Basic modeling approaches for biological systems. Mahesh Bule

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Basic modeling approaches for biological systems. Mahesh Bule"

Transcription

1 Basic modeling approaches for biological systems Mahesh Bule

2 The hierarchy of life from atoms to living organisms

3 Modeling biological processes often requires accounting for action and feedback involving a wide range of spatial and temporal scale

4 Modeling and biology Life is one of the most complex phenomenon in the universe Biological systems are regulated at scales of many orders of magnitude in space and time, with space spanning from the molecular scale (10 10 m) to the living organism scale (1 m), and time from nanoseconds (10 9 s) to years (10 8 s) The systematic investigation of cells, organs, organisms and manly cellular processes such as communication, cell division, homeostasis and adaptation- is systems biology Systems biology offer chance to predict outcome of complex process e.g. cell growth, gene expression

5 Integrative systems biology involving the iterative cycle of wet and dry laboratory research

6 Modeling approaches in biology Bottom up and top down

7 Approach for multi-scale model development in biology

8 Hierarchy of scale, related mechanisms and modeling approaches

9 Relation of modeling approach, scale and experimental procedure

10 Comparison of systemic and molecular views of the same metabolic system on the example of the photosynthetic apparatus of purple bacteria

11 Systems Biology is Modeling It relies on the integration of experimentation, data processing and modeling Modelling biological process focusses on increasing the depth of understanding and prediction of reliable results Development of tools to aid modelling can aid in understanding of processes Development of multi-scale modelling can allow dry experiments or in-silico experiments to be used as a form of validation which can save time and resources

12 Systems Biology is Modeling Properties of model 1. Model assignment is not unique Biological processes can be described in more than one way as follows: A biological object can be investigated with different experimental methods Each biological process can be described with different (mathematical) model The choice of a mathematical model or an algorithm to describe a biological object depends on problem

13 Systems Biology is Modeling 2. System state Different modeling approaches have different representations of state e.g. In differential equation model for a metabolic network, the state is a list of concentrations of each chemical species In stochastic model, its is a probability distribution and /or list of current number of molecules of species In a Boolean model of gene regulation, the state is string of bits indicating for of each gene whether it is expressed ( 1 ) or not expressed ( 0 )

14 Systems Biology is Modeling 3. Steady state The concept of stationary states is important for the modeling of dynamical systems The asymptotic behavior of dynamic systems, i.e. the behavior after sufficiently long time, is often stationary Fast process often reach a quasi-steady state after short transition period

15 Systems Biology is Modeling 4. Variables, Parameters, and Constants Constant is fixed value- natural number Parameters are quantities that are assigned a value, such as the Km value of enzyme in a reaction Variables are quantities with a changeable value for which the model establishes relations

16 Systems Biology is Modeling 5. Modeling behavior Two fundamental causes that determine the behavior of a system Influences from the environment (input) Processes within the system

17 Systems Biology is Modeling 6. Process classification For modeling, processes are classified with respect to criteria. Reversibility determines whether process can proceed in a forward and backward direction Irreversible- the process which can proceed only in one direction Periodicity- indicates that a series of state may be assumed in the time interval (t, t+ t) Deterministic approach- when the motion through all following states can be predicted with known conditions Discrete model- where values taken from a discrete set Continuous model- where values are taken from a continuum

18 Typical aspects of biological systems and corresponding models Modularity interacting nodes w/ common function constrained pleiotropy feedback loops, oscillators, amplifiers

19 Network versus Elements A system consists of individual elements that interacts and thus form a network

20 Robustness insensitivity to parameter variation Severe constraints on design robustness not present in most designs

21 Three basic approaches used for modeling biological process Interactome (Tier 1) Deterministic (Tier 2) Stochastic (Tier 3)

22 Response measurment during model development Tier 1: Interactome Which molecules talk to each other in networks? Tier 2: Deterministic What is the average case behavior? Tier 3: Stochastic What is the variance of the system?

23 Out put of different tiers during model development Tier 1 get parts list Tier 2 & 3 enumerate biochemistry

24 Out put of different tiers during model development Tier 2 & 3 enumerate biochemistry define network/mathematical relationships compute numerical solutions

25 Tire 2 & 3 Deterministic: Behavior of system with respect to time is predicted with certainty given initial conditions Stochastic: Dynamics cannot be predicted with certainty given initial conditions

26 Introduction to different models used Deterministic Ordinary differential equations (ODE s) Concentration as a function of time only Partial differential equations (PDE s) Concentration as a function of space and time Stochastic Stochastic update equations Molecule numbers as random variables functions of time

27 Tire 1: Static interactome analysis Protein-protein Signal transduction Cell cycle Protein-DNA Gene regulation Metabolic pathways Respiration camp

28 Tier 1: Static interactome analysis Goals Determine network topology Network statistics Analyze modular structure

29 Tier 1: Static interactome analysis Limitations: Time, space, population average Crude interactions strength types Global features starting point for Tier 2 & 3 typical interactome first time-varying yeast interactome (Bork 2005)

30 Tier 1: Static interactome analysis Analysis methods Functional Genomics expression analysis network integration Graph Theory scale free small world

31 Tier 2: Deterministic Models Goal model mesoscale system average case behavior Three levels ODE system ODE compartment system PDE (rare!) data limited lumped cell cell compartments continuous time & space (MinCDE oscillation)

32 Tier 2: Deterministic Modeling Results Robust Chemotaxis MinCDE Oscillation Feedback in Signal Transduction Output time series plots (ODE) condition on parameter values

33 Tier 2: Deterministic Modeling Example Robustness in bacterial chemotaxis Bacterial chemotaxis robust to parameter fluctuations! Chemotaxis: bacterial migration towards/away from chemicals Parameters concentrations binding affinities

34 Tier 3: Stochastic analysis Fluctuations in abundance of expressed molecules at the single-cell level Leads to non-genetic individuality of isogenic population

35 Tier 3: Stochastic Analysis When stochasticity is negligible, use deterministic modeling Molecular noise is low: System is large molar quantities Fast kinetics reaction time negligible Large cell volume infinite boundary conditions

36 Tier 3: Stochastic Analysis Molecular noise is high: System is small finite molecule count matters Slow kinetics relative to movement time Large cell volume relative to molecule size Need explicit stochastic modeling!

37 Model development workflow in biology Formulation of problem Verification of available information Selection of model structure Establishing a simple model Sensitivity analysis Experimental test and model prediction Iterative refinement of model

38 Major challenges and limitations Measurement of chemical kinetics parameters and molecular concentrations in vivo Differences between in vitro and in vivo data Compartmental specific reactions Data is the limit!!!

39 Major challenges and limitations Data is the limit!!! Functional genomic data (Interactomes) E. Coli chemotaxis (Leibler, deterministic/robustness) Important parameter estimation feedback based estimation methods

Cybergenetics: Control theory for living cells

Cybergenetics: Control theory for living cells Department of Biosystems Science and Engineering, ETH-Zürich Cybergenetics: Control theory for living cells Corentin Briat Joint work with Ankit Gupta and Mustafa Khammash Introduction Overview Cybergenetics:

More information

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models Markus W. Covert Stanford University 0 CRC Press Taylor & Francis Group Boca Raton London New York Contents /... Preface, xi

More information

Networks in systems biology

Networks in systems biology Networks in systems biology Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson) Networks in systems

More information

Modelling Biochemical Pathways with Stochastic Process Algebra

Modelling Biochemical Pathways with Stochastic Process Algebra Modelling Biochemical Pathways with Stochastic Process Algebra Jane Hillston. LFCS, University of Edinburgh 13th April 2007 The PEPA project The PEPA project started in Edinburgh in 1991. The PEPA project

More information

Lecture 1 Modeling in Biology: an introduction

Lecture 1 Modeling in Biology: an introduction Lecture 1 in Biology: an introduction Luca Bortolussi 1 Alberto Policriti 2 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Via Valerio 12/a, 34100 Trieste. luca@dmi.units.it

More information

Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA.

Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA. Systems Biology-Models and Approaches Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA. Taxonomy Study external

More information

Lecture: Computational Systems Biology Universität des Saarlandes, SS Introduction. Dr. Jürgen Pahle

Lecture: Computational Systems Biology Universität des Saarlandes, SS Introduction. Dr. Jürgen Pahle Lecture: Computational Systems Biology Universität des Saarlandes, SS 2012 01 Introduction Dr. Jürgen Pahle 24.4.2012 Who am I? Dr. Jürgen Pahle 2009-2012 Manchester Interdisciplinary Biocentre, The University

More information

Models and Languages for Computational Systems Biology Lecture 1

Models and Languages for Computational Systems Biology Lecture 1 Models and Languages for Computational Systems Biology Lecture 1 Jane Hillston. LFCS and CSBE, University of Edinburgh 13th January 2011 Outline Introduction Motivation Measurement, Observation and Induction

More information

Mechanisms for Precise Positional Information in Bacteria: The Min system in E. coli and B. subtilis

Mechanisms for Precise Positional Information in Bacteria: The Min system in E. coli and B. subtilis Mechanisms for Precise Positional Information in Bacteria: The Min system in E. coli and B. subtilis Martin Howard Imperial College London Bacterial Organization Many processes where bacterial cell needs

More information

Introduction to Mathematical Modeling

Introduction to Mathematical Modeling Introduction to Mathematical Modeling - Systems Theory in the Toolbox for Systems Biology The 5 th International Course in Yeast Systems Biology 2011 June 6, 2011, PhD, Assoc Prof Head of Department Systems

More information

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai Network Biology: Understanding the cell s functional organization Albert-László Barabási Zoltán N. Oltvai Outline: Evolutionary origin of scale-free networks Motifs, modules and hierarchical networks Network

More information

Design Principles of a Bacterial Signalling Network

Design Principles of a Bacterial Signalling Network Design Principles of a Bacterial Signalling Network Why is chemotaxis more complicated than needed? Jens Timmer Freiburg Institute for Advanced Studies Center for Systems Biology Center for Data Analysis

More information

56:198:582 Biological Networks Lecture 10

56:198:582 Biological Networks Lecture 10 56:198:582 Biological Networks Lecture 10 Temporal Programs and the Global Structure The single-input module (SIM) network motif The network motifs we have studied so far all had a defined number of nodes.

More information

Lecture 8: Temporal programs and the global structure of transcription networks. Chap 5 of Alon. 5.1 Introduction

Lecture 8: Temporal programs and the global structure of transcription networks. Chap 5 of Alon. 5.1 Introduction Lecture 8: Temporal programs and the global structure of transcription networks Chap 5 of Alon 5. Introduction We will see in this chapter that sensory transcription networks are largely made of just four

More information

Evidence for dynamically organized modularity in the yeast protein-protein interaction network

Evidence for dynamically organized modularity in the yeast protein-protein interaction network Evidence for dynamically organized modularity in the yeast protein-protein interaction network Sari Bombino Helsinki 27.3.2007 UNIVERSITY OF HELSINKI Department of Computer Science Seminar on Computational

More information

CHAPTER : Prokaryotic Genetics

CHAPTER : Prokaryotic Genetics CHAPTER 13.3 13.5: Prokaryotic Genetics 1. Most bacteria are not pathogenic. Identify several important roles they play in the ecosystem and human culture. 2. How do variations arise in bacteria considering

More information

Using Evolutionary Approaches To Study Biological Pathways. Pathways Have Evolved

Using Evolutionary Approaches To Study Biological Pathways. Pathways Have Evolved Pathways Have Evolved Using Evolutionary Approaches To Study Biological Pathways Orkun S. Soyer The Microsoft Research - University of Trento Centre for Computational and Systems Biology Protein-protein

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

natural development from this collection of knowledge: it is more reliable to predict the property

natural development from this collection of knowledge: it is more reliable to predict the property 1 Chapter 1 Introduction As the basis of all life phenomena, the interaction of biomolecules has been under the scrutiny of scientists and cataloged meticulously [2]. The recent advent of systems biology

More information

56:198:582 Biological Networks Lecture 9

56:198:582 Biological Networks Lecture 9 56:198:582 Biological Networks Lecture 9 The Feed-Forward Loop Network Motif Subgraphs in random networks We have discussed the simplest network motif, self-regulation, a pattern with one node We now consider

More information

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements 1. Why stochastic?. Mathematical descriptions (i) the master equation (ii) Langevin theory 3. Single cell measurements 4. Consequences Any chemical reaction is stochastic. k P d φ dp dt = k d P deterministic

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Basic Synthetic Biology circuits

Basic Synthetic Biology circuits Basic Synthetic Biology circuits Note: these practices were obtained from the Computer Modelling Practicals lecture by Vincent Rouilly and Geoff Baldwin at Imperial College s course of Introduction to

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

Computer Simulation and Data Analysis in Molecular Biology and Biophysics

Computer Simulation and Data Analysis in Molecular Biology and Biophysics Victor Bloomfield Computer Simulation and Data Analysis in Molecular Biology and Biophysics An Introduction Using R Springer Contents Part I The Basics of R 1 Calculating with R 3 1.1 Installing R 3 1.1.1

More information

Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks. Sitabhra Sinha IMSc Chennai

Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks. Sitabhra Sinha IMSc Chennai Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks Sitabhra Sinha IMSc Chennai Intra-cellular biochemical networks Metabolic networks Nodes:

More information

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE From cell biology to Petri nets Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE Biology = Concentrations Breitling / 2 The simplest chemical reaction A B irreversible,

More information

Total

Total Student Performance by Question Biology (Multiple-Choice ONLY) Teacher: Core 1 / S-14 Scientific Investigation Life at the Molecular and Cellular Level Analysis of Performance by Question of each student

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Biological Pathways Representation by Petri Nets and extension

Biological Pathways Representation by Petri Nets and extension Biological Pathways Representation by and extensions December 6, 2006 Biological Pathways Representation by and extension 1 The cell Pathways 2 Definitions 3 4 Biological Pathways Representation by and

More information

Synthetic and Natural Analog Computation in Living Cells

Synthetic and Natural Analog Computation in Living Cells Synthetic and Natural Analog Computation in Living Cells Rahul Sarpeshkar Analog Circuits and Biological Systems Group http://www.rle.mit.edu/acbs/ Bits to Biology, CBA May 1st 2014 ANALOG 1. Compute on

More information

Biological networks CS449 BIOINFORMATICS

Biological networks CS449 BIOINFORMATICS CS449 BIOINFORMATICS Biological networks Programming today is a race between software engineers striving to build bigger and better idiot-proof programs, and the Universe trying to produce bigger and better

More information

Modeling and Systems Analysis of Gene Regulatory Networks

Modeling and Systems Analysis of Gene Regulatory Networks Modeling and Systems Analysis of Gene Regulatory Networks Mustafa Khammash Center for Control Dynamical-Systems and Computations University of California, Santa Barbara Outline Deterministic A case study:

More information

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes 1/ 223 SPA for quantitative analysis: Lecture 6 Modelling Biological Processes Jane Hillston LFCS, School of Informatics The University of Edinburgh Scotland 7th March 2013 Outline 2/ 223 1 Introduction

More information

Types of biological networks. I. Intra-cellurar networks

Types of biological networks. I. Intra-cellurar networks Types of biological networks I. Intra-cellurar networks 1 Some intra-cellular networks: 1. Metabolic networks 2. Transcriptional regulation networks 3. Cell signalling networks 4. Protein-protein interaction

More information

Graph Alignment and Biological Networks

Graph Alignment and Biological Networks Graph Alignment and Biological Networks Johannes Berg http://www.uni-koeln.de/ berg Institute for Theoretical Physics University of Cologne Germany p.1/12 Networks in molecular biology New large-scale

More information

Biology Unit Overview and Pacing Guide

Biology Unit Overview and Pacing Guide This document provides teachers with an overview of each unit in the Biology curriculum. The Curriculum Engine provides additional information including knowledge and performance learning targets, key

More information

Cellular Systems Biology or Biological Network Analysis

Cellular Systems Biology or Biological Network Analysis Cellular Systems Biology or Biological Network Analysis Joel S. Bader Department of Biomedical Engineering Johns Hopkins University (c) 2012 December 4, 2012 1 Preface Cells are systems. Standard engineering

More information

GACE Biology Assessment Test I (026) Curriculum Crosswalk

GACE Biology Assessment Test I (026) Curriculum Crosswalk Subarea I. Cell Biology: Cell Structure and Function (50%) Objective 1: Understands the basic biochemistry and metabolism of living organisms A. Understands the chemical structures and properties of biologically

More information

Systems Biology. Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig. A Textbook

Systems Biology. Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig. A Textbook Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig Systems Biology A Textbook WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Contents Preface XVII Part One

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

Measuring TF-DNA interactions

Measuring TF-DNA interactions Measuring TF-DNA interactions How is Biological Complexity Achieved? Mediated by Transcription Factors (TFs) 2 Regulation of Gene Expression by Transcription Factors TF trans-acting factors TF TF TF TF

More information

Introduction. Dagmar Iber Jörg Stelling. CSB Deterministic, SS 2015, 1.

Introduction. Dagmar Iber Jörg Stelling. CSB Deterministic, SS 2015, 1. Introduction Dagmar Iber Jörg Stelling joerg.stelling@bsse.ethz.ch CSB Deterministic, SS 2015, 1 Origins of Systems Biology On this assumption of the passage of blood, made as a basis for argument, and

More information

56:198:582 Biological Networks Lecture 8

56:198:582 Biological Networks Lecture 8 56:198:582 Biological Networks Lecture 8 Course organization Two complementary approaches to modeling and understanding biological networks Constraint-based modeling (Palsson) System-wide Metabolism Steady-state

More information

Network motifs in the transcriptional regulation network (of Escherichia coli):

Network motifs in the transcriptional regulation network (of Escherichia coli): Network motifs in the transcriptional regulation network (of Escherichia coli): Janne.Ravantti@Helsinki.Fi (disclaimer: IANASB) Contents: Transcription Networks (aka. The Very Boring Biology Part ) Network

More information

Cell Review. 1. The diagram below represents levels of organization in living things.

Cell Review. 1. The diagram below represents levels of organization in living things. Cell Review 1. The diagram below represents levels of organization in living things. Which term would best represent X? 1) human 2) tissue 3) stomach 4) chloroplast 2. Which statement is not a part of

More information

Bacterial Genetics & Operons

Bacterial Genetics & Operons Bacterial Genetics & Operons The Bacterial Genome Because bacteria have simple genomes, they are used most often in molecular genetics studies Most of what we know about bacterial genetics comes from the

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism AP Biology Reading Guide Name Chapter 8: An Introduction to Metabolism Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2.

More information

7.32/7.81J/8.591J. Rm Rm (under construction) Alexander van Oudenaarden Jialing Li. Bernardo Pando. Rm.

7.32/7.81J/8.591J. Rm Rm (under construction) Alexander van Oudenaarden Jialing Li. Bernardo Pando. Rm. Introducing... 7.32/7.81J/8.591J Systems Biology modeling biological networks Lectures: Recitations: ti TR 1:00-2:30 PM W 4:00-5:00 PM Rm. 6-120 Rm. 26-204 (under construction) Alexander van Oudenaarden

More information

Program for the rest of the course

Program for the rest of the course Program for the rest of the course 16.4 Enzyme kinetics 17.4 Metabolic Control Analysis 19.4. Exercise session 5 23.4. Metabolic Control Analysis, cont. 24.4 Recap 27.4 Exercise session 6 etabolic Modelling

More information

What Can Physics Say About Life Itself?

What Can Physics Say About Life Itself? What Can Physics Say About Life Itself? Science at the Interface of Physics and Biology Michael Manhart Department of Physics and Astronomy BioMaPS Institute for Quantitative Biology Source: UIUC, Wikimedia

More information

Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother

Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother Mahdi Imani and Ulisses Braga-Neto Department of Electrical and Computer Engineering Texas A&M University College

More information

Principles of Synthetic Biology: Midterm Exam

Principles of Synthetic Biology: Midterm Exam Principles of Synthetic Biology: Midterm Exam October 28, 2010 1 Conceptual Simple Circuits 1.1 Consider the plots in figure 1. Identify all critical points with an x. Put a circle around the x for each

More information

Endless evolutionary paths to Virtual Microbes

Endless evolutionary paths to Virtual Microbes Endless evolutionary paths to Virtual Microbes Thomas Cuypers Paulien Hogeweg Theoretical Biology Utrecht University OUTLINE BACKGROUND evolution in Virtual Cells MODEL OVERVIEW OBSERVATIONS Metabolisms

More information

Regulation of metabolism

Regulation of metabolism Regulation of metabolism So far in this course we have assumed that the metabolic system is in steady state For the rest of the course, we will abandon this assumption, and look at techniques for analyzing

More information

Metabolic modelling. Metabolic networks, reconstruction and analysis. Esa Pitkänen Computational Methods for Systems Biology 1 December 2009

Metabolic modelling. Metabolic networks, reconstruction and analysis. Esa Pitkänen Computational Methods for Systems Biology 1 December 2009 Metabolic modelling Metabolic networks, reconstruction and analysis Esa Pitkänen Computational Methods for Systems Biology 1 December 2009 Department of Computer Science, University of Helsinki Metabolic

More information

How to Build a Living Cell in Software or Can we computerize a bacterium?

How to Build a Living Cell in Software or Can we computerize a bacterium? How to Build a Living Cell in Software or Can we computerize a bacterium? Tom Henzinger IST Austria Turing Test for E. coli Fictional ultra-high resolution video showing molecular processes inside the

More information

Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells

Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells Dr. Ramez Daniel Laboratory of Synthetic Biology & Bioelectronics (LSB 2 ) Biomedical Engineering, Technion May 9, 2016 Cytomorphic

More information

Lecture 7: Simple genetic circuits I

Lecture 7: Simple genetic circuits I Lecture 7: Simple genetic circuits I Paul C Bressloff (Fall 2018) 7.1 Transcription and translation In Fig. 20 we show the two main stages in the expression of a single gene according to the central dogma.

More information

Brief contents. Chapter 1 Virus Dynamics 33. Chapter 2 Physics and Biology 52. Randomness in Biology. Chapter 3 Discrete Randomness 59

Brief contents. Chapter 1 Virus Dynamics 33. Chapter 2 Physics and Biology 52. Randomness in Biology. Chapter 3 Discrete Randomness 59 Brief contents I First Steps Chapter 1 Virus Dynamics 33 Chapter 2 Physics and Biology 52 II Randomness in Biology Chapter 3 Discrete Randomness 59 Chapter 4 Some Useful Discrete Distributions 96 Chapter

More information

Mathematical Biology - Lecture 1 - general formulation

Mathematical Biology - Lecture 1 - general formulation Mathematical Biology - Lecture 1 - general formulation course description Learning Outcomes This course is aimed to be accessible both to masters students of biology who have a good understanding of the

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Bio 101 General Biology 1

Bio 101 General Biology 1 Revised: Fall 2016 Bio 101 General Biology 1 COURSE OUTLINE Prerequisites: Prerequisite: Successful completion of MTE 1, 2, 3, 4, and 5, and a placement recommendation for ENG 111, co-enrollment in ENF

More information

BioControl - Week 6, Lecture 1

BioControl - Week 6, Lecture 1 BioControl - Week 6, Lecture 1 Goals of this lecture Large metabolic networks organization Design principles for small genetic modules - Rules based on gene demand - Rules based on error minimization Suggested

More information

Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse

Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse Sonja J. Prohaska Bioinformatics Group Institute of Computer Science University of Leipzig October 25, 2010 Genome-scale in silico

More information

Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation

Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation Authors: Fan Zhang, Runsheng Liu and Jie Zheng Presented by: Fan Wu School of Computer Science and

More information

Random Boolean Networks

Random Boolean Networks Random Boolean Networks Boolean network definition The first Boolean networks were proposed by Stuart A. Kauffman in 1969, as random models of genetic regulatory networks (Kauffman 1969, 1993). A Random

More information

Cellular Automata Approaches to Enzymatic Reaction Networks

Cellular Automata Approaches to Enzymatic Reaction Networks Cellular Automata Approaches to Enzymatic Reaction Networks Jörg R. Weimar Institute of Scientific Computing, Technical University Braunschweig, D-38092 Braunschweig, Germany J.Weimar@tu-bs.de, http://www.jweimar.de

More information

Prokaryotic Gene Expression (Learning Objectives)

Prokaryotic Gene Expression (Learning Objectives) Prokaryotic Gene Expression (Learning Objectives) 1. Learn how bacteria respond to changes of metabolites in their environment: short-term and longer-term. 2. Compare and contrast transcriptional control

More information

Vance County Early College High School Pacing Guide Course: Introduction to Biology (Semester I)

Vance County Early College High School Pacing Guide Course: Introduction to Biology (Semester I) Vance County Early College High School Pacing Guide Course: Introduction to Biology (Semester I) Week(s ) Dates Unit Unit Title Essential Questions / Topic Questions 1 1 Introduction to Biology 1. How

More information

Biological Networks: Comparison, Conservation, and Evolution via Relative Description Length By: Tamir Tuller & Benny Chor

Biological Networks: Comparison, Conservation, and Evolution via Relative Description Length By: Tamir Tuller & Benny Chor Biological Networks:,, and via Relative Description Length By: Tamir Tuller & Benny Chor Presented by: Noga Grebla Content of the presentation Presenting the goals of the research Reviewing basic terms

More information

Name Period The Control of Gene Expression in Prokaryotes Notes

Name Period The Control of Gene Expression in Prokaryotes Notes Bacterial DNA contains genes that encode for many different proteins (enzymes) so that many processes have the ability to occur -not all processes are carried out at any one time -what allows expression

More information

Performance Indicators: Students who demonstrate this understanding can:

Performance Indicators: Students who demonstrate this understanding can: OVERVIEW The academic standards and performance indicators establish the practices and core content for all Biology courses in South Carolina high schools. The core ideas within the standards are not meant

More information

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes.

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. A. Chemistry of Life B. Cells 1. Water How do the unique chemical

More information

Computational Systems Biology Exam

Computational Systems Biology Exam Computational Systems Biology Exam Dr. Jürgen Pahle Aleksandr Andreychenko, M.Sc. 31 July, 2012 Name Matriculation Number Do not open this exam booklet before we ask you to. Do read this page carefully.

More information

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell.

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell. I. Molecules & Cells A. Unit One: The Nature of Science a. How is the scientific method used to solve problems? b. What is the importance of controls? c. How does Darwin s theory of evolution illustrate

More information

Data-driven quantification of robustness and sensitivity of cell signaling networks

Data-driven quantification of robustness and sensitivity of cell signaling networks Data-driven quantification of robustness and sensitivity of cell signaling networks Sayak Mukherjee 1,2, Sang-Cheol Seok 1, Veronica J. Vieland 1,2,4, and Jayajit Das 1,2,3,5* 1 Battelle Center for Mathematical

More information

Biological Systems Modeling & Simulation. Konstantinos P. Michmizos, PhD

Biological Systems Modeling & Simulation. Konstantinos P. Michmizos, PhD Biological Systems Modeling & Simulation 2 Konstantinos P. Michmizos, PhD June 25, 2012 Previous Lecture Biomedical Signal examples (1-d, 2-d, 3-d, ) Purpose of Signal Analysis Noise Frequency domain (1-d,

More information

02/02/ Living things are organized. Analyze the functional inter-relationship of cell structures. Learning Outcome B1

02/02/ Living things are organized. Analyze the functional inter-relationship of cell structures. Learning Outcome B1 Analyze the functional inter-relationship of cell structures Learning Outcome B1 Describe the following cell structures and their functions: Cell membrane Cell wall Chloroplast Cytoskeleton Cytoplasm Golgi

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

Chapter 6: Energy Flow in the Life of a Cell

Chapter 6: Energy Flow in the Life of a Cell Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The Capacity to do Work Types of Energy: 1) Kinetic Energy = Energy of movement Light (movement of photons) Heat (movement of particles)

More information

What is Systems Biology

What is Systems Biology What is Systems Biology 2 CBS, Department of Systems Biology 3 CBS, Department of Systems Biology Data integration In the Big Data era Combine different types of data, describing different things or the

More information

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Navtech Part #s Volume 1 #1277 Volume 2 #1278 Volume 3 #1279 3 Volume Set #1280 Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Volume 1 Preface Contents

More information

Molecular evolution - Part 1. Pawan Dhar BII

Molecular evolution - Part 1. Pawan Dhar BII Molecular evolution - Part 1 Pawan Dhar BII Theodosius Dobzhansky Nothing in biology makes sense except in the light of evolution Age of life on earth: 3.85 billion years Formation of planet: 4.5 billion

More information

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016 Bioinformatics 3 V18 Kinetic Motifs Fri, Jan 8, 2016 Modelling of Signalling Pathways Curr. Op. Cell Biol. 15 (2003) 221 1) How do the magnitudes of signal output and signal duration depend on the kinetic

More information

Chapter 6: Energy Flow in the Life of a Cell

Chapter 6: Energy Flow in the Life of a Cell Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The capacity to do work Types of Energy: 1) Potential Energy = Stored energy Positional (stored in location of object) Chemical (stored

More information

Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014"

Bioinformatics 3! V20 Kinetic Motifs Mon, Jan 13, 2014 Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014" Modelling of Signalling Pathways" Curr. Op. Cell Biol. 15 (2003) 221" 1) How do the magnitudes of signal output and signal duration depend on the

More information

Biochemical Reactions and Logic Computation

Biochemical Reactions and Logic Computation Biochemical Reactions and Logic Computation Biochemical Reactions and Biology Complex behaviors of a living organism originate from systems of biochemical reactions Jie-Hong Roland Jiang (Introduction

More information

Grade Level: AP Biology may be taken in grades 11 or 12.

Grade Level: AP Biology may be taken in grades 11 or 12. ADVANCEMENT PLACEMENT BIOLOGY COURSE SYLLABUS MRS. ANGELA FARRONATO Grade Level: AP Biology may be taken in grades 11 or 12. Course Overview: This course is designed to cover all of the material included

More information

Carbon labeling for Metabolic Flux Analysis. Nicholas Wayne Henderson Computational and Applied Mathematics. Abstract

Carbon labeling for Metabolic Flux Analysis. Nicholas Wayne Henderson Computational and Applied Mathematics. Abstract Carbon labeling for Metabolic Flux Analysis Nicholas Wayne Henderson Computational and Applied Mathematics Abstract Metabolic engineering is rapidly growing as a discipline. Applications in pharmaceuticals,

More information

West Windsor-Plainsboro Regional School District AP Biology Grades 11-12

West Windsor-Plainsboro Regional School District AP Biology Grades 11-12 West Windsor-Plainsboro Regional School District AP Biology Grades 11-12 Unit 1: Chemistry of Life Content Area: Science Course & Grade Level: AP Biology, 11 12 Summary and Rationale The structural levels

More information

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845)

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845) Valley Central School District 944 State Route 17K Montgomery, NY 12549 Telephone Number: (845)457-2400 ext. 18121 Fax Number: (845)457-4254 Advance Placement Biology Presented to the Board of Education

More information

Computational Modelling in Systems and Synthetic Biology

Computational Modelling in Systems and Synthetic Biology Computational Modelling in Systems and Synthetic Biology Fran Romero Dpt Computer Science and Artificial Intelligence University of Seville fran@us.es www.cs.us.es/~fran Models are Formal Statements of

More information

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics GENOME Bioinformatics 2 Proteomics protein-gene PROTEOME protein-protein METABOLISM Slide from http://www.nd.edu/~networks/ Citrate Cycle Bio-chemical reactions What is it? Proteomics Reveal protein Protein

More information

Preface. Contributors

Preface. Contributors CONTENTS Foreword Preface Contributors PART I INTRODUCTION 1 1 Networks in Biology 3 Björn H. Junker 1.1 Introduction 3 1.2 Biology 101 4 1.2.1 Biochemistry and Molecular Biology 4 1.2.2 Cell Biology 6

More information

BIOLOGY STANDARDS BASED RUBRIC

BIOLOGY STANDARDS BASED RUBRIC BIOLOGY STANDARDS BASED RUBRIC STUDENTS WILL UNDERSTAND THAT THE FUNDAMENTAL PROCESSES OF ALL LIVING THINGS DEPEND ON A VARIETY OF SPECIALIZED CELL STRUCTURES AND CHEMICAL PROCESSES. First Semester Benchmarks:

More information

Identify stages of plant life cycle Botany Oral/written pres, exams

Identify stages of plant life cycle Botany Oral/written pres, exams DPI Standards Biology Education (for students) 1. Characteristics of organisms Know Properties of living organisms, including: Acquire and use energy and materials Sense and respond to stimuli Reproduce

More information