JOURNAL OF SCIENCE & TECHNOLOGY No. 73B

Similar documents
CHƯƠNG TRÌNH DỊCH BÀI 14: THUẬT TOÁN PHÂN TÍCH EARLEY

Why does the motion of the Pioneer Satellite differ from theory?

Bài 3: Mô phỏng Monte Carlo. Under construction.

5 Dùng R cho các phép tính đơn giản và ma trận

Chapter#2 Tính chất của vật chất (Properties of Substances)

Đánh giá: ❶ Bài tập (Quiz, In-Class) : 20% - Quiz (15-30 phút): chiếm 80%; 5 bài chọn 4 max TB - In-Class : chiếm 20% ; gọi lên bảng TB

PH NG PH P D¹Y HäC TÝCH CùC TRONG GI O DôC MÇM NON

BÁO CÁO THỰC HÀNH KINH TẾ LƯỢNG

PHÂN TÍCH DỮ LIỆU BẰNG PHẦN MỀM SPSS 12.0 * PHẦN 4

TỐI ƯU HÓA ĐA MỤC TIÊU ỨNG DỤNG XÁC LẬP CHẾ ĐỘ CÔNG NGHỆ SẤY THĂNG HOA (STH) TÔM THẺ

log23 (log 3)/(log 2) (ln 3)/(ln2) Attenuation = 10.log C = 2.B.log2M SNR db = 10.log10(SNR) = 10.log10 (db) C = B.log2(1+SNR) = B.

THÔNG TIN LUẬN ÁN TIẾN SĨ

Mục tiêu. Hiểu được. Tại sao cần phải định thời Các tiêu chí định thời Một số giải thuật định thời

Năm 2015 O A O OB O MA MB = NA

PHÂN TÍCH PHÂN BỐ NHIỆT HYDRAT VÀ ỨNG SUẤT TRONG CẤU TRÚC BÊ TÔNG ĐỂ KIỂM SOÁT SỰ GÂY NỨT CỦA CÔNG TRÌNH BÊ TÔNG CỐT THÉP

KH O SÁT D L NG THU C TR SÂU LÂN H U C TRONG M T S CH PH M TRÀ ACTISÔ

KHI X L T SÔNG H NG VÀO SÔNG ÁY

TÓM TẮT ĐỀ TÀI NGHIÊN CỨU

KHÁI niệm chữ ký số mù lần đầu được đề xuất bởi D. Chaum [1] vào năm 1983, đây là

Ngô Nh Khoa và cs T p chí KHOA H C & CÔNG NGH 58(10): 35-40

THÔNG TIN VỀ LUẬN ÁN TIẾN SĨ

PHÂN TÍCH T & CÂN BẰNG B

Các Phương Pháp Phân Tích Định Lượng

VÔ TUYẾN ĐIỆN ĐẠI CƯƠNG. TS. Ngô Văn Thanh Viện Vật Lý

Google Apps Premier Edition

NGHIÊN CỨU TIÊU CHUẨN VÀ PHƯƠNG PHÁP TỐI ƯU CÔNG SUẤT PHÁT CỦA HỆ THỐNG ĐIỆN MẶT TRỜI NỐI LƯỚI: XÉT CHO TRƯỜNG HỢP LƯỚI ĐIỆN HẠ THẾ 1 PHA

DỰ BÁO TƯỚNG THẠCH HỌC VÀ MÔI TRƯỜNG TRẦM TÍCH CHO ĐÁ CHỨA CARBONATE PHÍA NAM BỂ SÔNG HỒNG, VIỆT NAM

LÝ LỊCH KHOA HỌC. CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc BỘ Y TẾ TRƯỜNG ĐẠI HỌC DƯỢC HÀ NỘI. 1. Họ và tên: Vũ Đặng Hoàng

15 tháng 06 năm 2014.

Th vi n Trung Tâm HQG-HCM s u t m

CƠ SỞ VẬT LÝ HẠT NHÂN

sao cho a n 0 và lr(a n ) = Ra n X a n với X a n R R. Trong bài báo này, chúng Z r (R) (t.ư., Z l (R)).

THE DENSITY CURRENT PATTERNS IN SOUTH-CHINA SEA

NGUỒN THÔNG TIN MIỄN PHÍ TRÊN INTERNET : ĐÁNH GIÁ VÀ SỬ DỤNG DƯƠNG THÚY HƯƠNG Phòng Tham khảo Thư viện ĐH Khoa học Tự nhiên TP.

GIÁO TRÌNH Mô phỏng và mô hình hóa (Bản nháp) Trịnh Xuân Hoàng Viện Vật lý, Viện Hàn lâm KHCN VN Hà Nội 2015

NGUYỄN THỊ VIỆT HƢƠNG

NGHIÊN C U XU T XÂY D NG H H TR RA QUY T NH KHÔNG GIAN CHO THOÁT N C Ô TH B NG CÁC GI I PHÁP CÔNG TRÌNH

HƯỚNG DẪN SỬ DỤNG PHẦN MỀM DIỆT VIRUS AVIRA

FINITE DIFFERENCE METHOD AND THE LAME'S EQUATION IN HEREDITARY SOLID MECHANICS.

TÍNH TOÁN ĐỊNH HƯỚNG CHẾ TẠO CẤU TRÚC UVLED CHO BƯỚC SÓNG PHÁT XẠ 330nm

Nguyễn Thị Huyền Trang*, Lê Thị Thủy Tiên Trường Đại học bách khoa, ĐHQG tp Hồ Chí Minh,

NG S VIÊN TRONG CH M SÓC

TH TR NG HÀNG KHÔNG, KHÔNG GIAN VI T NAM

Hà Nội, ngày 22 tháng 1 năm 2012 (ngày Tất niên năm Nhâm Thìn) Đại diện nhóm biên soạn Chủ biên Hoàng Minh Quân Phan Đức Minh

Nhiễu và tương thích trường điện từ

(Analytical Chemistry)


Mã khối không thời gian trực giao và điều chế lưới

MÔN KINH TẾ LƯỢNG (Econometric)

Xuân Hòa, ngày 29 tháng 9, 2018

Luâ t Chăm So c Sư c Kho e Mơ i va Medicare

NGHIÊN CỨU CHẾ TẠO MÀNG MỎNG SẮT ĐIỆN - ÁP ĐIỆN PZT BẰNG PHƯƠNG PHÁP SOL - GEL ĐỊNH HƯỚNG ỨNG DỤNG TRONG CẢM BIẾN SINH HỌC

Chế tạo và nghiên cứu tính chất bán dẫn hữu cơ Polypyrol cấu trúc nanô

1. chapter G4 BA O CA O PHA T TRIÊ N BÊ N VƯ NG

Modelling continuous risk variables: Introduction to fractional polynomial regression

JOURNAL OF SCIENCE & TECHNOLOGY No. 72A

Nguồn điện một chiều E mắc trong mạch làm cho diode phân cực thuận. Gọi I D là dòng điện thuận chạy qua diode và V D là hiệu thế 2 đầu diode, ta có:

NHẬP MÔN HIỆN ĐẠI XÁC SUẤT & THỐNG KÊ

CH NG IV TH C HI N PH NG PHÁP T NG H P CHO QUY HO CH S D NG B N V NG NGU N TÀI NGUYÊN T AI

hoctoancapba.com Kho đ ề thi THPT quốc gia, đ ề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán

Mã số: Khóa:

ĐƠN KHIÊ U NA I/THAN PHIỀN CU A HÔ I VIÊN. Đi a chi Tha nh phô Tiê u bang Ma zip

VLSI ARCHITECTURE OF MAGNITUDE ESTIMATION ALGORITHM FOR SPEECH RECOGNITION SYSTEM. Abstract

Positional Accuracy Improvement for Heterogeneous Geodata Integration

BẢNG GIÁ THIẾT BỊ SELEC

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN HÀ MY

HÀM BĂM HASH FUNCTIONS. Giáo viên: Phạm Nguyên Khang

Saigon Oi Vinh Biet (Vietnamese Edition) By Duong Hieu Nghia chuyen dich READ ONLINE

On Approximating Solution of Boundary Value Problems

GIÁO H I PH T GIÁO VI T NAM TH NG NH T

Trí Tuệ Nhân Tạo. Nguyễn Nhật Quang. Viện Công nghệ Thông tin và Truyền thông Trường Đại học Bách Khoa Hà Nội

Trao đổi trực tuyến tại: l

TẠO PAN ĐỘNG CƠ Ô TÔ ĐIỀU KHIỂN BẰNG MÁY TÍNH

- Cài đặt hệ số CT: 1/5-999 KA. - Nguồn cấp: AC: 240V AC ±20%, (50 / 60Hz) - 110V AC ±20%, (50 / 60Hz) - Mạng kết nối: 1 pha 2 dây hoặc 3 pha 3/4 dây

SỞ GD & ĐT BẮC NINH ĐÊ TẬP HUẤN THI THPT QUỐC GIA NĂM Đề bài y x m 2 x 4. C. m 2. có bảng biến thiên như hình dưới đây:

Phâ n thông tin ba o ha nh cu a ASUS

Geotechnical properties on the Holocene sediments. in Giongtrom - Bentre Province. Presenter: Truong Tieu Bao

ELECO'2001. Paper Submission Form

QCVN 19: 2009/BTNMT QUY CHUN K THUT QUC GIA V KHÍ THI CÔNG NGHIP I V I BI VÀ CÁC CHT VÔ C

Long-term sediment distribution calculation taking into account sea level rise and the development of Day estuary

À N. á trong giáo d. Mã s HÀ N NGHIÊN C ÊN NGÀNH TÓM T

PROSPECTING FITNESS OF VN-2000 DATUM TO EGM2008

NH NGH A C C THU T NG 4 PH N I NHI M HUẨN ỆNH VIỆN V VỆ SINH TAY 6 PH N II TH C H NH HU N UYỆN V GI M S T VỆ SINH TAY 9

Đầu Nối Cáp T 630A 93-EE9X5-4-Exp-A-3/C Series Đầu Nối T : 24 kv 125 kv BIL Đáp ứng các tiêu chuẩn : IEC 502-4, VDE 0278 Hướng Dẫn Sử Dụng

On Approximating Solution Of One Dimensional Boundary Value Problems With Dirichlet Conditions By Using Finite Element Methods

Thông tin mang tính a lý trên m t vùng lãnh th bao g m r t nhi u l p d li u khác nhau (thu c n v hành chánh nào, trên lo i t nào, hi n tr ng s d ng

Bộ môn Điều Khiển Tự Động Khoa Điện Điện Tử. Homepage:

Vinh, May Ta đang sống trong một thời sôi động nhất: Máy tính và mạng máy tính (internet)

VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí Tóm tắt Ngữ pháp tiếng Anh lớp 6 (Cả năm)

NHẬT BÁO THẲNG TIẾN 11

Phạm Phú Anh Huy Khoa Xây dựng, Đặng Hồng Long- Khoa Xây dựng,

COMPARISON BEHAVIOR OF A LARGE TURBO MACHINE VIBRATION BETWEEN UNBALANCE AND BENT SHAFT

cách kết hợp thuật toán Fuzzy C-Means (FCM) với giải thuật di truyền (GA). Sau đó, HaT2-FLS

CHƯƠNG 6: SỬ DỤNG WINFORM

TÀI CHÍNH DOANH NGHIP

Integrated Algebra. Glossary. High School Level. English / Vietnamese

PHÂN LẬP CÁC CHỦNG BACILLUS CÓ HOẠT TÍNH TẠO MÀNG SINH VẬT (BIOFILM) VÀ TÁC DỤNG KHÁNG KHUẨN CỦA CHÚNG

SỬ DỤNG PHƯƠNG PHÁP ĐO SÂU ĐIỆN XÁC ĐỊNH CẤU TRÚC ĐỊA CHẤT VÀ QUY MÔ PHÂN BỐ CỦA THAN TRONG TRẦM TÍCH ĐỆ TAM VÙNG TRŨNG AN NHƠN - BÌNH ĐỊNH

PARTIAL DERIVATIVE OF MATRIX FUNCTIONS WITH RESPECT TO A VECTOR VARIABLE

XU HƯỚNG HỢP ĐỒNG HOÁN ĐỔI LÃI SUẤT TẠI VIỆT NAM

Transcription:

CALCULATION OF TEMPERATURE AND AMPACITY OF UNDERGROUND CABLES USING THE ADAPTIVE FINITE ELEMENT METHODS TÍNH TOÁN NHIỆT VÀ KHẢ NĂNG MANG DÒNG CỦA CÁP NGẦM BẰNG PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN THÍCH NGHI Vu Phan Tu (1), Nguyen Ngoc Khoa (2), Nguyen Nhat Nam (1) (1) Faculty of Electrical and Electronics Engineering, HCMC University of Technology (2) Ho Chi Minh City Power Company ABSTRACT This paper presents the application of the adaptive finite element method (A-FEM) to calculate the thermal fields and ampacity of underground cables in steady state. In respect of mathematics, the Delaunay mesh is developed into the FEM algorithm to make the adaption of the grid in the cable surroundings. Its advantage is to obtain the faster solution but still insure the high accuracy. In respect of physics, due to the calculation of thermal distribution in whole system, the readers can realize that the thermal field of any cable can be distorted due to the affect of thermal fields of the other cables and it reflects the essential phenomena of physics (IEC 6287 standard propose that thermal field of any cable is affected by thermal fields of other cables but its thermal field can not be distorted proposes for advantages in calculating using the analytical method). The results of the Ampacity tested for many different configurations of underground cables compared to the ones by boundary element method (BEM) and the real datum of manufacturer. It has shown the significant reality and primacy of the proposed method. Keywords: Underground cables, ampacity, Adaptive finite element method (A-FEM), temperature distribution. TÓM TẮT Bài báo trình bày việc áp dụng phương pháp Phần tử hữu hạn (PTHH) thích nghi cho việc tính toán trường nhiệt và khả năng mang tải của cáp ngầm cao áp trong trạng thái ổn định.về phương diện toán học, lưới Delaunay được chúng tôi phát triển trong thuật toán của PTHH để tạo nên sự thích nghi lưới xung quanh cáp.ưu điểm của nó là thu được lời giải nhanh hơn nhưng vẫn đảm bảo độ chính xác cao. Về phương diện vật lý, thông qua việc tính toán phân bố trường nhiệt của toàn hệ thống, người đọc có thể nhận thấy trường nhiệt của mỗi cáp hoàn toàn có thể bị bóp méo dưới sự ảnh hưởng của trường nhiệt gây bởi các sợi cáp khác và điều này hoàn toàn phản ánh đúng bản chất vật lý (tiêu chuẩn IEC 6287 giả thiết rằng trường nhiệt của mỗi cáp có chịu ảnh hưởng bởi trường nhiệt của các cáp khác nhưng bản thân trường nhiệt của nó thì không bị bóp méo để thuận lợi cho việc tính toán dùng phương pháp giải tích). Kết quả tính toán khả năng mang dòng kiểm tra cho các trường hợp nhiều cấu trúc khác nhau của cáp ngầm được so sánh với lời giải bằng phương pháp Phần tử biên và dữ liệu thực tế được cung cấp bởi nhà sản xuất cáp. Từ đó cho thấy ý nghĩa thực tiễn cũng như tính ưu việt của phương pháp được đề nghị. I. INTRODUCTION The system of underground cables is one of the main component of a modern power network in the developed cities due to the advantages compared to overhead lines. The stability and safety operation of buried cables are the expecting of power utilities. Therefore, the calculation of temperature and ampacity of underground cables is the important task for designing and operating underground cable systems. The cable ampacity is mainly determined by the thermal properties its surrounding soil. So, it is very necessary to know the temperature distribution in and around buried cables. Many authors have used two approaches: i) the analytical method was used in IEEE and IEC standards - [8, 12, 1, 15]. ii) The numerical methods (Finite Difference Method (FDM)-[7], Boundary Element Method (BEM)-[6], Finite Element Method (FEM)- [, 5, 9, 1, 11, 13], etc.) have been used for the analysis of the heat transfer of underground cables. Among them, the FEM is widely used 39

because of the adaptive geometry arround of cables. In this paper, we concentrate on the application of the adaptive finite element method (A-FEM) for computing the temperature distribution and ampacity of underground cables in the steady state. The accuracy of the procedure is verified by comparison with results that obatained by the BEM in [6] and the real results are given by manufacturer in [16]. II. THE A-FEM FOR AMPACITY CALCULATION 2.1 A-FEM for Heat Transfer Equation In order to present the analysis, the following assumptions are made: - The effect of radiation and convection at the ground surface are neglected. - Thermal resistivity of soil is constant. - The length of cable is very larger than its buried depth. The Poisson equation describes the steady state of heat transfer for the cable in 2D can be written as [2]: 2 2 W 2 2 s (1) x y Where ρ s ( o Cm/W) is the thermal resistivity of soil. W (W/m) is the heat generation rate in the cable. θ ( o C) is the unknown temperature. For computing the thermal field distribution, we firstly determine the region of field domain that is restricted by the rectangle of cross section of soil and cables (or ducts). Secondly, we use the Delaunay algorithm for discreting the field domain into many triangular elements that made the coarse mesh. Thirdly, we resize the triangles from the expecting dimensions. In particular, the triangle elements near cables are needed higher accuracy than far ones. So, the size of these elements is smaller. From the coarse mesh, the nodes will be moved after each interation until obtain the expecting sizes. Where, we use a simple function can be decribed as follows: 2 2 l min ( x x ) ( y y ) (2) c c Where l is the expecting length of edge of triangles. (x c,y c ) is the coordinate of circle. (x,y) is coordinate of nodes. The algorithm will stop when ' l l, where: l is the length of edge triangles of previous interation, is small gap. After this step, we obtain a fine mesh region. Each cable surface (or duct if cable is installed into duct) is represented by N nodes. If the total of losses generated by one cable is W then a heat flux at each of N nodes will be W/N. 2.2 Procedure of Ampacity Calculation of Underground Cable After finish the computation of temperature distribution, the value of the cable (or duct) surface temperature is used for calculating the thermal resistance of surrounding soil is written as -[]: T ''' W d a (3) Where: Δ d-a ( o C) is the cable (or duct) surface temperature relative to that of the ambient temperature. W (W/m) is the heat generation rate per unit of cable circuit. Thermal resistance between cable conductor and surrounding soil can be devided into two part of thermal resistance between the cable conductor and the retaining duct can be determined by the analytical procedure (thermal resistance between conductor and sheath is T 1, thermal resistance between sheath and armour is T 2, thermal resistance of outer covering is T 3, thermal resistance of material between cable surface and internal surface of duct is thermal resistance of duct is resistance of soil is ''' T, T, ' '' T, and thermal T T + T + T ). ' '' ''' Fig. 1 Model of thermal-electrical circuit equivalent

6.1m The Ampacity cables can be written as [1]: I Wd.5T 1 T2 T3 T 1 1 RT R T R T T 1 1 2 1 2 3. ( A) () Where: Δθ ( o C) is the conductor temperature rises above the ambient temperature. W d (W/m) is the dielectric loss per unit length. R (Ω/m) is the resistance of conductor at 9 o C. T 1,T 2,T 3,T ( o Cm/W) are the thermal resistances. λ 1 is the sheath loss factor, λ 2 is the armour loss factor. III. CALCULATION OF THERMAL FIELDS 3.1 Case 1: Three single-phase cables buried in homogeneous soil Fig.2. illustrates the three single-phase cables in homogeneous soil. The heat for each cable is 3.5W/m (W 1 = W 2 = W 3 = 3.5). The diameter of three cables are equal (d 1 = d 2 = d 3 =.3155m). A rectangular region of 12.2m in width and 6.1m in depth is selected for this computation [6]. amb = 1 o C 1m ρ soil = 1/1.5 o Cm/ W 2 1 3.15m.15m 12.2m Fig. 2 Three phase cables in homogeneous soil The field domain is subdivided into 29 nodes and 53 triangle elements which shown in Fig.3. The Fig.a and Fig.b show the results of temperature distribution over domain. Moreover, we compare to the results in [6] using BEM which given in TABLE 1-A. The tolerance temperature between FEM and BEM is 1.579 o C approximately because the surface of each cable in our model is represented by 13 nodes. So, we can determine the maximum and minimum temperature distribute on each cable surface (can see in Fig.b, the value given in TABLE 1-A is mean value) while the 1 temperature on cable surface in [6] is isotherm. When we decrease the number of nodes and elements, the results will move toward the result from BEM. When we increase the number of nodes and elements, the temperature of cable 1 will converge to the approximate value 75 o C (which given by TABLE.1-B). Table 1-A. Comparison between the results of FEM and BEM for three single-phase cables in homogeneous soil Temperature at each node ( o C) Node Cable 2 Cable 1 Cable 3 1 66.852 73.513 7.9117 2 66.8278 73.3171 7.381 3 66.9655 72.958 7.523 67.776 73.58 7.87 5 67.898 72.666 68.528 6 68.5 72.585 69.6769 7 67.9373 73.592 69.53 8 69.727 72.7189 68.282 9 68.7652 73.259 67.15 1 7.1255 73.65 67.3527 11 7.1863 73.2863 66.6579 12 69.588 73.21 66.87 13 7.19 73.336 66.526 A-FEM 68.51 73.1789 68.593 BEM [6] 67. 71.55 67. Table 1-B. Comparison among the results of FEM when remesh geometry for single-phase cables in homogeneous soil Number of nodes 225 28 29 118 Number of elements 57 53 218 Number of nodes 11 13 13 25 per cable Temperature ( o C) -.85 -.9 -.95-1 -1.5-1.1-1.15 2 67.8965 68.275 68.51 69.963 1 72.5616 72.998 73.1789 7.7693 3 67.9878 68.16 68.593 7.66 -.3 -.2 -.1.1.2.3 Fig. 3 Discretised field domain of the horizontal three-phase underground cable

D = 1 m L = 2.15m T(x,y) - (oc) 8 6 2-2 29-nodes & 53-elements FEM solution - -6 a) Whole domain b) Zoom domain Fig. A-FEM solutions of temperature distribution 3.2 Case 2: Three single-phase cables laid in duct are buried in homogeneous soil (horizontal configuration) In this case, we use the parameters of the project of Hoa Xa-Tan Son Nhat 11kV underground cable system in Vietnam. The distance is 1737m. All parameters of cable, laid configuration are provided by Prysmian Baosheng Cable Co.Ltd. [16] y Ground W = 1m 5 x The Fig.5 illustrates the horizontal three phase cables. Each cable is installed in one HDPE (high density polyethylene) duct has internal diameter is 18mm and external diameter is 2mm and buried in homogeneous soil at the depth of 2.15m. The rectangular region of width of 2m and depth of 1m is selected for this case. This size is based on other researcher s experiences in the location of boundary in numerical studies - [11]. Table 2. Parameters specification Diameter of conductor (mm) 3.8 External diameter of cable (mm) 98.1 Resistance of conductor at 9 o C (Ω/km).287 Sheath loss factor.67 Thermal resistance T 1 ( o Cm/W).532 Thermal resistance T 2 ( o Cm/W). Thermal resistance T 3 ( o Cm/W).779 Thermal resistance T ( o Cm/W).36 Thermal resistance T ( o Cm/W).587 Thermal resistivity of homogeneous soil ( o Cm/W) 1.2 Ambient temperature ( o C) 27 Maximum temperature of conductor ( o C) 9 Losses (for each phase when cable loaded 662A) Conductor (W/m) 11.52 Screen (W/m).8 Dielectric (W/m).3563 Total losses (for three phase) (W/m) 36.919 mesh 21 nodes & 38 elements 1 2 3 Cable.275m -1.9-2 -2.1 Г -2.2-2.3-2. Soil Fig. 5 Model of the horizontal three-phase cable 2 -.6 -. -.2.2..6 Fig. 6 Discretised field domain of the horizontal three-phase underground cable

T(x,y) - (oc) D = 1 m L In this case, parameters of cables are given in TABLE.2. The cables carry a steady current of 662A/phase causing the heat generation rate of 36.919W/m of circuit. Each surface of duct is represented by 1 nodes. Therefore, the heat generation of each node is.32w/m. 55 5 5 21-nodes & 38-elements FEM solution Ground surface Cable Г Soil y W = 1m 1 2 3 5 6 s 1 s 1 s 1 s 1 s 1 s 1=.275m L= 2.15m x 35 3 25-1 -1 5 1 Fig. 8 Model of the horizontal double-circuit three-phase underground cable -1.6-1.8 mesh 1992 nodes & 3739 elements a) Whole domain -2-2.2-2. -2.6 b) Zoom domain Fig. 7 A-FEM solutions of temperature distribution The result of temperature distribution is shown in Fig.7a. and Fig.7b. The temperature of cable 2 is the largest, the maximum temperature on surface of each duct is given in TABLE.. in Section IV. 3.3 Case 3: The horizontal Double-circuit cables laid in duct buried directly in homogeneous soil Fig.8. shows the double-circuit threephase underground cables are parallel operating. The first circuit consists of cable 1, 2 and 3. The second circuit includes cables of, 5 and 6. The distance of two adjacent cables is.275m. All cables are installed in ducts (the internal and external diameter are 18mm and 2mm) and laid at depth of 2.15m. -2.8-1 -.5.5 1 Fig. 9 The FE domain of the horizontal doublecircuit three-phase underground cable In this case, some parameters of cables are the same as in Case 2, but the losses of cables is different from Case 2 which given in TABLE.3. The cables carry a steady current of 69A/phase causing the heat generation rate of 32.29W/m of one circuit. Each surface of duct is represented by 33 nodes. Therefore, the heat generation of each node is.3235w/m. The temperature distribution is shown in Fig.1a and Fig.1b. The temperature of cable 3 and cable is largest, the maximum temperature on surface of each duct is given in TABLE.. in Section IV. Table 3. Parameters specification Losses (for each phase when cable loaded 69A) Conductor (W/m) 9.981 Screen (W/m).669 Dielectric (W/m).3563 Total losses (for three phase) (W/m) 32.29 3

Maximum temperature at each surface of ducts ( o C) T(x,y) - (oc) 7 6 5 3 1992-nodes & 3739-elements FEM solution -1-1 a) Whole domain b) Zoom domain Fig. 1 Temperature distribution A-FEM solutions IV. NUMERICAL RESULTS OF UNDERGROUND CABLES AMPACITY The temperature values of duct surfaces are given in TABLE.. may be used to determine the thermal resistance of surrounding soil using Equ. (3). Then, the ampacity of cables can be calculated by using Equ. (). The values of current capacity corresponding to the cables are shown in TABLE... We compare those values with the current capacity which given by manufacturer. It is observed that the current capacity values obtained by the analytical procedure (given by PIRELLY PRYSMIAN Cables) are consistently higher by 3% than the corresponding ones of A- FEM (difference about -12% in reference []). From values in TABLE.., we observe that the ampacity of double-circuit cable is smaller than the single- circuit one. 5 1 Table. Ampacity by A-FEM and the manufacturer s data Case Terms 2 3 Number of nodes 21 1992 Number of elements 38 3739 Time CPU (seconds) 227.183 212.8181 1 5.229 55.871 2 5.352 58.31 3 5.35 59.251 59.2736 5 58.2918 6 55.917 Resistance of soil ( o Cm/W) 1.89759 3.2291 Ampacity calculated 88.27 715.52 using A-FEM (A) Ampacity provided by PRYSMIAN (A) 87.1 738. [16] Errors (%) 2.955 3.61 V. CONCLUSIONS This paper has described the A-FEM for calculating the ampacity and temperature of buried cables in homogeneous soil. The proposed method has tested for many different types of the transmission and distribution underground cables such as the single circuit and double circuit cales, horizontal and triangular configurations and the others The computed resutls compared to one of BEM and the manufacturer s data are also presented. The main contribution of this paper are as: 1. Using the adaptive algorithm that made the thick mesh around the cables and sparse one at the region that is so far from the cable. Therefore, the calculation will be faster but still insure the high accuracy. 2. Many different configurations of buried cables are presented. So that is the good data for designing and constructing the underground cable system.

REFERENCES 1. Young K.Won and Hyochong Bang; The Finite Element Method Using Matlab; CRC Press, Washington, D.C., 1997. 2. Roland W. Lewis, Perumal Nithiarasu, Kankanhally N. Seetharamu; Fundamentals of Finite Element Method for Heat and Fluid Flow; John Wiley & Sons, Ltd., 2. 3. Per-Olof Persson and Gilbert Strang; A Simple Mesh Generator in MATLAB; SIAM Review, pp. 329 35, 2.. M. A. Kellow; A Numerical Procedure for the Calculation of the Temperature Rise and Ampacity of Underground Cables; IEEE Transactions on Power Apparatus and System, Vol. PAS-1, No. 7, pp. 1322-133, July 1981. 5. D. Mushamalirwa, J. C. Steffens; A 2-D Finite Element Mesh Generator for Thermal Analysis of Underground Power Cables; IEEE Transactions on Power Delivery; Vol. 3, No. 1, pp. 62-68, January 1988. 6. G. Gela, J. J. Dai; Calculation of Thermal Fields of Underground Cables Using the Boundary Element Method; IEEE Transactions on Power Delivery, Vol. 3, No., pp. 131-137, October 1988. 7. M. A. Hanna, M. M. A. Salama; Thermal Analysis of Power Cables in Multi-layered Soil; IEEE Transactions on Power Delivery, Vol. 8, No. 3, pp. 761-771, July 1993. 8. Sally M. Sellers, W. Z. Black; Refinements to the Neher-McGrath Model for Calculating the Ampacity of Underground Cables; IEEE Transactions on Power Delivery, Vol. 11, No. 1, January 1996. 9. C.C. Hwang, H.Y. Chen; Calculation of Ampacities for Cables in Trays Using Finite Elements; Electric Power System Research 5, pp. 75-81, 2. 1. Chang-Chou Hwang and Yi-Hsuan Jiang; Extensions to Finite Element Method for Thermal Analysis of Underground Cables System; Electric Power System Research 6, pp. 159-16, 23. 11. H. J. Li; Estimation of Soil Thermal Parameters from Surface Temperature of Underground Cables and Prediction of Cable Rating; IEE Proc.-Gener Transm, Vol. 152, No. 6, pp. 89-85, November 25. 12. Francisco de León, Calculation of Underground Cable Ampaciy, CYME International T&D, 25. 13. H. J. Li, Qi Su; Assessment of Underground Cable Ratings Based on Distributed Temperature Sensing; IEEE Transactions on Power Delivery, Vol. 21, No., pp. 1763-1769, October 26. 1. IEC 6287-1-1:199+A1:1995+A2:21, Electric cables Calculation of the current rating - Part 1-1: Current rating equation (1% load factor) and calculation of losses General. 15. IEC 6287-2-1:199+A1:21+A2:26, Electric cables Calculation of the current rating - Part 2-1: Calculation of thermal resistance. 16. Cable parameters of Prysmian Baosheng Cable Co.Ltd. Contact : Vu Phan Tu - Email : vptu@hcmut.edu.vn, Nguyen Nhat Nam - Email : nnnam@hcmut.edu.vn Faculty of Electrical and Electronics Engineering, HCMC University of Technology Nguyen Ngoc Khoa - Email : ngnkhoa@gmail.com Ho Chi Minh City Power Company 5