genes that might have evolved through one of several mechanisms of convergent evolution. Phylogenetic profiling typically has low accuracy (specificity) but can have high coverage. Domain fusion example n Vertebrates have a multi-enzyme protein (GARs- AIRs-GARt) comprising the enzymes GAR synthetase (GARs), AIR synthetase (AIRs), and GAR transformylase (GARt) n In insects, the polypeptide appears as GARs- (AIRs) 2 -GARt nin yeast, GARs-AIRs is encoded separately from GARt nin bacteria each domain is encoded separately (Henikoff et al., 1997). GAR: glycinamide ribonucleotide AIR: aminoimidazole ribonucleotide Using observed domain fusion for prediction of protein-protein interactions Rosetta stone method Gene fusion is the an effective method for prediction of protein-protein interactions If proteins A and B are homologous to two domains of a multidomain protein C, A and B are predicted to have interaction A Though gene-fusion has low prediction coverage, its false-positive rate is low (high specificity) B C Protein interaction database There are numerous databases of protein-protein interactions DIP is a popular protein-protein interaction database The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. Protein interaction databases BID - Biomolecular Interaction etwork Database DIP - Database of Interacting Proteins PIM Hybrigenics PathCalling Yeast Interaction Database MIT - a Molecular Interactions Database GRID - The General Repository for Interaction Datasets InterPreTS - protein interaction prediction through tertiary structure STRIG - predicted functional associations among genes/proteins Mammalian protein-protein interaction database (PPI) InterDom - database of putative interacting protein domains FusionDB - database of bacterial and archaeal gene fusion events IntAct Project The Human Protein Interaction Database (HPID) ADVICE - Automated Detection and Validation of Interaction by Co-evolution InterWeaver - protein interaction reports with online evidence PathBLAST - alignment of protein interaction networks ClusPro - a fully automated algorithm for protein-protein docking HPRD - Human Protein Reference Database 12

13 Protein interaction database etwork of protein interactions and predicted functional links involving silencing information regulator (SIR) proteins. Filled circles represent proteins of known function; open circles represent proteins of unknown function, represented only by their Saccharomyces genome sequence numbers ( Solid lines show experimentally determined interactions, as summarized in the Database of Interacting Proteins 19 ( Dashed lines show functional links predicted by the Rosetta Stone method 12. Dotted lines show functional links predicted by phylogenetic profiles 16. Some predicted links are omitted for clarity. etwork of predicted functional linkages involving the yeast prion protein 20 Sup35. The dashed line shows the only experimentally determined interaction. The other functional links were calculated from genome and expression data 11 by a combination of methods, including phylogenetic profiles, Rosetta stone linkages and mra expression. Linkages predicted by more than one method, and hence particularly reliable, are shown by heavy lines. Adapted from ref. 11. STRIG - predicted functional associations among genes/proteins STRIG is a database of predicted functional associations among genes/proteins. Genes of similar function tend to be maintained in close neighborhood, tend to be present or absent together, i.e. to have the same phylogenetic occurrence, and can sometimes be found fused into a single gene encoding a combined polypeptide. STRIG integrates this information from as many genomes as possible to predict functional links between proteins. Berend Snel (UU), Martijn Huynen (RU) and the group of Peer Bork (EMBL, Heidelberg) STRIG - predicted functional associations among genes/proteins STRIG is a database of known and predicted protein-protein interactions. The interactions include direct (physical) and indirect (functional) associations; they are derived from four sources: STRIG - predicted functional associations among genes/proteins Conserved eighborhood 1. Genomic Context (Synteny) 2. High-throughput Experiments 3. (Conserved) Co-expression 4. Previous Knowledge STRIG quantitatively integrates interaction data from these sources for a large number of organisms, and transfers information between these organisms where applicable. The database currently contains proteins in 179 species This view shows runs of genes that occur repeatedly in close neighborhood in (prokaryotic) genomes. Genes located together in a run are linked with a black line (maximum allowed intergenic distance is 300 bp). ote that if there are multiple runs for a given species, these are separated by white space. If there are other genes in the run that are below the current score threshold, they are drawn as small white triangles. Gene fusion occurences are also drawn, but only if they are present in a run. 13

14 Wrapping up Understand chymotrypsin example: evolution via gene duplication of an optimised two-domain barrel enzyme with active site residues from either domain. Understand domain issues: structural and functional Understand the basic steps of the Snap-DRAGO method for domain boundary prediction but no need to memorize it all Understand phylogenetic profiling and the Rosetta Stone method (guilt-by-association) Understand that conservation patterns in the order of genes that are nearby on the genome (synteny) indicate functional relationships (used in STRIG method) Also co-expression (genes being expressed (or not) at the same time) indicates a functional relationship (used in STRIG method) 14

CSCE555 Bioinformatics. Protein Function Annotation

CSCE555 Bioinformatics. Protein Function Annotation CSCE555 Bioinformatics Protein Function Annotation Why we need to do function annotation? Fig from: Network-based prediction of protein function. Molecular Systems Biology 3:88. 2007 What s function? The

More information

Computational methods for predicting protein-protein interactions

Computational methods for predicting protein-protein interactions Computational methods for predicting protein-protein interactions Tomi Peltola T-61.6070 Special course in bioinformatics I 3.4.2008 Outline Biological background Protein-protein interactions Computational

More information

Intracellular Networks

Intracellular Networks C E N T R E F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U Intracellular Networks (2) Intracellular Network Behaviour Slides on: http://www.ibi.vu.nl/teaching/masters/icn/icn_2008.php Networks

More information

C E N T R. Introduction to bioinformatics 2007 E B I O I N F O R M A T I C S V U F O R I N T. Lecture 5 G R A T I V. Pair-wise Sequence Alignment

C E N T R. Introduction to bioinformatics 2007 E B I O I N F O R M A T I C S V U F O R I N T. Lecture 5 G R A T I V. Pair-wise Sequence Alignment C E N T R E F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U Introduction to bioinformatics 2007 Lecture 5 Pair-wise Sequence Alignment Bioinformatics Nothing in Biology makes sense except in

More information

Computational approaches for functional genomics

Computational approaches for functional genomics Computational approaches for functional genomics Kalin Vetsigian October 31, 2001 The rapidly increasing number of completely sequenced genomes have stimulated the development of new methods for finding

More information

2 Genome evolution: gene fusion versus gene fission

2 Genome evolution: gene fusion versus gene fission 2 Genome evolution: gene fusion versus gene fission Berend Snel, Peer Bork and Martijn A. Huynen Trends in Genetics 16 (2000) 9-11 13 Chapter 2 Introduction With the advent of complete genome sequencing,

More information

Homology Modeling. Roberto Lins EPFL - summer semester 2005

Homology Modeling. Roberto Lins EPFL - summer semester 2005 Homology Modeling Roberto Lins EPFL - summer semester 2005 Disclaimer: course material is mainly taken from: P.E. Bourne & H Weissig, Structural Bioinformatics; C.A. Orengo, D.T. Jones & J.M. Thornton,

More information

From gene to protein. Premedical biology

From gene to protein. Premedical biology From gene to protein Premedical biology Central dogma of Biology, Molecular Biology, Genetics transcription replication reverse transcription translation DNA RNA Protein RNA chemically similar to DNA,

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES Protein Structure W. M. Grogan, Ph.D. OBJECTIVES 1. Describe the structure and characteristic properties of typical proteins. 2. List and describe the four levels of structure found in proteins. 3. Relate

More information

Lecture 18 June 2 nd, Gene Expression Regulation Mutations

Lecture 18 June 2 nd, Gene Expression Regulation Mutations Lecture 18 June 2 nd, 2016 Gene Expression Regulation Mutations From Gene to Protein Central Dogma Replication DNA RNA PROTEIN Transcription Translation RNA Viruses: genome is RNA Reverse Transcriptase

More information

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting.

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting. Genome Annotation Bioinformatics and Computational Biology Genome Annotation Frank Oliver Glöckner 1 Genome Analysis Roadmap Genome sequencing Assembly Gene prediction Protein targeting trna prediction

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it?

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it? Proteomics What is it? Reveal protein interactions Protein profiling in a sample Yeast two hybrid screening High throughput 2D PAGE Automatic analysis of 2D Page Yeast two hybrid Use two mating strains

More information

Basics of protein structure

Basics of protein structure Today: 1. Projects a. Requirements: i. Critical review of one paper ii. At least one computational result b. Noon, Dec. 3 rd written report and oral presentation are due; submit via email to bphys101@fas.harvard.edu

More information

Structure to Function. Molecular Bioinformatics, X3, 2006

Structure to Function. Molecular Bioinformatics, X3, 2006 Structure to Function Molecular Bioinformatics, X3, 2006 Structural GeNOMICS Structural Genomics project aims at determination of 3D structures of all proteins: - organize known proteins into families

More information

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p.110-114 Arrangement of information in DNA----- requirements for RNA Common arrangement of protein-coding genes in prokaryotes=

More information

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche The molecular structure of a protein can be broken down hierarchically. The primary structure of a protein is simply its

More information

Bioinformatics Chapter 1. Introduction

Bioinformatics Chapter 1. Introduction Bioinformatics Chapter 1. Introduction Outline! Biological Data in Digital Symbol Sequences! Genomes Diversity, Size, and Structure! Proteins and Proteomes! On the Information Content of Biological Sequences!

More information

4 Examples of enzymes

4 Examples of enzymes Catalysis 1 4 Examples of enzymes Adding water to a substrate: Serine proteases. Carbonic anhydrase. Restrictions Endonuclease. Transfer of a Phosphoryl group from ATP to a nucleotide. Nucleoside monophosphate

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics GENOME Bioinformatics 2 Proteomics protein-gene PROTEOME protein-protein METABOLISM Slide from http://www.nd.edu/~networks/ Citrate Cycle Bio-chemical reactions What is it? Proteomics Reveal protein Protein

More information

Honors Biology Reading Guide Chapter 11

Honors Biology Reading Guide Chapter 11 Honors Biology Reading Guide Chapter 11 v Promoter a specific nucleotide sequence in DNA located near the start of a gene that is the binding site for RNA polymerase and the place where transcription begins

More information

Basic structures of proteins

Basic structures of proteins Basic structures of proteins Structural Hierarchy of Protein Primary structure Functional elements : α-helix, strands, β-sheet, loops.. - Structure, affinity, activity, specificity, stability etc. Secondary

More information

Motif Prediction in Amino Acid Interaction Networks

Motif Prediction in Amino Acid Interaction Networks Motif Prediction in Amino Acid Interaction Networks Omar GACI and Stefan BALEV Abstract In this paper we represent a protein as a graph where the vertices are amino acids and the edges are interactions

More information

Genomics and bioinformatics summary. Finding genes -- computer searches

Genomics and bioinformatics summary. Finding genes -- computer searches Genomics and bioinformatics summary 1. Gene finding: computer searches, cdnas, ESTs, 2. Microarrays 3. Use BLAST to find homologous sequences 4. Multiple sequence alignments (MSAs) 5. Trees quantify sequence

More information

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions BIRKBECK COLLEGE (University of London) Advanced Certificate in Principles in Protein Structure MSc Structural Molecular Biology Date: Thursday, 1st September 2011 Time: 3 hours You will be given a start

More information

Overview of Kinetics

Overview of Kinetics Overview of Kinetics [P] t = ν = k[s] Velocity of reaction Conc. of reactant(s) Rate of reaction M/sec Rate constant sec -1, M -1 sec -1 1 st order reaction-rate depends on concentration of one reactant

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/15/07 CAP5510 1 EM Algorithm Goal: Find θ, Z that maximize Pr

More information

Introduction to Bioinformatics Integrated Science, 11/9/05

Introduction to Bioinformatics Integrated Science, 11/9/05 1 Introduction to Bioinformatics Integrated Science, 11/9/05 Morris Levy Biological Sciences Research: Evolutionary Ecology, Plant- Fungal Pathogen Interactions Coordinator: BIOL 495S/CS490B/STAT490B Introduction

More information

Gene regulation I Biochemistry 302. Bob Kelm February 25, 2005

Gene regulation I Biochemistry 302. Bob Kelm February 25, 2005 Gene regulation I Biochemistry 302 Bob Kelm February 25, 2005 Principles of gene regulation (cellular versus molecular level) Extracellular signals Chemical (e.g. hormones, growth factors) Environmental

More information

Comparative Bioinformatics Midterm II Fall 2004

Comparative Bioinformatics Midterm II Fall 2004 Comparative Bioinformatics Midterm II Fall 2004 Objective Answer, part I: For each of the following, select the single best answer or completion of the phrase. (3 points each) 1. Deinococcus radiodurans

More information

Sequence analysis and comparison

Sequence analysis and comparison The aim with sequence identification: Sequence analysis and comparison Marjolein Thunnissen Lund September 2012 Is there any known protein sequence that is homologous to mine? Are there any other species

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Types of biological networks. I. Intra-cellurar networks

Types of biological networks. I. Intra-cellurar networks Types of biological networks I. Intra-cellurar networks 1 Some intra-cellular networks: 1. Metabolic networks 2. Transcriptional regulation networks 3. Cell signalling networks 4. Protein-protein interaction

More information

Genomes and Their Evolution

Genomes and Their Evolution Chapter 21 Genomes and Their Evolution PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison CMPS 6630: Introduction to Computational Biology and Bioinformatics Structure Comparison Protein Structure Comparison Motivation Understand sequence and structure variability Understand Domain architecture

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Computational Biology 1

Computational Biology 1 Computational Biology 1 Protein Function & nzyme inetics Guna Rajagopal, Bioinformatics Institute, guna@bii.a-star.edu.sg References : Molecular Biology of the Cell, 4 th d. Alberts et. al. Pg. 129 190

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

Types of RNA. 1. Messenger RNA(mRNA): 1. Represents only 5% of the total RNA in the cell.

Types of RNA. 1. Messenger RNA(mRNA): 1. Represents only 5% of the total RNA in the cell. RNAs L.Os. Know the different types of RNA & their relative concentration Know the structure of each RNA Understand their functions Know their locations in the cell Understand the differences between prokaryotic

More information

Homology and Information Gathering and Domain Annotation for Proteins

Homology and Information Gathering and Domain Annotation for Proteins Homology and Information Gathering and Domain Annotation for Proteins Outline Homology Information Gathering for Proteins Domain Annotation for Proteins Examples and exercises The concept of homology The

More information

METHODS FOR DETERMINING PHYLOGENY. In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task.

METHODS FOR DETERMINING PHYLOGENY. In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task. Chapter 12 (Strikberger) Molecular Phylogenies and Evolution METHODS FOR DETERMINING PHYLOGENY In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task. Modern

More information

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller Chemogenomic: Approaches to Rational Drug Design Jonas Skjødt Møller Chemogenomic Chemistry Biology Chemical biology Medical chemistry Chemical genetics Chemoinformatics Bioinformatics Chemoproteomics

More information

Biological Networks: Comparison, Conservation, and Evolution via Relative Description Length By: Tamir Tuller & Benny Chor

Biological Networks: Comparison, Conservation, and Evolution via Relative Description Length By: Tamir Tuller & Benny Chor Biological Networks:,, and via Relative Description Length By: Tamir Tuller & Benny Chor Presented by: Noga Grebla Content of the presentation Presenting the goals of the research Reviewing basic terms

More information

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty. Lecture 15: Enzymes & Kinetics Mechanisms Margaret A. Daugherty Fall 2004 ROLE OF THE TRANSITION STATE Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products

More information

Lecture 26: Polymers: DNA Packing and Protein folding 26.1 Problem Set 4 due today. Reading for Lectures 22 24: PKT Chapter 8 [ ].

Lecture 26: Polymers: DNA Packing and Protein folding 26.1 Problem Set 4 due today. Reading for Lectures 22 24: PKT Chapter 8 [ ]. Lecture 26: Polymers: DA Packing and Protein folding 26.1 Problem Set 4 due today. eading for Lectures 22 24: PKT hapter 8 DA Packing for Eukaryotes: The packing problem for the larger eukaryotic genomes

More information

INTERACTIVE CLUSTERING FOR EXPLORATION OF GENOMIC DATA

INTERACTIVE CLUSTERING FOR EXPLORATION OF GENOMIC DATA INTERACTIVE CLUSTERING FOR EXPLORATION OF GENOMIC DATA XIUFENG WAN xw6@cs.msstate.edu Department of Computer Science Box 9637 JOHN A. BOYLE jab@ra.msstate.edu Department of Biochemistry and Molecular Biology

More information

Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp

Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp. 216-225 Updated on: 2/4/07 at 9:00 pm Key Concepts Kinetics is the study of reaction rates. Study of enzyme kinetics

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

Basic Local Alignment Search Tool

Basic Local Alignment Search Tool Basic Local Alignment Search Tool Alignments used to uncover homologies between sequences combined with phylogenetic studies o can determine orthologous and paralogous relationships Local Alignment uses

More information

Introduction to" Protein Structure

Introduction to Protein Structure Introduction to" Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Learning Objectives Outline the basic levels of protein structure.

More information

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Giri Narasimhan

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Giri Narasimhan CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinff18.html Proteins and Protein Structure

More information

Biomolecules: lecture 10

Biomolecules: lecture 10 Biomolecules: lecture 10 - understanding in detail how protein 3D structures form - realize that protein molecules are not static wire models but instead dynamic, where in principle every atom moves (yet

More information

Exploring Evolution & Bioinformatics

Exploring Evolution & Bioinformatics Chapter 6 Exploring Evolution & Bioinformatics Jane Goodall The human sequence (red) differs from the chimpanzee sequence (blue) in only one amino acid in a protein chain of 153 residues for myoglobin

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

Motivating the need for optimal sequence alignments...

Motivating the need for optimal sequence alignments... 1 Motivating the need for optimal sequence alignments... 2 3 Note that this actually combines two objectives of optimal sequence alignments: (i) use the score of the alignment o infer homology; (ii) use

More information

Introduction to Evolutionary Concepts

Introduction to Evolutionary Concepts Introduction to Evolutionary Concepts and VMD/MultiSeq - Part I Zaida (Zan) Luthey-Schulten Dept. Chemistry, Beckman Institute, Biophysics, Institute of Genomics Biology, & Physics NIH Workshop 2009 VMD/MultiSeq

More information

CHEM 3653 Exam # 1 (03/07/13)

CHEM 3653 Exam # 1 (03/07/13) 1. Using phylogeny all living organisms can be divided into the following domains: A. Bacteria, Eukarya, and Vertebrate B. Archaea and Eukarya C. Bacteria, Eukarya, and Archaea D. Eukarya and Bacteria

More information

Comparative genomics: Overview & Tools + MUMmer algorithm

Comparative genomics: Overview & Tools + MUMmer algorithm Comparative genomics: Overview & Tools + MUMmer algorithm Urmila Kulkarni-Kale Bioinformatics Centre University of Pune, Pune 411 007. urmila@bioinfo.ernet.in Genome sequence: Fact file 1995: The first

More information

Understanding Sequence, Structure and Function Relationships and the Resulting Redundancy

Understanding Sequence, Structure and Function Relationships and the Resulting Redundancy Understanding Sequence, Structure and Function Relationships and the Resulting Redundancy many slides by Philip E. Bourne Department of Pharmacology, UCSD Agenda Understand the relationship between sequence,

More information

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison 10-810: Advanced Algorithms and Models for Computational Biology microrna and Whole Genome Comparison Central Dogma: 90s Transcription factors DNA transcription mrna translation Proteins Central Dogma:

More information

Networks & pathways. Hedi Peterson MTAT Bioinformatics

Networks & pathways. Hedi Peterson MTAT Bioinformatics Networks & pathways Hedi Peterson (peterson@quretec.com) MTAT.03.239 Bioinformatics 03.11.2010 Networks are graphs Nodes Edges Edges Directed, undirected, weighted Nodes Genes Proteins Metabolites Enzymes

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 4. Examples of enzymatic reactions acid-base catalysis: give and take protons covalent catalysis: a transient covalent bond is formed between the enzyme and the substrate metal ion catalysis:

More information

# shared OGs (spa, spb) Size of the smallest genome. dist (spa, spb) = 1. Neighbor joining. OG1 OG2 OG3 OG4 sp sp sp

# shared OGs (spa, spb) Size of the smallest genome. dist (spa, spb) = 1. Neighbor joining. OG1 OG2 OG3 OG4 sp sp sp Bioinformatics and Evolutionary Genomics: Genome Evolution in terms of Gene Content 3/10/2014 1 Gene Content Evolution What about HGT / genome sizes? Genome trees based on gene content: shared genes Haemophilus

More information

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization. 3.B.1 Gene Regulation Gene regulation results in differential gene expression, leading to cell specialization. We will focus on gene regulation in prokaryotes first. Gene regulation accounts for some of

More information

Graph Alignment and Biological Networks

Graph Alignment and Biological Networks Graph Alignment and Biological Networks Johannes Berg http://www.uni-koeln.de/ berg Institute for Theoretical Physics University of Cologne Germany p.1/12 Networks in molecular biology New large-scale

More information

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models Last time Domains Hidden Markov Models Today Secondary structure Transmembrane proteins Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL

More information

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure Last time Today Domains Hidden Markov Models Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL SSLGPVVDAHPEYEEVALLERMVIPERVIE FRVPWEDDNGKVHVNTGYRVQFNGAIGPYK

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 1. An Introduction to Enzymes Enzymes are catalytically active biological macromolecules Enzymes are catalysts of biological systems Almost every biochemical reaction is catalyzed by

More information

Molecular Biology, Genetic Engineering & Biotechnology Operons ???

Molecular Biology, Genetic Engineering & Biotechnology Operons ??? 1 Description of Module Subject Name?? Paper Name Module Name/Title XV- 04: 2 OPERONS OBJECTIVES To understand how gene is expressed and regulated in prokaryotic cell To understand the regulation of Lactose

More information

Biol478/ August

Biol478/ August Biol478/595 29 August # Day Inst. Topic Hwk Reading August 1 M 25 MG Introduction 2 W 27 MG Sequences and Evolution Handouts 3 F 29 MG Sequences and Evolution September M 1 Labor Day 4 W 3 MG Database

More information

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA)

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Quiz answers Kinase: An enzyme

More information

UE Praktikum Bioinformatik

UE Praktikum Bioinformatik UE Praktikum Bioinformatik WS 08/09 University of Vienna 7SK snrna 7SK was discovered as an abundant small nuclear RNA in the mid 70s but a possible function has only recently been suggested. Two independent

More information

Flow of Genetic Information

Flow of Genetic Information presents Flow of Genetic Information A Montagud E Navarro P Fernández de Córdoba JF Urchueguía Elements Nucleic acid DNA RNA building block structure & organization genome building block types Amino acid

More information

Sequence Alignment Techniques and Their Uses

Sequence Alignment Techniques and Their Uses Sequence Alignment Techniques and Their Uses Sarah Fiorentino Since rapid sequencing technology and whole genomes sequencing, the amount of sequence information has grown exponentially. With all of this

More information

Genome Annotation Project Presentation

Genome Annotation Project Presentation Halogeometricum borinquense Genome Annotation Project Presentation Loci Hbor_05620 & Hbor_05470 Presented by: Mohammad Reza Najaf Tomaraei Hbor_05620 Basic Information DNA Coordinates: 527,512 528,261

More information

Computational methods for the analysis of bacterial gene regulation Brouwer, Rutger Wubbe Willem

Computational methods for the analysis of bacterial gene regulation Brouwer, Rutger Wubbe Willem University of Groningen Computational methods for the analysis of bacterial gene regulation Brouwer, Rutger Wubbe Willem IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

Protein Architecture V: Evolution, Function & Classification. Lecture 9: Amino acid use units. Caveat: collagen is a. Margaret A. Daugherty.

Protein Architecture V: Evolution, Function & Classification. Lecture 9: Amino acid use units. Caveat: collagen is a. Margaret A. Daugherty. Lecture 9: Protein Architecture V: Evolution, Function & Classification Margaret A. Daugherty Fall 2004 Amino acid use *Proteins don t use aa s equally; eg, most proteins not repeating units. Caveat: collagen

More information

Lecture Notes for Fall Network Modeling. Ernest Fraenkel

Lecture Notes for Fall Network Modeling. Ernest Fraenkel Lecture Notes for 20.320 Fall 2012 Network Modeling Ernest Fraenkel In this lecture we will explore ways in which network models can help us to understand better biological data. We will explore how networks

More information

Syllabus BINF Computational Biology Core Course

Syllabus BINF Computational Biology Core Course Course Description Syllabus BINF 701-702 Computational Biology Core Course BINF 701/702 is the Computational Biology core course developed at the KU Center for Computational Biology. The course is designed

More information

Welcome to HST.508/Biophysics 170

Welcome to HST.508/Biophysics 170 Harvard-MIT Division of Health Sciences and Technology HST.58: Quantitative Genomics, Fall 5 Instructors: Leonid Mirny, Robert Berwick, Alvin Kho, Isaac Kohane Welcome to HST.58/Biophysics Our emphasis

More information

Molecular Biology - Translation of RNA to make Protein *

Molecular Biology - Translation of RNA to make Protein * OpenStax-CNX module: m49485 1 Molecular Biology - Translation of RNA to make Protein * Jerey Mahr Based on Translation by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative

More information

V14 extreme pathways

V14 extreme pathways V14 extreme pathways A torch is directed at an open door and shines into a dark room... What area is lighted? Instead of marking all lighted points individually, it would be sufficient to characterize

More information

V19 Metabolic Networks - Overview

V19 Metabolic Networks - Overview V19 Metabolic Networks - Overview There exist different levels of computational methods for describing metabolic networks: - stoichiometry/kinetics of classical biochemical pathways (glycolysis, TCA cycle,...

More information

Chapter 16 Lecture. Concepts Of Genetics. Tenth Edition. Regulation of Gene Expression in Prokaryotes

Chapter 16 Lecture. Concepts Of Genetics. Tenth Edition. Regulation of Gene Expression in Prokaryotes Chapter 16 Lecture Concepts Of Genetics Tenth Edition Regulation of Gene Expression in Prokaryotes Chapter Contents 16.1 Prokaryotes Regulate Gene Expression in Response to Environmental Conditions 16.2

More information

Interaction Network Analysis

Interaction Network Analysis CSI/BIF 5330 Interaction etwork Analsis Young-Rae Cho Associate Professor Department of Computer Science Balor Universit Biological etworks Definition Maps of biochemical reactions, interactions, regulations

More information

09/06/25. Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Non-uniform distribution of folds. Scheme of protein structure predicition

09/06/25. Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Non-uniform distribution of folds. Scheme of protein structure predicition Sequence identity Structural similarity Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Fold recognition Sommersemester 2009 Peter Güntert Structural similarity X Sequence identity Non-uniform

More information

Protein function prediction based on sequence analysis

Protein function prediction based on sequence analysis Performing sequence searches Post-Blast analysis, Using profiles and pattern-matching Protein function prediction based on sequence analysis Slides from a lecture on MOL204 - Applied Bioinformatics 18-Oct-2005

More information

Name Period The Control of Gene Expression in Prokaryotes Notes

Name Period The Control of Gene Expression in Prokaryotes Notes Bacterial DNA contains genes that encode for many different proteins (enzymes) so that many processes have the ability to occur -not all processes are carried out at any one time -what allows expression

More information

Enzymes Enzyme Mechanism

Enzymes Enzyme Mechanism Mechanisms of Enzymes BCMB 3100 Chapters 6, 7, 8 Enzymes Enzyme Mechanism 1 Energy diagrams Binding modes of enzyme catalysis Chemical modes of enzyme catalysis Acid-Base catalysis Covalent catalysis Binding

More information

Lecture 10 (10/4/17) Lecture 10 (10/4/17)

Lecture 10 (10/4/17) Lecture 10 (10/4/17) Lecture 10 (10/4/17) Reading: Ch4; 125, 138-141, 141-142 Problems: Ch4 (text); 7, 9, 11 Ch4 (study guide); 1, 2 NEXT Reading: Ch4; 125, 132-136 (structure determination) Ch4; 12-130 (Collagen) Problems:

More information

From Friday s material

From Friday s material 5.111 Lecture 35 35.1 Kinetics Topic: Catalysis Chapter 13 (Section 13.14-13.15) From Friday s material Le Chatelier's Principle - when a stress is applied to a system in equilibrium, the equilibrium tends

More information

Regulation of gene expression. Premedical - Biology

Regulation of gene expression. Premedical - Biology Regulation of gene expression Premedical - Biology Regulation of gene expression in prokaryotic cell Operon units system of negative feedback positive and negative regulation in eukaryotic cell - at any

More information

15.2 Prokaryotic Transcription *

15.2 Prokaryotic Transcription * OpenStax-CNX module: m52697 1 15.2 Prokaryotic Transcription * Shannon McDermott Based on Prokaryotic Transcription by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Enzymes Enzyme Mechanism

Enzymes Enzyme Mechanism BCMB 3100 Chapters 6, 7, 8 Enzymes Enzyme Mechanism 1 Mechanisms of Enzymes Energy diagrams Binding modes of enzyme catalysis Chemical modes of enzyme catalysis Acid-Base catalysis Covalent catalysis Binding

More information

Comparing Genomes in terms of Protein Structure: Surveys of a Finite Parts List

Comparing Genomes in terms of Protein Structure: Surveys of a Finite Parts List Comparing Genomes in terms of Protein Structure: Surveys of a Finite Parts List Mark Gerstein * & Hedi Hegyi Department of Molecular Biophysics & Biochemistry 266 Whitney Avenue, Yale University PO Box

More information

BSc and MSc Degree Examinations

BSc and MSc Degree Examinations Examination Candidate Number: Desk Number: BSc and MSc Degree Examinations 2018-9 Department : BIOLOGY Title of Exam: Molecular Biology and Biochemistry Part I Time Allowed: 1 hour and 30 minutes Marking

More information

Outline. Sequence-comparison methods. Buzzzzzzzz. Why compare sequences? Gerard Kleywegt Uppsala University

Outline. Sequence-comparison methods. Buzzzzzzzz. Why compare sequences? Gerard Kleywegt Uppsala University MB330 - January, 2006 Sequence-comparison methods erard Kleywegt Uppsala University Outline! Why compare sequences?! Dotplots! airwise sequence alignments &! Multiple sequence alignments! rofile methods!

More information