Color Type Technology

Similar documents
TLWR9.2. TELUX. Vishay Semiconductors

High Intensity LED, ø 5 mm Untinted Non-Diffused

TLCW5100. Ultrabright White LED, 5 mm Untinted Non-Diffused VISHAY. Vishay Semiconductors

TLCR5800, TLCY5800, TLCTG5800, TLCB5800

Low Current 13 mm Seven Segment Display

GaAs Infrared Emitting Diodes in ø 5 mm (T 1) Package

e3 Pb TLMK310. High Intensity SMD LED VISHAY Vishay Semiconductors

e3 Pb TLMO / S / Y300. Low Current SMD LED VISHAY Vishay Semiconductors

TLMPG / TLMYG330. Power SMD LED in PLCC-2 Package VISHAY. Vishay Semiconductors

Application Note 02_01 TELUX

e3 Pb TLRG / H / O / Y4420 Resistor LED for 12 V Supply Voltage VISHAY Vishay Semiconductors

e3 Pb TLRG / H / O / P / Y440. Resistor LED for 12 V Supply Voltage VISHAY Vishay Semiconductors

BPW82. Silicon PIN Photodiode. Vishay Telefunken. Description. Features. Applications High speed photo detector. Absolute Maximum Ratings

TELUX LED FEATURES APPLICATIONS WAVELENGTH. (ma) MIN. TYP. MAX. MIN. TYP. MAX. MIN. TYP. MAX.

TSUS540. Infrared Emitting Diode, 950 nm, GaAs VISHAY. Vishay Semiconductors

BPW34. Silicon PIN Photodiode. Vishay Telefunken. Description. Features. Applications High speed photo detector. Absolute Maximum Ratings

BPW24R. Silicon PIN Photodiode. Vishay Telefunken. Description. Features. Applications High speed photo detector. Absolute Maximum Ratings

TEMD5000. Silicon PIN Photodiode. Vishay Semiconductors. Description. Features. Applications High speed photo detector. Absolute Maximum Ratings

TELUX LED FEATURES. COLOR TEMPERATURE FORWARD VOLTAGE (mlm) at I F (V)

BYW52 / 53 / 54 / 55 / 56

BPW24R. Silicon PIN Photodiode. Vishay Telefunken. Description. Features. Applications High speed photo detector. Absolute Maximum Ratings

TELUX LED FEATURES APPLICATIONS COORDINATE. FORWARD VOLTAGE (V) (ma) at I F (ma) (ma) MIN. TYP. MAX. MIN. TYP. MAX. MIN. TYP. MAX. 0.33, 0.

BPW20RF. Silicon PN Photodiode. Vishay Semiconductors. Description. Features. Applications. Absolute Maximum Ratings

BYT54. Fast Avalanche Sinterglass Diode VISHAY. Vishay Semiconductors

Transmissive Optical Sensor without Aperture

Transmissive Optical Sensor with Phototransistor Output

RF amplifier up to GHz range specially for wide band antenna amplifier.

Parameter Test Conditions Symbol Value Unit Junction ambient on glass fibre printed board (25 x 20 x 1.5) mm 3 R thja 450 K/W plated with 35m Cu

BFS17/BFS17R/BFS17W. Silicon NPN Planar RF Transistor. Vishay Telefunken. Applications. Features

Parameter Test Conditions Symbol Value Unit Junction ambient on glass fibre printed board (40 x 25 x 1.5) mm 3 plated with 35m Cu

Reflective Optical Sensor with Transistor Output

T j = 25 C Parameter Test Conditions Type Symbol Value Unit Reverse voltage, repetitive peak

RF amplifier up to GHz range specially for wide band antenna amplifier.

Multichannel Optocoupler with Phototransistor Output

BYW52 / 53 / 54 / 55 / 56

Parameter Test condition Symbol Value Unit Junction ambient l = 4 mm, T L = constant R thja 300 K/W

BAV17/18/19/20/21. Small Signal Switching Diodes, High Voltage. Vishay Semiconductors

BFQ65. Silicon NPN Planar RF Transistor. Applications. Features. Absolute Maximum Ratings. Maximum Thermal Resistance

Absolute Maximum Ratings T amb = 25 C, unless otherwise specified Parameter Test condition Symbol Value Unit Power dissipation P tot 300 1) mw

Part Type differentiation Package 1N5550 V RRM = 200 V G-4 1N5551 V RRM = 400 V G-4 1N5552 V RRM = 600 V G-4

N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode. Low feedback capacitance Low noise figure

BYT52. Fast Avalanche Sinterglass Diode. Vishay Semiconductors

BAV100/101/102/103. Small Signal Switching Diodes, High Voltage. Vishay Semiconductors

Part Ordering code Type Marking Remarks 1N4148 1N4148-TAP or 1N4148-TR V4148 Ammopack/tape and reel

SFH615A / SFH6156. Pb Pb-free. Optocoupler, High Reliability, 5300 V RMS VISHAY. Vishay Semiconductors

Subminiature Transmissive Optical Sensor with Phototransistor Output

Part Ordering code Type Marking Remarks BAT46 BAT46-TR or BAT46-TAP BAT46 Tape and Reel/Ammopack

Part Ordering code Type Marking Remarks LL42 LL42-GS18 or LL42-GS08 - Tape and Reel LL43 LL43-GS18 or LL43-GS08 - Tape and Reel

N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode

LL4148 / LL4448. Small Signal Fast Switching Diodes. Vishay Semiconductors

Parameter Test condition Symbol Value Unit Junction ambient 1) R thja 300 K/W

LL4148 / LL4448. Small Signal Fast Switching Diodes. Vishay Semiconductors

N Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode

Part Ordering code Marking Remarks 1N4148W-V 1N4148W-V-GS18 or 1N4148W-V-GS08 A2 Tape and Reel

N Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode

TELUX LED FEATURES APPLICATIONS WAVELENGTH

N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode

BAV300 / 301 / 302 / 303

BC546 / 547 / 548. Small Signal Transistors (NPN) Vishay Semiconductors

Parameter Test condition Symbol Value Unit Junction to ambient air on PC board. R thja 500 K/W 50 mm x 50 mm x 1.6 mm

TEMD5020. Silicon PIN Photodiode. Vishay Semiconductors

TCLT10.. Series. Optocoupler with Phototransistor Output. Vishay Semiconductors. Description. Applications. VDE Standards

Parameter Test condition Symbol Value Unit Zener current (see Table "Electrical Characteristics") Power dissipation P tot 1.3

LH1532AAC/ AACTR/ AB. Pb Pb-free. Dual 1 Form A Solid State Relay. Vishay Semiconductors

ILD620/ 620GB / ILQ620/ 620GB

Applications LED READY = READY LED READY LED. Charge mode indicator. max 140 C Shunt Sense Osc. Figure 1 Block diagram with external circuit

Subminiature Transmissive Optical Sensor with Phototransistor Output, RoHS Compliant, Released for Lead (Pb)-free Solder Process

TCET110.(G) up to TCET4100. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. VDE Standards

SFH612A/ SFH655A. Pb Pb-free. Optocoupler, Photodarlington Output. Vishay Semiconductors

Power SMD LED CLCC-6 Warm White

CNY17F-4. Pb Pb-free. Optocoupler, Phototransistor Output, No Base Connection. Vishay Semiconductors

SFH615A/SFH6156. Optocoupler, Phototransistor Output, High Reliability, 5300 V RMS. Vishay Semiconductors

LH1522AB/ AAC/ AACTR. Pb Pb-free. Dual 1 Form A Solid State Relay. Vishay Semiconductors

Optocoupler, Phototransistor Output, with Base Connection

ILD1/ 2/ 5 / ILQ1/ 2/ 5

4N35/ 4N36/ 4N37/ 4N38

4N25/ 4N26/ 4N27/ 4N28

IL74/ ILD74/ ILQ74. Optocoupler, Phototransistor Output (Single, Dual, Quad Channel) VISHAY. Vishay Semiconductors

Power SMD LED PLCC-2 Plus

Power SMD LED CLCC-6

Power SMD LED PLCC2 Plus

TDS mm Seven Segment Display. Vishay Telefunken. Description. Features. Applications

Silicon PIN Photodiode

VLMW712U2U3XV, VLMW712T3U3US, VLMW712T2T3QN

High Brightness LED Power Module

Silicon PIN Photodiode

Silicon PIN Photodiode, RoHS Compliant

High Brightness LED Power Module

Silicon PIN Photodiode

APT1608SYCK-AMT. 1.6 x 0.8 mm SMD Chip LED Lamp DESCRIPTIONS PACKAGE DIMENSIONS FEATURES APPLICATIONS ATTENTION SELECTION GUIDE

High Brightness LED Power Module

Silicon PIN Photodiode

EVERLIGHT ELECTRONICS CO., LTD.

Silicon PIN Photodiode

S3A - S3N General-Purpose Rectifiers

Applications Automotive Exterior Lighting Electronic Signs and Signals

Silicon PIN Photodiode

Specification HW321A. Drawn Approval Approval. Rev November 서식번호 : SSC-QP (Rev.00)

FFSP0665A/D. Silicon Carbide Schottky Diode 650 V, 6 A Features. FFSP0665A Silicon Carbide Schottky Diode. Description.

Agilent HLMP-CW18, HLMP-CW19, HLMP-CW28, HLMP-CW29, HLMP-CW38, HLMP-CW39 T-1 3/4 Precision Optical Performance White LED Data Sheet

Transcription:

TELUX LED Color Type Technology Angle of Half Intensity ± Red TLWR76.. AlInGaP on GaAs Yellow TLWY76.. AlInGaP on GaAs Softorange TLWO76.. AlInGaP on GaAs True Green TLWTG76.. InGaN on SiC 3 Blue Green TLWBG76.. InGaN on SiC Blue TLWB76.. InGaN on SiC White TLWW76.. InGaN / YAG on SiC Description The TELUX series is a clear, non diffused LED for high end applications where supreme luminous flux is required. It is designed in an industry standard 7.62 mm square package utilizing highly developed (AS) AllnGaP and InGaN technologies. The supreme heat dissipation of TELUX allows applications at high ambient temperatures. All packing units are binned for luminous flux and color to achieve best homogenous light appearance in application. 16 12 Features Utilizing (AS) AlInGaP and InGaN technologies High luminous flux Supreme heat dissipation: R thjp is 9 K/W High operating temperature: T j up to + 125 C Type TLWR meets SAE and ECE color requirements Packed in tubes for automatic insertion Luminous flux and color categorized for each tube Small mechanical tolerances allow precise usage of external reflectors or lightguides TLWR and TLWY types additionally forward voltage categorized ESD withstand voltage: > 2 kv acc. to MIL STD 883 D, Method 315.7 for AlInGaP, > 1 kv for InGaN Applications Exterior lighting Dashboard illumination Tail, Stop and Turn Signals of motor vehicles Replaces incandescant lamps Traffic signals and signs Document Number 83138 Rev. A8, 7-Aug-1 www.vishay.com 1 (14)

Absolute Maximum Ratings T amb = 25 C, unless otherwise specified TLWR76..,TLWY76..,TLWO76.., Parameter Test Conditions Type Symbol Value Unit Reverse voltage I R = 1A V R 1 V DC forward current T amb 85C TLWR76.. I F 7 ma Surge forward current t p 1 s TLWY76.. I FSM 1 A Power dissipationi T amb 85C TLWO76.. P V 187 mw Junction temperatureerature T j 125 CC Operating temperature range T amb 4 to +11 C Storage temperature range T stg 55 to +11 C Soldering temperature t 5 s, 1.5 mm from body preheat temperature 1C/ 3sec. T sd 26 C Thermal resistance junction/ambient with cathode heatsink of 7 mm 2 R thja 2 K/W Thermal resistance junction/pin R thjp 9 K/W T amb = 25 C, unless otherwise specified TLWTG76..,TLWBG76..,TLWB76..,TLWW76.., Parameter Test Conditions Type Symbol Value Unit Reverse voltage I R = 1A TLWTG76.. V R 5 V DC forward current T amb 5C TLWBG76.. TLWB76.. I F 5 ma Surge forward current t p 1 s TLWW76.. I FSM.1 A Power dissipation T amb 5C TLWTG76.. TLWBG76.. P V 23 mw TLWB76.. TLWW76.. P V 255 mw Junction temperature T j 1 C Operating temperature range T amb 4 to +1 C Storage temperature range T stg 55 to +1 C Soldering temperature t 5 s, 1.5 mm from body preheat temperature T sd 26 C 1C/3sec. Thermal resistance junction/ambient with cathode heatsink of 7 mm 2 R thja 2 K/W Thermal resistance junction/pin R thjp 9 K/W www.vishay.com Document Number 83138 2 (14) Rev. A8, 7-Aug-1

Optical and Electrical Characteristics T amb = 25 C, unless otherwise specified Red (TLWR76.. ) Parameter Test Conditions Type Symbol Min Typ Max Unit Total flux V 15 21 3 mlm mcd/ Luminous intensity/total flux I V / V.8 mlm I Dominant wavelength F = 7 ma, R thja =2 K/W d 611 618 634 nm Peak wavelength p 624 nm Angle of half intensity ϕ ±3 deg Total included angle 9 % of Total Flux Captured ϕ 75 deg Forward voltage I F = 7 ma, R thja =2 K/W V F 1.83 2.2 2.67 V Reverse voltage I R = 1 A V R 1 2 V Junction capacitance V R =, f = 1 MHz C j 17 pf Temperature coefficient of λ dom I F = 5 ma TC λdom.5 nm/k Softorange (TLWO76.. ) Parameter Test Conditions Type Symbol Min Typ Max Unit Total flux V 15 21 3 mlm mcd/ Luminous intensity/total flux I V / V.8 mlm I Dominant wavelength F = 7 ma, R thja =2 K/W d 598 65 611 nm Peak wavelength p 61 nm Angle of half intensity ϕ ±3 deg Total included angle 9 % of Total Flux Captured ϕ 75 deg Forward voltage I F = 7 ma, R thja =2 K/W V F 1.83 2.2 2.67 V Reverse voltage I R = 1 A V R 1 2 V Junction capacitance V R =, f = 1 MHz C j 17 pf Temperature coefficient of λ dom I F = 5 ma TC λdom.6 nm/k Yellow (TLWY76.. ) Parameter Test Conditions Type Symbol Min Typ Max Unit Total flux V 1 14 24 mlm mcd/ Luminous intensity/total flux I V / V.8 mlm I Dominant wavelength F = 7 ma, R thja =2 K/W d 585 592 597 nm Peak wavelength p 594 nm Angle of half intensity ϕ ±3 deg Total included angle 9 % of Total Flux Captured ϕ 75 deg Forward voltage I F = 7 ma, R thja =2 K/W V F 1.83 2.1 2.67 V Reverse voltage I R = 1 A V R 1 15 V Junction capacitance V R =, f = 1 MHz C j 32 pf Temperature coefficient of λ dom I F = 5 ma TC λdom.1 nm/k Document Number 83138 Rev. A8, 7-Aug-1 www.vishay.com 3 (14)

True Green (TLWTG76.. ) Parameter Test Conditions Type Symbol Min Typ Max Unit Total flux V 63 9 18 mlm mcd/ Luminous intensity/total flux I V / V.8 mlm I K/W Dominant wavelength F = 5 ma, R thja =2 d 59 523 529 nm Peak wavelength p 518 nm Angle of half intensity ϕ ±3 deg Total included angle 9 % of Total Flux Captured ϕ 75 deg Forward voltage I F = 5 ma, R thja =2 K/W V F 4.2 4.7 V Reverse voltage I R = 1 A V R 5 1 V Junction capacitance V R =, f = 1 MHz C j 5 pf Temperature coefficient of λ dom I F = 3 ma TC λdom.2 nm/k Blue Green (TLWBG76.. ) Parameter Test Conditions Type Symbol Min Typ Max Unit Total flux V 4 7 125 mlm mcd/ Luminous intensity/total flux I V / V.8 mlm I Dominant wavelength F = 5 ma, R thja =2 K/W d 492 55 51 nm Peak wavelength p 53 nm Angle of half intensity ϕ ±3 deg Total included angle 9 % of Total Flux Captured ϕ 75 deg Forward voltage I F = 5 ma, R thja =2 K/W V F 4.2 4.7 V Reverse voltage I R = 1 A V R 5 1 V Junction capacitance V R =, f = 1 MHz C j 5 pf Temperature coefficient of λ dom I F = 3 ma TC λdom.2 nm/k Blue (TLWB76.. ) Parameter Test Conditions Type Symbol Min Typ Max Unit Total flux V 2 33 63 mlm mcd/ Luminous intensity/total flux I V / V.8 mlm I Dominant wavelength F = 5 ma, R thja =2 K/W d 462 47 476 nm Peak wavelength p 46 nm Angle of half intensity ϕ ±3 deg Total included angle 9 % of Total Flux Captured ϕ 75 deg Forward voltage I F = 5 ma, R thja =2 K/W V F 4.3 4.7 V Reverse voltage I R = 1 A V R 5 1 V Junction capacitance V R =, f = 1 MHz C j 5 pf Temperature coefficient of λ dom I F = 3 ma TC λdom.3 nm/k www.vishay.com Document Number 83138 4 (14) Rev. A8, 7-Aug-1

White (TLWW76.. ) Parameter Test Conditions Type Symbol Min Typ Max Unit Total flux V 4 65 125 mlm Luminous intensity/total flux mcd/ I IF = 5 ma, R =2 K/W V / V.8 F thja mlm Color temperature T K 55 K Angle of half intensity ϕ ±3 deg Total included angle 9 % of Total Flux Captured ϕ 75 deg Forward voltage I F = 5 ma, R thja =2 K/W V F 4.3 5.1 V Reverse voltage I R = 1 A V R 5 1 V Junction capacitance V R =, f = 1 MHz C j 5 pf Typical Characteristics (T amb = 25 C, unless otherwise specified) P V Power Dissipation ( mw ) 15982 2 175 15 125 1 75 5 25 Red, Softorange, Yellow R thja =2K/W 2 4 6 8 1 12 Figure 1 Power Dissipation vs. Ambient Temperature P V Power Dissipation ( mw ) 1666 25 225 2 Blue 175 Blue Green True Green 15 White 125 1 75 5 25 R thja =2K/W 2 4 6 8 1 12 Figure 3 Power Dissipation vs. Ambient Temperature I Forward Current ( ma ) F 15983 1 8 6 4 Red, Softorange, Yellow 2 R thja =2K/W 2 4 6 8 1 12 I Forward Current ( ma ) F 1667 6 5 4 3 2 Blue Blue Green True Green White 1 R thja =2K/W 2 4 6 8 1 12 Figure 2 Forward Current vs. Ambient Temperature Figure 4 Forward Current vs. Ambient Temperature Document Number 83138 Rev. A8, 7-Aug-1 www.vishay.com 5 (14)

1 1 1 1 Red, Softorange, Yellow t p /T=.1.2 1.5.2.5 T amb 85 C.1 R thja in K/W 23 22 21 2 19 18 17 Padsize 8 mm 2 per Anode Pin 161 1.1.1 1 1 t p Pulse Length ( ms ) 1 16 5 1 15 2 25 3 169 Cathode Padsize in mm 2 Figure 5 Forward Current vs. Pulse Length Figure 8 Thermal Resistance Junction Ambient vs. Cathode Padsize I v rel Relative Luminous Intensity 166 1..9.8.7.6 1 2.4.2.2.4.6 3 4 5 6 7 8 15974 1 9 Red, 8 Softorange 7 6 5 4 3 2 1 1.5 1.6 1.7 1.8 1.9 2. 2.1 2.2 2.3 2.4 2.5 V F Forward Voltage ( V ) Figure 6 Rel. Luminous Intensity vs. Angular Displacement Figure 9 Forward Current vs. Forward Voltage 1 9 8 7 6 5 4 3 2 1 25 5 75 1 125 165 Total Included Angle (Degrees) % Total Luminous Flux Relative Luminous Flux Vrel 15976 1.8 1.6 1.4 1..8.6.4.2 Red, Softorange I F = 7 ma 4 2 2 4 6 8 1 Figure 7 Percentage Total Luminous Flux vs. Total Included Angle (Degrees) Figure 1 Rel. Luminous Flux vs. Ambient Temperature www.vishay.com Document Number 83138 6 (14) Rev. A8, 7-Aug-1

I Spec Specific Luminous Flux 1598 1. Red, Softorange.1 1 1 1 I Vrel Relative Luminous Intensity 16314 1.1 Softorange I F = 7 ma 1..9.8.7.6.5.4.3.2.1 56 57 58 59 6 61 62 63 64 65 66 Wavelength ( nm ) Figure 11 Specific Luminous Flux vs. Forward Current Figure 14 Relative Luminous Intensity vs. Wavelength 1. 619. I Vrel Relative Luminous Flux 1..1 Red, Softorange Dominant Wavelength (nm) 618.5 618. 617.5 617. 616.5 Red 15978.1 1 1 1 16434 616 1 2 3 4 5 6 7 Figure 12 Relative Luminous Flux vs. Forward Current Figure 15 Dominant Wavelength vs. Forward Current I Vrel Relative Luminous Intensity 167 1.1 Red I F = 7 ma 1..9.8.7.6.5.4.3.2.1 57 58 59 6 61 62 63 64 65 66 67 Wavelength ( nm ) Dominant Wavelength (nm) 16436 65. 64.5 Softorange 64. 63.5 63 1 2 3 4 5 6 7 Figure 13 Relative Luminous Intensity vs. Wavelength Figure 16 Dominant Wavelength vs. Forward Current Document Number 83138 Rev. A8, 7-Aug-1 www.vishay.com 7 (14)

15975 1 9 8 7 6 5 4 3 2 1 Yellow 1.4 1.5 1.6 1.7 1.8 1.9 2. 2.1 2.2 2.3 2.4 V F Forward Voltage ( V ) Figure 17 Forward Current vs. Forward Voltage I Vrel Relative Luminous Flux 15979 1. 1..1 Yellow.1 1 1 1 Figure 2 Relative Luminous Flux vs. Forward Current Relative Luminous Flux Vrel 15977 2. 1.8 Yellow I F = 7 ma 1.6 1.4 1..8.6.4.2 4 2 2 4 6 8 1 I Vrel Relative Luminous Intensity 168 1.1 Yellow I F = 7 ma 1..9.8.7.6.5.4.3.2.1 54 55 56 57 58 59 6 61 62 63 64 Wavelength ( nm ) Figure 18 Rel. Luminous Flux vs. Ambient Temperature Figure 21 Relative Luminous Intensity vs. Wavelength Yellow 592. I Spec Specific Luminous Flux 1. Dominant Wavelength (nm) 591.5 591. 59.5 Yellow 15981.1 1 1 1 16435 59 1 2 3 4 5 6 7 Figure 19 Specific Luminous Flux vs. Forward Current Figure 22 Dominant Wavelength vs. Forward Current www.vishay.com Document Number 83138 8 (14) Rev. A8, 7-Aug-1

1637 1 9 8 7 6 5 4 3 2 1 True Green 2.5 3. 3.5 4. 4.5 5. 5.5 V F Forward Voltage ( V ) Figure 23 Forward Current vs. Forward Voltage I Vrel Relative Luminous Flux 1639 1. 1..1 True Green.1 1 1 1 Figure 26 Relative Luminous Flux vs. Forward Current Relative Luminous Flux Vrel 1656 1.8 1.6 True Green I F = 5 ma 1.4 1..8.6.4.2 4 2 2 4 6 8 1 I Vrel Relative Luminous Intensity 1668 1.1 True Green I F = 5 ma 1..9.8.7.6.5.4.3.2.1 46 48 5 52 54 56 58 6 62 Wavelength ( nm ) Figure 24 Rel. Luminous Flux vs. Ambient Temperature Figure 27 Relative Luminous Intensity vs. Wavelength 541 True Green 539 I Spec Specific Luminous Flux 1. Dominant Wavelength (nm) 537 535 533 531 529 527 525 523 true green 1638.1 1 1 1 1631 521 1 2 3 4 5 Figure 25 Specific Luminous Flux vs. Forward Current Figure 28 Dominant Wavelength vs. Forward Current Document Number 83138 Rev. A8, 7-Aug-1 www.vishay.com 9 (14)

1658 1 9 8 7 6 5 4 3 2 1 Blue Green 2.5 3. 3.5 4. 4.5 5. 5.5 V F Forward Voltage ( V ) Figure 29 Forward Current vs. Forward Voltage I Vrel Relative Luminous Flux 166 1. 1..1 Blue Green.1 1 1 1 Figure 32 Relative Luminous Flux vs. Forward Current Relative Luminous Flux Vrel 1661 1.8 1.6 Blue Green I F = 5 ma 1.4 1..8.6.4.2 4 2 2 4 6 8 1 I Vrel Relative Luminous Intensity 167 1.1 Blue Green I F = 5 ma 1..9.8.7.6.5.4.3.2.1 42 44 46 48 5 52 54 56 58 6 Wavelength ( nm ) Figure 3 Rel. Luminous Flux vs. Ambient Temperature Figure 33 Relative Luminous Intensity vs. Wavelength 511 I Spec Specific Luminous Flux 1. Blue Green Dominant Wavelength (nm) 51 59 58 57 56 55 54 53 Blue Green 1659.1 1 1 1 163 52 1 2 3 4 5 Figure 31 Specific Luminous Flux vs. Forward Current Figure 34 Dominant Wavelength vs. Forward Current www.vishay.com Document Number 83138 1 (14) Rev. A8, 7-Aug-1

164 1 9 8 7 6 5 4 3 2 1 Blue 2.5 3. 3.5 4. 4.5 5. 5.5 V F Forward Voltage ( V ) Figure 35 Forward Current vs. Forward Voltage I Vrel Relative Luminous Flux 1642 1. 1..1 Blue.1 1 1 1 Figure 38 Relative Luminous Flux vs. Forward Current Relative Luminous Flux Vrel 1657 1.8 1.6 Blue I F = 5 ma 1.4 1..8.6.4.2 4 2 2 4 6 8 1 I Vrel Relative Luminous Intensity 1669 1.1 Blue I F = 5 ma 1..9.8.7.6.5.4.3.2.1 4 42 44 46 48 5 52 54 56 Wavelength ( nm ) Figure 36 Rel. Luminous Flux vs. Ambient Temperature Figure 39 Relative Luminous Intensity vs. Wavelength 473 I Spec Specific Luminous Flux 1. Blue Dominant Wavelength (nm) 472 471 47 blue 1641.1 1 1 1 16299 469 1 2 3 4 5 Figure 37 Specific Luminous Flux vs. Forward Current Figure 4 Dominant Wavelength vs. Forward Current Document Number 83138 Rev. A8, 7-Aug-1 www.vishay.com 11 (14)

1662 1 9 8 7 6 5 4 3 2 1 White 2.5 3. 3.5 4. 4.5 5. 5.5 V F Forward Voltage ( V ) Figure 41 Forward Current vs. Forward Voltage I Vrel Relative Luminous Flux 1664 1. 1..1 White.1 1 1 1 Figure 44 Relative Luminous Flux vs. Forward Current Relative Luminous Flux Vrel 1665 1.8 1.6 White I F = 5 ma 1.4 1..8.6.4.2 4 2 2 4 6 8 1 I Vrel Relative Luminous Intensity 1671 1.1 White I F = 5 ma 1..9.8.7.6.5.4.3.2.1 4 45 5 55 6 65 7 75 8 Wavelength ( nm ) Figure 42 Rel. Luminous Flux vs. Ambient Temperature Figure 45 Relative Luminous Intensity vs. Wavelength I Spec Specific Luminous Flux 1663 White 1..1 1 1 1 f Chromaticity coordinate shift (x,y).345 White.34 X.335.33 Y.325.32.315 1 2 3 4 5 6 16198 I F Forward Current (ma) Figure 43 Specific Luminous Flux vs. Forward Current Figure 46 Chromaticity Coordinate Shift vs. Forward Current www.vishay.com Document Number 83138 12 (14) Rev. A8, 7-Aug-1

Dimensions in mm 164 Document Number 83138 Rev. A8, 7-Aug-1 www.vishay.com 13 (14)

Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs). The Montreal Protocol (1987) and its London Amendments (199) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 199 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/54/EEC and 91/69/EEC Annex A, B and C ( transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-7425 Heilbronn, Germany Telephone: 49 ()7131 67 2831, Fax number: 49 ()7131 67 2423 www.vishay.com Document Number 83138 14 (14) Rev. A8, 7-Aug-1