Seminar in Bioinformatics, Winter Network Motifs. An Introduction to Systems Biology Uri Alon Chapters 5-6. Meirav Zehavi

Size: px
Start display at page:

Download "Seminar in Bioinformatics, Winter Network Motifs. An Introduction to Systems Biology Uri Alon Chapters 5-6. Meirav Zehavi"

Transcription

1 Seminar in Bioinformatics, Winter 2010 Network Motifs An Introduction to Systems Biology Uri Alon Chapters 5-6 Meirav Zehavi

2 Contents Network Motifs in - Sensory Transcription Networks - SIM - Multi-Output FFL - DORs - Further Discussion - Developmental Transcription Networks - Signal Transduction Networks - Neuronal Networks Composite Network Motifs Summary

3 Contents Network Motifs in - Sensory Transcription Networks - SIM - Multi-Output FFL - DORs - Further Discussion - Developmental Transcription Networks - Signal Transduction Networks - Neuronal Networks Composite Network Motifs Summary

4 SIM - Definition - Why are SIMs motifs? - What is the function of SIMs? - How did SIMs evolve?

5 SIM - Definition - Why are SIMs motifs? - What is the function of SIMs? - How did SIMs evolve?

6 SIM - Definition - Why are SIMs motifs? - What is the function of SIMs? - How did SIMs evolve?

7 SIM - Definition - Why are SIMs motifs? - What is the function of SIMs? - How did SIMs evolve?

8 SIM - SIMs can generate temporal expression programs: LIFO - Example

9 SIM - SIMs can generate temporal expression programs: LIFO - Example

10 Multi-Output FFL - Definition - Functions

11 Multi-Output FFL - Definition - Functions

12 Multi-Output FFL - Definition - Functions

13 Multi-Output FFL - Definition - Functions

14 Multi-Output FFL - Multi-Output FFL can generate FIFO temporal order - Example

15 Multi-Output FFL - Multi-Output FFL can generate FIFO temporal order - Example

16 Multi-Output FFL - Multi-Output FFL can generate FIFO temporal order - Example X = flhdc, Y = flia, Z 1 = flil, Z 2 = flie, etc. K 1 < K 2 < < K n, K 1 > K 2 > > K n.

17 Multi-Output FFL - Multi-Output FFL can generate FIFO temporal order - Example

18 DOR - Definition - Function E. coli stress response and stationary phase system

19 DOR - Definition - Function E. coli stress response and stationary phase system

20 Further Discussion - Four main network motif families cascade X Y Z, etc. - The global structure of sensory transcription networks Auto-Regulation X SIM Multi-Output FFL DOR

21 Further Discussion - Four main network motif families cascade X Y Z, etc. - The global structure of sensory transcription networks Auto-Regulation X SIM Multi-Output FFL DOR

22 Further Discussion - Four main network motif families - The global structure of sensory transcription networks Part of E. coli transcription network

23 Contents Network Motifs in - Sensory Transcription Networks - SIM - Multi-Output FFL - DORs - Further Discussion - Developmental Transcription Networks - Signal Transduction Networks - Neuronal Networks Composite Network Motifs Summary

24 Regulating and Regulated Feedback - Regulating feedback for decision making - Regulated feedback as a memory element Double-positive feedback loop Double-negative feedback loop X Y X Y Z Z

25 Regulating and Regulated Feedback - Regulating feedback for decision making - Regulated feedback as a memory element Double-positive feedback loop Double-negative feedback loop X Y X Y Z Z

26 Regulating and Regulated Feedback - Regulating feedback for decision making - Regulated feedback as a memory element X Y X Y Z Z

27 Regulating and Regulated Feedback - Regulating feedback for decision making - Regulated feedback as a memory element X Y X Y Z Z X Y Z Steady-state 1 ON ON ON Steady-state 2 OFF OFF OFF X Y Z Steady-state 1 ON OFF OFF Steady-state 2 OFF ON ON

28 Regulating and Regulated Feedback - Regulating feedback for decision making - Regulated feedback as a memory element + X Z + Y X Y - Z - X Y Z Steady-state 1 ON ON ON Steady-state 2 OFF OFF OFF X Y Z Steady-state 1 ON OFF OFF Steady-state 2 OFF ON ON

29 Regulating and Regulated Feedback - Regulating feedback for decision making - Regulated feedback as a memory element An example of double negative feedback loop

30 Regulating and Regulated Feedback - Regulating feedback for decision making - Regulated feedback as a memory element

31 Long Transcription Cascades - The response time of each stage in cascades is governed by the degradation/dilution rate of the protein at that stage of the cascade. For stable proteins, this response time is on the order of cell generation time. - Developmental networks work on this timescale.

32 Long Transcription Cascades - The response time of each stage in cascades is governed by the degradation/dilution rate of the protein at that stage of the cascade. For stable proteins, this response time is on the order of cell generation time. - Developmental networks work on this timescale.

33 FFLs - Form parts of larger and more complex circuits - Example: Bacillus subtilis

34 FFLs - Form parts of larger and more complex circuits - Example: Bacillus subtilis

35 FFLs - Form parts of larger and more complex circuits - Example: Bacillus subtilis

36 FFLs - Form parts of larger and more complex circuits - Example: Bacillus subtilis

37 FFLs - Form parts of larger and more complex circuits - Example: Bacillus subtilis

38 FFLs - Form parts of larger and more complex circuits - Example: Bacillus subtilis

39 Contents Network Motifs in - Sensory Transcription Networks - SIM - Multi-Output FFL - DORs - Further Discussion - Developmental Transcription Networks - Signal Transduction Networks - Neuronal Networks Composite Network Motifs Summary

40 Signal Transduction Networks - General information - Model: protein kinase cascades - Multi-layer perceptrons

41 Signal Transduction Networks - General information - Model: protein kinase cascades - Multi-layer perceptrons

42 Signal Transduction Networks - General information - Model: protein kinase cascades - Multi-layer perceptrons

43 Protein Kinase Perceptrons - Rate of phosphorylation = vxy o - Y o + Y p = Y - dy p /dt = v 1 X 1 Y o + v 2 X 2 Y o ay p - At steady state: dy p /dt = 0 - Y p /Y = f(w 1 X 1 + w 2 X 2 ), where f(u) = u/(u+1), w 1 = v 1 /a, w 2 = v 2 /a

44 Protein Kinase Perceptrons - Rate of phosphorylation = vxy o - Y o + Y p = Y - dy p /dt = v 1 X 1 Y o + v 2 X 2 Y o ay p - At steady state: dy p /dt = 0 - Y p /Y = f(w 1 X 1 + w 2 X 2 ), where f(u) = u/(u+1), w 1 = v 1 /a, w 2 = v 2 /a

45 Protein Kinase Perceptrons - Rate of phosphorylation = vxy o - Y o + Y p = Y - dy p /dt = v 1 X 1 Y o + v 2 X 2 Y o ay p - At steady state: dy p /dt = 0 - Y p /Y = f(w 1 X 1 + w 2 X 2 ), where f(u) = u/(u+1), w 1 = v 1 /a, w 2 = v 2 /a

46 Protein Kinase Perceptrons - Rate of phosphorylation = vxy o - Y o + Y p = Y - dy p /dt = v 1 X 1 Y o + v 2 X 2 Y o ay p - At steady state: dy p /dt = 0 - Y p /Y = f(w 1 X 1 + w 2 X 2 ), where f(u) = u/(u+1), w 1 = v 1 /a, w 2 = v 2 /a

47 Protein Kinase Perceptrons - Rate of phosphorylation = vxy o - Y o + Y p = Y - dy p /dt = v 1 X 1 Y o + v 2 X 2 Y o ay p - At steady state: dy p /dt = 0 - Y p /Y = f(w 1 X 1 + w 2 X 2 ), where f(u) = u/(u+1), w 1 = v 1 /a, w 2 = v 2 /a

48 Protein Kinase Perceptrons - Y p /Y = f(w 1 X 1 + w 2 X 2 ), where f(u) = u/(u+1), w 1 = v 1 /a, w 2 = v 2 /a - Threshold of activation: w 1 X 1 + w 2 X 2 = 1 = = = =

49 Protein Kinase Perceptrons - Y p /Y = f(w 1 X 1 + w 2 X 2 ), where f(u) = u/(u+1), w 1 = v 1 /a, w 2 = v 2 /a - Threshold of activation: w 1 X 1 + w 2 X 2 = 1 = = = =

50 Protein Kinase Perceptrons - Y p /Y = f(w 1 X 1 + w 2 X 2 ), where f(u) = u/(u+1), w 1 = v 1 /a, w 2 = v 2 /a - Threshold of activation: w 1 X 1 + w 2 X 2 = 1 = = = =

51 Protein Kinase Perceptrons - Y p /Y = f(w 1 X 1 + w 2 X 2 ), where f(u) = u/(u+1), w 1 = v 1 /a, w 2 = v 2 /a - Threshold of activation: w 1 X 1 + w 2 X 2 = 1 = = = = AND OR

52 Protein Kinase Perceptrons

53 Protein Kinase Perceptrons negative weight negative weight XOR

54 Contents Network Motifs in - Sensory Transcription Networks - SIM - Multi-Output FFL - DORs - Further Discussion - Developmental Transcription Networks - Signal Transduction Networks - Neuronal Networks Composite Network Motifs Summary

55 Neuronal Networks - Definition - C. elegans

56 Neuronal Networks - Definition - C. elegans

57 Multi-Input FFL - FFL significance 3-node feedback loop - Definition - Example

58 Multi-Input FFL - FFL significance - Definition - Example

59 Multi-Input FFL - FFL significance - Definition - Example

60 Multi-Input FFL - dy/dt = bq(w 1 X 1 +w 2 X 2 > K y ) ay voltages strength of the synaptic connections step function leakage of current through the cell membrane - dz/dt = b q(w 1 X 1 +w 2 X 2 +w 3 Y > K z ) a Z

61 Multi-Input FFL - dy/dt = bq(w 1 X 1 +w 2 X 2 > K y ) ay - dz/dt = b q(w 1 X 1 +w 2 X 2 +w 3 Y > K z ) a Z

62 Multi-Input FFL - dy/dt = bq(w 1 X 1 +w 2 X 2 > K y ) ay - dz/dt = b q(w 1 X 1 +w 2 X 2 +w 3 Y > K z ) a Z persistence detector

63 Multi-Input FFL - dy/dt = bq(w 1 X 1 +w 2 X 2 > K y ) ay - dz/dt = b q(w 1 X 1 +w 2 X 2 +w 3 Y > K z ) a Z coincidence detector

64 Contents Network Motifs in - Sensory Transcription Networks - SIM - Multi-Output FFL - DORs - Further Discussion - Developmental Transcription Networks - Signal Transduction Networks - Neuronal Networks Composite Network Motifs Summary

65 Composite Networks - Signaling networks and transcription networks - Two-color motif example X Y Z transcription interaction protein-protein interaction

66 Composite Networks - Signaling networks and transcription networks - Two-color motif example X Y Z transcription interaction protein-protein interaction

67 Two-Protein Feedback - Definition - Thermostat explanation X Y Power supply Heater Slow Temperature Thermostat Fast

68 Two-Protein Feedback - Definition - Thermostat explanation X Y Power supply Heater Slow Temperature Thermostat Fast

69 Contents Network Motifs in - Sensory Transcription Networks - SIM - Multi-Output FFL - DORs - Further Discussion - Developmental Transcription Networks - Signal Transduction Networks - Neuronal Networks Composite Network Motifs Summary

70 Thank You

56:198:582 Biological Networks Lecture 10

56:198:582 Biological Networks Lecture 10 56:198:582 Biological Networks Lecture 10 Temporal Programs and the Global Structure The single-input module (SIM) network motif The network motifs we have studied so far all had a defined number of nodes.

More information

Lecture 8: Temporal programs and the global structure of transcription networks. Chap 5 of Alon. 5.1 Introduction

Lecture 8: Temporal programs and the global structure of transcription networks. Chap 5 of Alon. 5.1 Introduction Lecture 8: Temporal programs and the global structure of transcription networks Chap 5 of Alon 5. Introduction We will see in this chapter that sensory transcription networks are largely made of just four

More information

Lecture 9: Network motifs in developmental, signal transduction and neuronal networks. Chap 6 of Alon. 6.1 Introduction

Lecture 9: Network motifs in developmental, signal transduction and neuronal networks. Chap 6 of Alon. 6.1 Introduction Lecture 9: Network motifs in deelopmental, signal transduction and neuronal networks Chap 6 of Alon 6. Introduction Deelopmental transcription network Main difference between sensory and deelopmental networks:

More information

56:198:582 Biological Networks Lecture 9

56:198:582 Biological Networks Lecture 9 56:198:582 Biological Networks Lecture 9 The Feed-Forward Loop Network Motif Subgraphs in random networks We have discussed the simplest network motif, self-regulation, a pattern with one node We now consider

More information

56:198:582 Biological Networks Lecture 11

56:198:582 Biological Networks Lecture 11 56:198:582 Biological Networks Lecture 11 Network Motifs in Signal Transduction Networks Signal transduction networks Signal transduction networks are composed of interactions between signaling proteins.

More information

Lecture 6: The feed-forward loop (FFL) network motif

Lecture 6: The feed-forward loop (FFL) network motif Lecture 6: The feed-forward loop (FFL) network motif Chapter 4 of Alon x 4. Introduction x z y z y Feed-forward loop (FFL) a= 3-node feedback loop (3Loop) a=3 Fig 4.a The feed-forward loop (FFL) and the

More information

Random Boolean Networks

Random Boolean Networks Random Boolean Networks Boolean network definition The first Boolean networks were proposed by Stuart A. Kauffman in 1969, as random models of genetic regulatory networks (Kauffman 1969, 1993). A Random

More information

Network motifs in the transcriptional regulation network (of Escherichia coli):

Network motifs in the transcriptional regulation network (of Escherichia coli): Network motifs in the transcriptional regulation network (of Escherichia coli): Janne.Ravantti@Helsinki.Fi (disclaimer: IANASB) Contents: Transcription Networks (aka. The Very Boring Biology Part ) Network

More information

56:198:582 Biological Networks Lecture 8

56:198:582 Biological Networks Lecture 8 56:198:582 Biological Networks Lecture 8 Course organization Two complementary approaches to modeling and understanding biological networks Constraint-based modeling (Palsson) System-wide Metabolism Steady-state

More information

Network motifs: theory and experimental approaches

Network motifs: theory and experimental approaches Network motifs: theory and experimental approaches Uri Alon Abstract Transcription regulation networks control the expression of genes. The transcription networks of well-studied microorganisms appear

More information

SYSTEMS BIOLOGY 1: NETWORKS

SYSTEMS BIOLOGY 1: NETWORKS SYSTEMS BIOLOGY 1: NETWORKS SYSTEMS BIOLOGY Starting around 2000 a number of biologists started adopting the term systems biology for an approach to biology that emphasized the systems-character of biology:

More information

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models Markus W. Covert Stanford University 0 CRC Press Taylor & Francis Group Boca Raton London New York Contents /... Preface, xi

More information

Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells

Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells Dr. Ramez Daniel Laboratory of Synthetic Biology & Bioelectronics (LSB 2 ) Biomedical Engineering, Technion May 9, 2016 Cytomorphic

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

Biological Networks Analysis

Biological Networks Analysis Biological Networks Analysis Degree Distribution and Network Motifs Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein Networks: Networks vs. graphs A collection of nodesand

More information

BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013

BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013 M. Elowitz and R. M. Murray Winter 2013 CALIFORNIA INSTITUTE OF TECHNOLOGY Biology and Biological Engineering (BBE) BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013 1. (Shaping pulses; based

More information

Biochemical Reactions and Logic Computation

Biochemical Reactions and Logic Computation Biochemical Reactions and Logic Computation Biochemical Reactions and Biology Complex behaviors of a living organism originate from systems of biochemical reactions Jie-Hong Roland Jiang (Introduction

More information

Universality of sensory-response systems

Universality of sensory-response systems excite.org(anism): Electrical Signaling Universality of sensory-response systems Three step process: sensation-integration-response Bacterial chemotaxis Madigan et al. Fig. 8.24 Rick Stewart (CBMG) Human

More information

Lecture IV: LTI models of physical systems

Lecture IV: LTI models of physical systems BME 171: Signals and Systems Duke University September 5, 2008 This lecture Plan for the lecture: 1 Interconnections of linear systems 2 Differential equation models of LTI systems 3 eview of linear circuit

More information

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus L3.1: Circuits: Introduction to Transcription Networks Cellular Design Principles Prof. Jenna Rickus In this lecture Cognitive problem of the Cell Introduce transcription networks Key processing network

More information

COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION

COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION I. Aksan 1, M. Sen 2, M. K. Araz 3, and M. L. Kurnaz 3 1 School of Biological Sciences, University of Manchester,

More information

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1 7.32/7.81J/8.591J: Systems Biology Fall 2013 Exam #1 Instructions 1) Please do not open exam until instructed to do so. 2) This exam is closed- book and closed- notes. 3) Please do all problems. 4) Use

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

Cellular Systems Biology or Biological Network Analysis

Cellular Systems Biology or Biological Network Analysis Cellular Systems Biology or Biological Network Analysis Joel S. Bader Department of Biomedical Engineering Johns Hopkins University (c) 2012 December 4, 2012 1 Preface Cells are systems. Standard engineering

More information

Networks in systems biology

Networks in systems biology Networks in systems biology Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson) Networks in systems

More information

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016 Bi 8 Lecture 11 Quantitative aspects of transcription factor binding and gene regulatory circuit design Ellen Rothenberg 9 February 2016 Major take-home messages from λ phage system that apply to many

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

letter Network motifs in the transcriptional regulation network of Escherichia coli ... Z n X 1 X 2 X 3... X n Z 1 Z 2 Z 3 Z 4...

letter Network motifs in the transcriptional regulation network of Escherichia coli ... Z n X 1 X 2 X 3... X n Z 1 Z 2 Z 3 Z 4... Network motifs in the transcriptional regulation network of Escherichia coli Shai S. Shen-Orr 1, Ron Milo 2, Shmoolik Mangan 1 & Uri Alon 1,2 Published online: 22 April 2002, DOI: 10.1038/ng881 a b c d

More information

Hybrid Quorum sensing in Vibrio harveyi- two component signalling

Hybrid Quorum sensing in Vibrio harveyi- two component signalling Hybrid Quorum sensing in Vibrio harveyi- two component signalling Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of

More information

Signal Transduction. Dr. Chaidir, Apt

Signal Transduction. Dr. Chaidir, Apt Signal Transduction Dr. Chaidir, Apt Background Complex unicellular organisms existed on Earth for approximately 2.5 billion years before the first multicellular organisms appeared.this long period for

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

Bacterial Chemotaxis

Bacterial Chemotaxis Bacterial Chemotaxis Bacteria can be attracted/repelled by chemicals Mechanism? Chemoreceptors in bacteria. attractant Adler, 1969 Science READ! This is sensing, not metabolism Based on genetic approach!!!

More information

Stochastic simulations

Stochastic simulations Stochastic simulations Application to molecular networks Literature overview Noise in genetic networks Origins How to measure and distinguish between the two types of noise (intrinsic vs extrinsic)? What

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180 Course plan 201-201 Academic Year Qualification MSc on Bioinformatics for Health Sciences 1. Description of the subject Subject name: Code: 30180 Total credits: 5 Workload: 125 hours Year: 1st Term: 3

More information

Neural Modeling and Computational Neuroscience. Claudio Gallicchio

Neural Modeling and Computational Neuroscience. Claudio Gallicchio Neural Modeling and Computational Neuroscience Claudio Gallicchio 1 Neuroscience modeling 2 Introduction to basic aspects of brain computation Introduction to neurophysiology Neural modeling: Elements

More information

Control Theory: Design and Analysis of Feedback Systems

Control Theory: Design and Analysis of Feedback Systems Control Theory: Design and Analysis of Feedback Systems Richard M. Murray 21 April 2008 Goals: Provide an introduction to key concepts and tools from control theory Illustrate the use of feedback for design

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

BioControl - Week 6, Lecture 1

BioControl - Week 6, Lecture 1 BioControl - Week 6, Lecture 1 Goals of this lecture Large metabolic networks organization Design principles for small genetic modules - Rules based on gene demand - Rules based on error minimization Suggested

More information

step, the activation signal for protein X is removed. When X * falls below K xy and K xz, the

step, the activation signal for protein X is removed. When X * falls below K xy and K xz, the CHAPTER 3: RESULTS 3.1 Dynamics of C2-FFL with AND/OR gate Figure 3.1 shows the dynamics for C2-FFL with AND gate. At the ON step, transcription factor X is activated by its inducer, causing the concentration

More information

Lecture 2: Analysis of Biomolecular Circuits

Lecture 2: Analysis of Biomolecular Circuits Lecture 2: Analysis of Biomolecular Circuits Richard M. Murray Caltech CDS/BE Goals: Give a short overview of the control techniques applied to biology - uncertainty management - system identification

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

Wave Pinning, Actin Waves, and LPA

Wave Pinning, Actin Waves, and LPA Wave Pinning, Actin Waves, and LPA MCB 2012 William R. Holmes Intercellular Waves Weiner et al., 2007, PLoS Biology Dynamic Hem1 waves in neutrophils Questions? How can such waves / pulses form? What molecular

More information

Basic modeling approaches for biological systems. Mahesh Bule

Basic modeling approaches for biological systems. Mahesh Bule Basic modeling approaches for biological systems Mahesh Bule The hierarchy of life from atoms to living organisms Modeling biological processes often requires accounting for action and feedback involving

More information

COURSE NUMBER: EH 590R SECTION: 1 SEMESTER: Fall COURSE TITLE: Computational Systems Biology: Modeling Biological Responses

COURSE NUMBER: EH 590R SECTION: 1 SEMESTER: Fall COURSE TITLE: Computational Systems Biology: Modeling Biological Responses DEPARTMENT: Environmental Health COURSE NUMBER: EH 590R SECTION: 1 SEMESTER: Fall 2017 CREDIT HOURS: 2 COURSE TITLE: Computational Systems Biology: Modeling Biological Responses COURSE LOCATION: TBD PREREQUISITE:

More information

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E 05//0 5:26:04 09/6/0 (259) 6 7 8 9 20 2 22 2 09/7 0 02 0 000/00 0 02 0 04 05 06 07 08 09 0 2 ay 000 ^ 0 X Y / / / / ( %/ ) 2 /0 2 ( ) ^ 4 / Y/ 2 4 5 6 7 8 9 2 X ^ X % 2 // 09/7/0 (260) ay 000 02 05//0

More information

COGNITIVE SCIENCE 107A

COGNITIVE SCIENCE 107A COGNITIVE SCIENCE 107A Electrophysiology: Electrotonic Properties 2 Jaime A. Pineda, Ph.D. The Model Neuron Lab Your PC/CSB115 http://cogsci.ucsd.edu/~pineda/cogs107a/index.html Labs - Electrophysiology

More information

Biophysical Journal Volume 92 May

Biophysical Journal Volume 92 May Biophysical Journal Volume 92 May 2007 3407 3424 3407 Dynamics of a Minimal Model of Interlocked Positive and Negative Feedback Loops of Transcriptional Regulation by camp-response Element Binding Proteins

More information

Algebraic methods for the study of biochemical reaction networks

Algebraic methods for the study of biochemical reaction networks Algebraic methods for the study of biochemical reaction networks Alicia Dickenstein Departamento de Matemática, FCEN, Universidad de Buenos Aires, and Instituto de Matemática Luis A. Santaló, UBA CONICET

More information

Lab 5: 16 th April Exercises on Neural Networks

Lab 5: 16 th April Exercises on Neural Networks Lab 5: 16 th April 01 Exercises on Neural Networks 1. What are the values of weights w 0, w 1, and w for the perceptron whose decision surface is illustrated in the figure? Assume the surface crosses the

More information

Gene Autoregulation via Intronic micrornas and its Functions

Gene Autoregulation via Intronic micrornas and its Functions Gene Autoregulation via Intronic micrornas and its Functions Carla Bosia Department of Theoretical Physics University of Torino and INFN, Italy cbosia@to.infn.it Annecy-le-Vieux 20-22/10/2010 OUTLINE microrna

More information

Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks. Sitabhra Sinha IMSc Chennai

Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks. Sitabhra Sinha IMSc Chennai Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks Sitabhra Sinha IMSc Chennai Intra-cellular biochemical networks Metabolic networks Nodes:

More information

Graph Alignment and Biological Networks

Graph Alignment and Biological Networks Graph Alignment and Biological Networks Johannes Berg http://www.uni-koeln.de/ berg Institute for Theoretical Physics University of Cologne Germany p.1/12 Networks in molecular biology New large-scale

More information

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019 Visual pigments Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019 References Webvision: The Organization of the Retina and Visual System (http://www.ncbi.nlm.nih.gov/books/nbk11522/#a 127) The

More information

Models of transcriptional regulation

Models of transcriptional regulation Models of transcriptional regulation We have already discussed four simple mechanisms of transcriptional regulation, nuclear exclusion nuclear concentration modification of bound activator redirection

More information

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE From cell biology to Petri nets Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE Biology = Concentrations Breitling / 2 The simplest chemical reaction A B irreversible,

More information

Action Potential (AP) NEUROEXCITABILITY II-III. Na + and K + Voltage-Gated Channels. Voltage-Gated Channels. Voltage-Gated Channels

Action Potential (AP) NEUROEXCITABILITY II-III. Na + and K + Voltage-Gated Channels. Voltage-Gated Channels. Voltage-Gated Channels NEUROEXCITABILITY IIIII Action Potential (AP) enables longdistance signaling woohoo! shows threshold activation allornone in amplitude conducted without decrement caused by increase in conductance PNS

More information

WHITE PAPER: SLOA011 Author: Jim Karki Digital Signal Processing Solutions April 1998

WHITE PAPER: SLOA011 Author: Jim Karki Digital Signal Processing Solutions April 1998 OPerational AMPlifier lifiers Source: Understanding Operational Amplifier Specifications Source: Understanding Operational Amplifier Specifications WHITE PAPE: SLOA0 Author: Jim Karki Digital Signal Processing

More information

UNIVERSITY OF CALIFORNIA SANTA BARBARA DEPARTMENT OF CHEMICAL ENGINEERING. CHE 154: Engineering Approaches to Systems Biology Spring Quarter 2004

UNIVERSITY OF CALIFORNIA SANTA BARBARA DEPARTMENT OF CHEMICAL ENGINEERING. CHE 154: Engineering Approaches to Systems Biology Spring Quarter 2004 UNIVERSITY OF CALIFORNIA SANTA BARBARA DEPARTMENT OF CHEMICAL ENGINEERING CHE 154: Engineering Approaches to Systems Biology Spring Quarter 2004 Lecture: Tue/Thu 9:30-10:45am Engr-II Room 3301 Instructor

More information

Biophysics 297: Modeling Complex Biological Systems Problem Set 1 Due: 5/12/2004

Biophysics 297: Modeling Complex Biological Systems Problem Set 1 Due: 5/12/2004 Biophysics 97: odeling Complex Biological Systems Problem Set 1 Due: 5/1/004 Problem 1: Analyzing a phase space dx Analyze the following equation graphically by plotting against x. ind the fixed points

More information

NIH Public Access Author Manuscript Phys Biol. Author manuscript; available in PMC 2013 October 01.

NIH Public Access Author Manuscript Phys Biol. Author manuscript; available in PMC 2013 October 01. NIH Public Access Author Manuscript Published in final edited form as: Phys Biol. 2012 October ; 9(5): 056001. doi:10.1088/1478-3975/9/5/056001. Pareto Evolution of Gene Networks: An Algorithm to Optimize

More information

The Neuron - F. Fig. 45.3

The Neuron - F. Fig. 45.3 excite.org(anism): Electrical Signaling The Neuron - F. Fig. 45.3 Today s lecture we ll use clickers Review today 11:30-1:00 in 2242 HJ Patterson Electrical signals Dendrites: graded post-synaptic potentials

More information

LIMIT CYCLE OSCILLATORS

LIMIT CYCLE OSCILLATORS MCB 137 EXCITABLE & OSCILLATORY SYSTEMS WINTER 2008 LIMIT CYCLE OSCILLATORS The Fitzhugh-Nagumo Equations The best example of an excitable phenomenon is the firing of a nerve: according to the Hodgkin

More information

S1 Gene ontology (GO) analysis of the network alignment results

S1 Gene ontology (GO) analysis of the network alignment results 1 Supplementary Material for Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model Hyundoo Jeong 1, Xiaoning Qian 1 and

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch.

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch. 1. Describe the basic structure of an ion channel. Name 3 ways a channel can be "activated," and describe what occurs upon activation. What are some ways a channel can decide what is allowed to pass through?

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 Nervous System Organization All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 48 Neurons, Synapses, and Signaling

More information

six lectures on systems biology

six lectures on systems biology six lectures on systems biology jeremy gunawardena department of systems biology harvard medical school lecture 3 5 april 2011 part 2 seminar room, department of genetics a rather provisional syllabus

More information

No oscillations in the Michaelis-Menten approximation of the dual futile cycle under a sequential and distributive mechanism

No oscillations in the Michaelis-Menten approximation of the dual futile cycle under a sequential and distributive mechanism No oscillations in the Michaelis-Menten approximation of the dual futile cycle under a sequential and distributive mechanism Luna Bozeman 1 and Adriana Morales 2 1 Department of Mathematical Sciences Clemson

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE 4: Linear Systems Summary # 3: Introduction to artificial neural networks DISTRIBUTED REPRESENTATION An ANN consists of simple processing units communicating with each other. The basic elements of

More information

Lecture 4: Transcription networks basic concepts

Lecture 4: Transcription networks basic concepts Lecture 4: Transcription networks basic concepts - Activators and repressors - Input functions; Logic input functions; Multidimensional input functions - Dynamics and response time 2.1 Introduction The

More information

Simulation of Gene Regulatory Networks

Simulation of Gene Regulatory Networks Simulation of Gene Regulatory Networks Overview I have been assisting Professor Jacques Cohen at Brandeis University to explore and compare the the many available representations and interpretations of

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2 I C + 4 * Massachusetts

More information

Using Circuit Structural Analysis Techniques for Networks in Systems Biology

Using Circuit Structural Analysis Techniques for Networks in Systems Biology Using Circuit Structural Analysis Techniques for Networks in Systems Biology Sherief Reda Division of Engineering Brown University Providence, RI 02912 Email: sherief_reda@brown.edu ABSTRACT The cell contains

More information

purpose of this Chapter is to highlight some problems that will likely provide new

purpose of this Chapter is to highlight some problems that will likely provide new 119 Chapter 6 Future Directions Besides our contributions discussed in previous chapters to the problem of developmental pattern formation, this work has also brought new questions that remain unanswered.

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons CAMPBELL BIOLOGY TENTH EDITION 48 Reece Urry Cain Wasserman Minorsky Jackson Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick 1. Overview of Neurons Communication

More information

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016 Bioinformatics 3 V18 Kinetic Motifs Fri, Jan 8, 2016 Modelling of Signalling Pathways Curr. Op. Cell Biol. 15 (2003) 221 1) How do the magnitudes of signal output and signal duration depend on the kinetic

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

Convolutional networks. Sebastian Seung

Convolutional networks. Sebastian Seung Convolutional networks Sebastian Seung Convolutional network Neural network with spatial organization every neuron has a location usually on a grid Translation invariance synaptic strength depends on locations

More information

Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014"

Bioinformatics 3! V20 Kinetic Motifs Mon, Jan 13, 2014 Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014" Modelling of Signalling Pathways" Curr. Op. Cell Biol. 15 (2003) 221" 1) How do the magnitudes of signal output and signal duration depend on the

More information

Cybergenetics: Control theory for living cells

Cybergenetics: Control theory for living cells Department of Biosystems Science and Engineering, ETH-Zürich Cybergenetics: Control theory for living cells Corentin Briat Joint work with Ankit Gupta and Mustafa Khammash Introduction Overview Cybergenetics:

More information

V m = the Value of the Na Battery Plus the Voltage Drop Across g Na. I Na is Isolated By Blocking I K. and g K

V m = the Value of the Na Battery Plus the Voltage Drop Across g Na. I Na is Isolated By Blocking I K. and g K VoltageGated Ion Channels and the Action Potential VoltageGated Ion Channels and the Action Potential jdk3 Principles of Neural Science, chaps 8&9 The Action Potential Generation Conduction VoltageGated

More information

Dynamic Stability of Signal Transduction Networks Depending on Downstream and Upstream Specificity of Protein Kinases

Dynamic Stability of Signal Transduction Networks Depending on Downstream and Upstream Specificity of Protein Kinases Dynamic Stability of Signal Transduction Networks Depending on Downstream and Upstream Specificity of Protein Kinases Bernd Binder and Reinhart Heinrich Theoretical Biophysics, Institute of Biology, Math.-Nat.

More information

A local sensitivity analysis of Ca 2+ -calmodulin binding and its influence over PP1 activity

A local sensitivity analysis of Ca 2+ -calmodulin binding and its influence over PP1 activity 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 A local sensitivity analysis of Ca 2+ -calmodulin binding and its influence

More information

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011 Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L16. Neural processing in Linear Systems: Temporal and Spatial Filtering C. D. Hopkins Sept. 21, 2011 The Neural

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

Domain 6: Communication

Domain 6: Communication Domain 6: Communication 6.1: Cell communication processes share common features that reflect a shared evolutionary history. (EK3.D.1) 1. Introduction to Communication Communication requires the generation,

More information

The role of mrna and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells.

The role of mrna and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells. The role of mrna and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells. Kristian Moss Bendtsen 1, Mogens H. Jensen 1a, Sandeep Krishna 1,2, Szabolcs

More information

Bacterial chemotaxis and the question of high gain in signal transduction. Réka Albert Department of Physics

Bacterial chemotaxis and the question of high gain in signal transduction. Réka Albert Department of Physics Bacterial chemotaxis and the question of high gain in signal transduction Réka Albert Department of Physics E. coli lives in the gut and takes up nutrients through its pores E. coli moves by rotating its

More information

Using Evolutionary Approaches To Study Biological Pathways. Pathways Have Evolved

Using Evolutionary Approaches To Study Biological Pathways. Pathways Have Evolved Pathways Have Evolved Using Evolutionary Approaches To Study Biological Pathways Orkun S. Soyer The Microsoft Research - University of Trento Centre for Computational and Systems Biology Protein-protein

More information

Nervous Tissue. Neurons Neural communication Nervous Systems

Nervous Tissue. Neurons Neural communication Nervous Systems Nervous Tissue Neurons Neural communication Nervous Systems What is the function of nervous tissue? Maintain homeostasis & respond to stimuli Sense & transmit information rapidly, to specific cells and

More information

Molecular biology of neural communication

Molecular biology of neural communication Molecular biology of neural communication One picture - two information Where do I feel the pain? Real and Virtual Consciousness Almost all neural process is pervaded by the consciousness We not only perceive

More information

Study of Tricyclic Cascade Networks using Dynamic Optimization

Study of Tricyclic Cascade Networks using Dynamic Optimization Study of Tricyclic Cascade Networks using Dynamic Optimization Systems Biology interdisciplinary field that focuses on the systematic study of complex interactions in biological systems Signal transduction

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

EE 16B Midterm 2, March 21, Name: SID #: Discussion Section and TA: Lab Section and TA: Name of left neighbor: Name of right neighbor:

EE 16B Midterm 2, March 21, Name: SID #: Discussion Section and TA: Lab Section and TA: Name of left neighbor: Name of right neighbor: EE 16B Midterm 2, March 21, 2017 Name: SID #: Discussion Section and TA: Lab Section and TA: Name of left neighbor: Name of right neighbor: Important Instructions: Show your work. An answer without explanation

More information

nutrients growth & division repellants movement

nutrients growth & division repellants movement Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute Outline 1. Cell Signaling: Physiology 2. Cell Signaling: Molecular Biology 3. Chemical

More information

1 Periodic stimulations of the Incoherent Feedforward Loop network

1 Periodic stimulations of the Incoherent Feedforward Loop network 1 Periodic stimulations of the Incoherent Feedforward Loop network In this Additional file, we give more details about the mathematical analysis of the periodic activation of the IFFL network by a train

More information

Biological networks CS449 BIOINFORMATICS

Biological networks CS449 BIOINFORMATICS CS449 BIOINFORMATICS Biological networks Programming today is a race between software engineers striving to build bigger and better idiot-proof programs, and the Universe trying to produce bigger and better

More information