Answer the following questions using letters A through H :

Size: px
Start display at page:

Download "Answer the following questions using letters A through H :"

Transcription

1 SIO 210 Problem Set 3 November 10, 2014 Due Nov. 24, 2014 Answer key total 6 points (a) The following kinds of wave motion were mentioned in class A. light 3 x 10 9 m/sec B. sound in air (340 m/sec) C. sound in water (1500 m/sec) D. seismic waves (few km/sec) E. deep water ocean surface gravity waves (4 m/sec for 10 m wavelength) F. shallow water ocean surface gravity waves (220 m/sec in 5 km water) G. capillary ocean surface waves (few cm/sec to few tens of cm/sec) Order these waves by propagation speed, putting the fastest first, the next fastest second... etc., the slowest last. Express your answer by writing the letters that label the different waves in the requested order. A, D, C, B, F, E, G 2 points (b) With respect to the list of the previous question (#10), the kind(s) of ocean waves that are energized both in tsunamis and in ocean tides are (answer by writing appropriate letter label(s) from list of different waves in previous question). F 2 points (c) With respect to the list of the previous questions, the kind(s) of ocean waves that are energized by winds over the ocean are (answer by writing appropriate letter label(s) from list of different waves in previous question). _E, F, G points (2 points each) This is a list of astronomical events associated with tides: A. times of half moon B. time of full moon C. time of new moon D. time of lunar perigee E. times when moon is in earth's equatorial plane F. times when moon is farthest out of earth's equatorial plane G. times when the sun is in the earth's equatorial plane H. times when sun is farthest out of earth's equatorial plane Answer the following questions using letters A through H : (a) Which one of the above events occurs at the equinoxes, that is, the times of year when day and night are the same length? G (b) Which one of the above events occurs at the solstices, when the sun is as far north or south in the sky as it will be during the year? H

2 (c) Flooding once per day at La Jolla Shores at e.g. the Marine Room due to strong winter storms is particularly common in early January. Which one event on the list A through H is this close to in time? H (d) Spring tides are most pronounced around the time(s) of which astronomical events on the list A through H? (one or more events) B, C (e) The daily inequality is most pronounced around the time(s) of which astronomical events on the list A through H? (one or more events) F, H total Potential vorticity. Assume a column of water in the Northern Hemisphere has no relative vorticity, and has a height H = 500m (for instance, water column above the thermocline). Assume that it conserves potential vorticity. (a) 4 points Write down the expression for potential vorticity for this column and explain what could change as it moves northward. (Don t get carried away thinking about the deeper layer!) Q = (f + ζ)/h As it moves northward, f increases. If Q is conserved, then either the height H would increase, or the relative vorticity would decrease. (b) 10 points If the water column moves (northward) without generating any relative vorticity, calculate how much its height would change. This needed more information! Assume it moves 5 northward for want of a better idea. Suppose it starts at a latitude of 10 N (since I already calculated f for 10 N for problem 5). Q o = (f 10 /500 m) = (0.25 x10-4 sec -1 )/500 m Move to 15 N. Here f 15 = 0.26* 1.46 x10-4 /sec = (0.31 x10-4 sec -1 ) (f 10 /H 10 ) = (f 15 /H 15 ) so H 15 = (f 15 / f 10 )H 10 = [(0.31 x10-4 sec -1 )/( 0.25 x10-4 sec -1 )](500 m) = 620 m (c) 2 points If the water column moves (northward) without changing height, what direction will it spin? ζ will be negative, so spin would be clockwise total There are 5 subtropical gyres in the world ocean. The following questions are in regards to their western boundary currents. (a) 2 points Which subtropical western boundary current would extend much farther poleward if its western boundary extended farther poleward? (one) Agulhas (b) 2 points Which subtropical western boundary currents separate cleanly from their western boundaries, and never reattach again? (two) Brazil Current and Agulhas Current (c) 2 points Which western boundary currents reattach to a second western boundary

3 after they have been free from the western boundary for some distance? (two) three my mistake!! Gulf Stream, East Australian Current, and the East Madagascar Current/Agulhas (d) 5 points Pick one of the Southern Hemisphere western boundary currents. Sketch qualitatively the sea surface height distribution from west to east across the western boundary current, and then across the full width of the subtropical gyre. Indicate approximately how wide the western boundary current is, and how wide the gyre is, in kilometers (order of magnitude). I ve drawn a completely generic one. Students might be taking the Niiler et al. sea surface height maps and trying to sketch all of the various features, which is OK. Most important is to have a WBC with highest SSH about 100 km to east of boundary, and then falling gently to eastern boundary, order 5000 to km to the east. (e) 4 points Continue the sketch from (d). Indicate using arrows, arrowheads and/or arrowtails which direction the surface current flows. Added to drawing most important to get a southward WBC and northward interior flow. Useful to also show relative strength of meridional velocity through small circles in interior and large circle(s) in WBC. (f) 5 points Assuming that the western boundary current is strongest at the sea surface, sketch a few isopycnals beneath the sea surface, making sure that you have the correct slopes of the isopycnals relative to the sea surface height. Vertical scale doesn t matter - if they draw it on the figure, it is of course much larger than the 1 m of sea surface height.

4 5. 44 total The mean winds in the Pacific are shown in the attached plot. (a) 4 points Indicate where the trade winds are. (LABEL on figure.) Indicate where the westerlies are. (LABEL on figure.) on figure (b) 4 points In North Pacific subtropical gyre region, sketch the direction of mean Ekman transport relative to the trade winds and westerlies. (DRAW on figure.) blue arrows on figure (only did strictly north south because of lack of control on powerpoint arrows; students might draw them properly perpendicular to the wind stress) (c) 4 points Is the Ekman transport convergent or divergent between 10 N and 40 N? Does this imply Ekman pumping (downwelling) or Ekman suction (upwelling) between 10 and 40 N? convergent. Ekman downwelling. (d) 10 points If the wind stress (magnitude) is 0.1 N/m 2 at 10 N, calculate the Ekman transport at a given point ( transport in m 2 /sec). Do the same for a wind stress of 0.1 N/m 2 at 40 N. f o = 1.46 x10-4 /sec x sin(latitude). At 10 N, f = 0.17 x f o = 0.25 x10-4 /sec At 40 N, f =0.64 x f o = 0.92x10-4 /sec V(10 N) = τ/ρf = 0.1 N/m 2 /[(1025 kg/m 3 )( 0.25 x10-4 /sec)]=3.93 m 2 /sec V(40 N) = -τ/ρf = -0.1 N/m 2 /[(1025 kg/m 3 )( 0.92x10-4 /sec)]=-1.06 m 2 /sec (e) 6 points If the Pacific is 13,000 km wide at 10 N and the Ekman transport is the same as your value calculated in (d), what is the total Ekman transport across the width of the ocean at 10 N? (in m 3 /sec). Calculate the total Ekman transport at 40 N, assuming the width of the ocean is 8500 km there. Calculate total southward transport across 40 N and total northward transport across 10 N. V tot (10 N) = (13,000 x 10 3 m)( 3.93 m 2 /sec) = 51 x10 6 m 3 /sec = 51 Sv V tot (40 N) = -(8500 x 10 3 m)( 1.06 m 2 /sec) = -9 x10 6 m 3 /sec = -9 Sv (f) 6 points Estimate the average vertical velocity at the base of the Ekman layer, over the whole area between 10 N and 40 N. (Assume that it s uniform, and make a rough estimate of the ocean area between 10 and 40 N, using the simplest possible geometry.) Net convergence is 60 Sv. Area: meridional distance = 30 x 111 km/ = 3330 km Zonal distance mean = 10,750 km Area = (3330 km)(10,750 km) = 3.58 x m 2

5 W = convergent transport/area = 60x106 m3/sec / (3.58 x 1013m2) = 1.7x10-6m/sec (g) 4 points Is the Sverdrup transport northwards or southwards between 10 N and 40 N based on the preceding, and using the same very simple averaging assumptions as in (f)? Sketch this also on the map. Southwards. Red arrows on map. (h) 4 points Is the western boundary current northward or southwards between 10 N and 40 N, based on your answer to (g)? Sketch this on the map. Northwards. Green arrow on map. (i) 2 points What is the name of the western boundary current that you just sketched? Kuroshio

SIO 210 Introduction to Physical Oceanography Mid-term examination Wednesday, November 2, :00 2:50 PM

SIO 210 Introduction to Physical Oceanography Mid-term examination Wednesday, November 2, :00 2:50 PM SIO 210 Introduction to Physical Oceanography Mid-term examination Wednesday, November 2, 2005 2:00 2:50 PM This is a closed book exam. Calculators are allowed. (101 total points.) MULTIPLE CHOICE (3 points

More information

1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter.

1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter. SIO 210 Problem Set 3 November 16, 2015 1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter. (a) What is the name of this type of data display?_hovmöller

More information

SIO 210 Final examination Wednesday, December 12, :30-2:30 Eckart 227 Name:

SIO 210 Final examination Wednesday, December 12, :30-2:30 Eckart 227 Name: SIO 210 Final examination Wednesday, December 12, 2018 11:30-2:30 Eckart 227 Name: Please put your initials or name on each page, especially if you pull pages apart. Turn off all phones, ipods, etc. and

More information

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015)

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) Variation of Coriolis with latitude: β Vorticity Potential vorticity

More information

Ocean surface circulation

Ocean surface circulation Ocean surface circulation Recall from Last Time The three drivers of atmospheric circulation we discussed: Differential heating Pressure gradients Earth s rotation (Coriolis) Last two show up as direct

More information

SIO 210 Final Exam Dec Name:

SIO 210 Final Exam Dec Name: SIO 210 Final Exam Dec 8 2006 Name: Turn off all phones, pagers, etc... You may use a calculator. This exam is 9 pages with 19 questions. Please mark initials or name on each page. Check which you prefer

More information

Ocean dynamics: the wind-driven circulation

Ocean dynamics: the wind-driven circulation Ocean dynamics: the wind-driven circulation Weston Anderson March 13, 2017 Contents 1 Introduction 1 2 The wind driven circulation (Ekman Transport) 3 3 Sverdrup flow 5 4 Western boundary currents (western

More information

SIO 210 Final Exam December 10, :30 2:30 NTV 330 No books, no notes. Calculators can be used.

SIO 210 Final Exam December 10, :30 2:30 NTV 330 No books, no notes. Calculators can be used. SIO 210 Final Exam December 10, 2003 11:30 2:30 NTV 330 No books, no notes. Calculators can be used. There are three sections to the exam: multiple choice, short answer, and long problems. Points are given

More information

SIO 210 Final examination Answer Key for all questions except Daisyworld. Wednesday, December 10, PM Name:

SIO 210 Final examination Answer Key for all questions except Daisyworld. Wednesday, December 10, PM Name: SIO 210 Final examination Answer Key for all questions except Daisyworld. Wednesday, December 10, 2008 3-6 PM Name: This is a closed book exam. You may use a calculator. There are two parts: Talley (weighted

More information

SIO 210 Problem Set 3 November 15, 2013 Due Nov. 22, 2013 Answerkey

SIO 210 Problem Set 3 November 15, 2013 Due Nov. 22, 2013 Answerkey SIO 210 Problem Set 3 November 15, 2013 Due Nov. 22, 2013 Answerkey 1. Dynamics: rotation (a) Draw the direction of an inertial current in (i) the northern hemisphere and (ii) the southern hemisphere and

More information

Upper Ocean Circulation

Upper Ocean Circulation Upper Ocean Circulation C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth 1 MAR555 Lecture 4: The Upper Oceanic Circulation The Oceanic Circulation

More information

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P.

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P. Ocean 423 Vertical circulation 1 When we are thinking about how the density, temperature and salinity structure is set in the ocean, there are different processes at work depending on where in the water

More information

Surface Circulation. Key Ideas

Surface Circulation. Key Ideas Surface Circulation The westerlies and the trade winds are two of the winds that drive the ocean s surface currents. 1 Key Ideas Ocean water circulates in currents. Surface currents are caused mainly by

More information

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk Lecture 8 Lecture 1 Wind-driven gyres Ekman transport and Ekman pumping in a typical ocean basin. VEk wek > 0 VEk wek < 0 VEk 1 8.1 Vorticity and circulation The vorticity of a parcel is a measure of its

More information

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport is which can also be written as (14.1) i.e., #Q x,y

More information

Lecture 28: A laboratory model of wind-driven ocean circulation

Lecture 28: A laboratory model of wind-driven ocean circulation Lecture 28: A laboratory model of wind-driven ocean circulation November 16, 2003 1 GFD Lab XIII: Wind-driven ocean gyres It is relatively straightforward to demonstrate the essential mechanism behind

More information

Ocean Mixing and Climate Change

Ocean Mixing and Climate Change Ocean Mixing and Climate Change Factors inducing seawater mixing Different densities Wind stirring Internal waves breaking Tidal Bottom topography Biogenic Mixing (??) In general, any motion favoring turbulent

More information

SIO 210: Dynamics VI: Potential vorticity

SIO 210: Dynamics VI: Potential vorticity SIO 210: Dynamics VI: Potential vorticity Variation of Coriolis with latitude: β Vorticity Potential vorticity Rossby waves READING: Review Section 7.2.3 Section 7.7.1 through 7.7.4 or Supplement S7.7

More information

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise)

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise) Ocean 423 Rossby waves 1 Rossby waves: Restoring force is the north-south gradient of background potential vorticity (f/h). That gradient can be due to either the variation in f with latitude, or to a

More information

Basic Ocean Current Systems. Basic Ocean Structures. The State of Oceans. Lecture 6: The Ocean General Circulation and Climate. Temperature.

Basic Ocean Current Systems. Basic Ocean Structures. The State of Oceans. Lecture 6: The Ocean General Circulation and Climate. Temperature. Lecture 6: The Ocean General Circulation and Climate Basic Ocean Current Systems Upper Ocean surface circulation Basic Structures Mixed Layer Wind-Driven Circulation Theories Thermohaline Circulation Ocean

More information

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be a bonus) is well written (take your time to edit) shows

More information

General Oceanography Geology 105 Expedition #17 Tracking Drifter Buoys See Due Date in Greensheet or in Module Area of Canvas

General Oceanography Geology 105 Expedition #17 Tracking Drifter Buoys See Due Date in Greensheet or in Module Area of Canvas General Oceanography Name Geology 105 Expedition #17 Tracking Drifter Buoys See Due Date in Greensheet or in Module Area of Canvas Expedition Objective: Students will apply a scientific approach to study

More information

SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011

SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011 SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011 1. The Pacific Ocean is approximately 10,000 km wide. Its upper layer (wind-driven gyre*) is approximately 1,000 m deep. Consider a west-to-east

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination November 5, 2012; 50 minutes Answer key

SIO 210 Introduction to Physical Oceanography Mid-term examination November 5, 2012; 50 minutes Answer key SIO 210 Introduction to Physical Oceanography Mid-term examination November 5, 2012; 50 minutes Answer key Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100 total points.)

More information

(chose the sign to ensure that it is evaporative)

(chose the sign to ensure that it is evaporative) SIO 210 (2-3:20 class) Problem Set 2 ANSWER KEY October 17, 2016 Due October 31, 2016 (10 points) 1. The salinity of the inflow to the Mediterranean Sea at the Strait of Gibraltar is about 36.1. The salinity

More information

Currents & Gyres Notes

Currents & Gyres Notes Currents & Gyres Notes Current A river of water flowing in the ocean. 2 Types of Currents Surface Currents wind-driven currents that occur in the top 100m or less Deep Currents density-driven currents

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Ocean Circulation- PART- I: In Class. Must be done inclass, and turned in before you leave for credit.

Ocean Circulation- PART- I: In Class. Must be done inclass, and turned in before you leave for credit. Name: Section/ TA: Ocean Circulation- PART- I: In Class. Must be done inclass, and turned in before you leave for credit. Activity 1: The Sverdrup In our homes, we are used to calculating water volumes

More information

MAR 110 LECTURE #10 The Oceanic Conveyor Belt Oceanic Thermohaline Circulation

MAR 110 LECTURE #10 The Oceanic Conveyor Belt Oceanic Thermohaline Circulation 1 MAR 110 LECTURE #10 The Oceanic Conveyor Belt Oceanic Thermohaline Circulation Ocean Climate Temperature Zones The pattern of approximately parallel oceanic surface isotherms (lines of constant temperature)

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes NAME: SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100 total points.)

More information

Oceanography Quiz 2. Multiple Choice Identify the choice that best completes the statement or answers the question.

Oceanography Quiz 2. Multiple Choice Identify the choice that best completes the statement or answers the question. Oceanography Quiz 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The highest and lowest tides are known as the spring tides. When do these occur? a.

More information

2/15/2012. Earth System Science II EES 717 Spring 2012

2/15/2012. Earth System Science II EES 717 Spring 2012 Earth System Science II EES 717 Spring 2012 1. The Earth Interior Mantle Convection & Plate Tectonics 2. The Atmosphere - Climate Models, Climate Change and Feedback Processes 3. The Oceans Circulation;

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 9 by Andrew Wells We have so far considered boundary layers adjacent to physical boundaries. However, it is also possible to find boundary layers

More information

Midterm 2: Nov. 20 (Monday)

Midterm 2: Nov. 20 (Monday) Introduction to Oceanography Lecture 18, Current 2 Surface Ocean Currents. Video by Chris Henze, NASA Ames, Public Domain Midterm 2: Nov. 20 (Monday) Review Session & Video Screenings TBA Image from Sverdrup,

More information

Wind Gyres. curl[τ s τ b ]. (1) We choose the simple, linear bottom stress law derived by linear Ekman theory with constant κ v, viz.

Wind Gyres. curl[τ s τ b ]. (1) We choose the simple, linear bottom stress law derived by linear Ekman theory with constant κ v, viz. Wind Gyres Here we derive the simplest (and oldest; Stommel, 1948) theory to explain western boundary currents like the Gulf Stream, and then discuss the relation of the theory to more realistic gyres.

More information

Questions? Santa Ana Winds. Santa Ana Winds. Santa Ana Winds. Introduction to Oceanography. Midterm 2: Nov. 20 (Monday) Lecture 17, Current.

Questions? Santa Ana Winds. Santa Ana Winds. Santa Ana Winds. Introduction to Oceanography. Midterm 2: Nov. 20 (Monday) Lecture 17, Current. Introduction to Oceanography ecture 17, Midterm 2: Nov. 20 (Monday) Review Session & Video Screenings TBA NOAA Ocean-Atmosphere Sea Surface Temperature Model, Public Domain, http://www.gfdl.noaa.gov/visualizations-oceans

More information

Ocean Boundary Currents Guiding Question: How do western boundary currents influence climate and ocean productivity?

Ocean Boundary Currents Guiding Question: How do western boundary currents influence climate and ocean productivity? Name: Date: TEACHER VERSION: Suggested Student Responses Included Ocean Boundary Currents Guiding Question: How do western boundary currents influence climate and ocean productivity? Introduction The circulation

More information

Wind: Global Systems Chapter 10

Wind: Global Systems Chapter 10 Wind: Global Systems Chapter 10 General Circulation of the Atmosphere General circulation of the atmosphere describes average wind patterns and is useful for understanding climate Over the earth, incoming

More information

Module Contact: Dr Xiaoming Zhai, ENV Copyright of the University of East Anglia Version 2

Module Contact: Dr Xiaoming Zhai, ENV Copyright of the University of East Anglia Version 2 UNIVERSITY OF EAST ANGLIA School of Environmental Sciences Main Series UG Examination 2017-2018 OCEAN CIRCULATION ENV-5016A Time allowed: 2 hours Answer THREE questions Write each answer in a SEPARATE

More information

Earth s Environmental System: Climate V2100. Midterm Exam. Wednesday March 12, 2003

Earth s Environmental System: Climate V2100. Midterm Exam. Wednesday March 12, 2003 Earth s Environmental System: Climate V2100 Midterm Exam Wednesday March 12, 2003 Please put your name at the top of each page If you sketch something, make it big and clear and label your axes Explain

More information

I. Ocean Layers and circulation types

I. Ocean Layers and circulation types OCEAN CIRCULATION I. Ocean Layers and circulation types 1) Ocean Layers Ocean is strongly Stratified Consists of distinct LAYERS controlled by density takes huge amounts of energy to mix up the stable

More information

OCN 201 Fall 2015 Section 1

OCN 201 Fall 2015 Section 1 Name: Class: _ Date: _ OCN 201 Fall 2015 Section 1 True/False Indicate whether the statement is true or false. 1. Because of the dissolved salt in seawater its freezing point is higher than that of pure

More information

The General Circulation of the Oceans

The General Circulation of the Oceans The General Circulation of the Oceans In previous classes we discussed local balances (Inertial otion, Ekman Transport, Geostrophic Flows, etc.), but can we eplain the large-scale general circulation of

More information

C

C C 0.8 0.4 0.2 0.0-0.2-0.6 Fig. 1. SST-wind relation in the North Pacific and Atlantic Oceans. Left panel: COADS SST (color shade), surface wind vectors, and SLP regressed upon the Pacific Decadal Oscillation

More information

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction OCN/ATM/ESS 587 The wind-driven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The wind-driven ocean. The major ocean gyres

More information

The Ocean Floor THE VAST WORLD OCEAN

The Ocean Floor THE VAST WORLD OCEAN OCEANOGRAPHY Name Color all water LIGHT BLUE. Color all land LIGHT GREEN. Label the 5 Oceans: Pacific, Atlantic, Indian, Arctic, Antarctic. Label the 7 Continents: N.America, S.America, Europe, Asia, Africa,

More information

CHAPTER 7 Ocean Circulation Pearson Education, Inc.

CHAPTER 7 Ocean Circulation Pearson Education, Inc. CHAPTER 7 Ocean Circulation 2011 Pearson Education, Inc. Types of Ocean Currents Surface currents Deep currents 2011 Pearson Education, Inc. Measuring Surface Currents Direct methods Floating device tracked

More information

I. Ocean Layers and circulation types

I. Ocean Layers and circulation types OCEAN Title CIRCULATION slide I. Ocean Layers and circulation types 1) Ocean Layers Ocean is strongly Stratified Consists of distinct LAYERS controlled by density takes huge amounts of energy to mix up

More information

Reasons for the seasons - Rebecca Kaplan

Reasons for the seasons - Rebecca Kaplan Reasons for the seasons - Rebecca Kaplan https://www.youtube.com/watch?v=dd_8jm5ptlk https://www.timeanddate.com/worldclock/sunearth.html https://www.time.gov/ https://www.space.com/33790-harvest-moon-guide.html

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Problem

More information

The Sun-Earth-Moon System

The Sun-Earth-Moon System Name The Sun-Earth-Moon System Section 28.3 The Sun-Earth-Moon System Date Main Idea Details Read the title of Section 3. List three things that might be discussed in this section. 1. 2. 3. Review Vocabulary

More information

Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than

Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than Lesson Outline Earth s Motion LESSON 1 A. Earth and the Sun 1. The diameter is more than 100 times greater than Earth s diameter. a. In the Sun, atoms combine during, producing huge amounts of energy.

More information

Oceanography. Oceanography is the study of the deep sea and shallow coastal oceans.

Oceanography. Oceanography is the study of the deep sea and shallow coastal oceans. Oceanography Oceanography is the study of the deep sea and shallow coastal oceans. Studying the Ocean Floor To determine the shape and composition of the ocean floor, scientists use techniques such as

More information

Day, Night, Year, and Seasons

Day, Night, Year, and Seasons Welcome Astronomers to the Sun, Moon, and Earth! The relationship between the Sun, Moon, and Earth is very important to the existence of life on Earth. Our quest is to find out how their relationships

More information

Real World Globes Investigating Surface Currents around the Globe Authored by Ryan Glaubke, Graduate Student at Old Dominion University, Norfolk, VA

Real World Globes Investigating Surface Currents around the Globe Authored by Ryan Glaubke, Graduate Student at Old Dominion University, Norfolk, VA Real World Globes Investigating Surface Currents around the Globe Authored by Ryan Glaubke, Graduate Student at Old Dominion University, Norfolk, VA Purpose: - To practice basic plotting techniques using

More information

Lecture 1. Amplitude of the seasonal cycle in temperature

Lecture 1. Amplitude of the seasonal cycle in temperature Lecture 6 Lecture 1 Ocean circulation Forcing and large-scale features Amplitude of the seasonal cycle in temperature 1 Atmosphere and ocean heat transport Trenberth and Caron (2001) False-colour satellite

More information

Physical Oceanography

Physical Oceanography Physical Oceanography SECTION 15.1 The Oceans In your textbook, read about modern oceanography. For each item in Column A, write the letter of the matching item in Column B. e b c d a Column A 1. German

More information

Ocean Dynamics. The Great Wave off Kanagawa Hokusai

Ocean Dynamics. The Great Wave off Kanagawa Hokusai Ocean Dynamics The Great Wave off Kanagawa Hokusai LO: integrate relevant oceanographic processes with factors influencing survival and growth of fish larvae Physics Determining Ocean Dynamics 1. Conservation

More information

Global Wind Patterns

Global Wind Patterns Name: Earth Science: Date: Period: Global Wind Patterns 1. Which factor causes global wind patterns? a. changes in the distance between Earth and the Moon b. unequal heating of Earth s surface by the Sun

More information

Earth Motions Packet 14

Earth Motions Packet 14 Earth Motions Packet 14 Your Name Group Members Score Minutes Standard 4 Key Idea 1 Performance Indicator 1.1 Explain complex phenomena, such as tides, variations in day length, solar insolation, apparent

More information

Surface Circulation in the North Atlantic & off of Southern California: Two Models

Surface Circulation in the North Atlantic & off of Southern California: Two Models Surface Circulation in the North Atlantic & off of Southern California: Two Models Objective 1. To become familiar with large scale surface circulation patterns in ocean. 2. To be able to predict current

More information

CHAPTER 9 ATMOSPHERE S PLANETARY CIRCULATION MULTIPLE CHOICE QUESTIONS

CHAPTER 9 ATMOSPHERE S PLANETARY CIRCULATION MULTIPLE CHOICE QUESTIONS CHAPTER 9 ATMOSPHERE S PLANETARY CIRCULATION MULTIPLE CHOICE QUESTIONS 1. Viewed from above in the Northern Hemisphere, surface winds about a subtropical high blow a. clockwise and inward. b. counterclockwise.

More information

Wind, Water, Weather and Seasons Test Review

Wind, Water, Weather and Seasons Test Review Name: Wind, Water, Weather and Seasons Test Review Period: Please complete the following review to prepare for your exam over wind and ocean currents, weather, and the Earth- Moon- Sun systems. Your test

More information

Answer Key for Practice Test #2

Answer Key for Practice Test #2 Answer Key for Practice Test #2 Section 1. Multiple-choice questions. Choose the one alternative that best completes the statement or answers the question. Mark your choice on the optical scan sheet. 1.

More information

Weather & Ocean Currents

Weather & Ocean Currents Weather & Ocean Currents Earth is heated unevenly Causes: Earth is round Earth is tilted on an axis Earth s orbit is eliptical Effects: Convection = vertical circular currents caused by temperature differences

More information

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations?

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations? Patterns and observations? Patterns and observations? Observations? Patterns? Observations? Patterns? Geometry of the ocean Actual bathymetry (with vertical exaggeration) Continental Continental Basin

More information

CANER SERTKAN ( ) WIND DRIVEN OCEAN CIRCULATION

CANER SERTKAN ( ) WIND DRIVEN OCEAN CIRCULATION CANER SERTKAN (517101005) WIND DRIVEN OCEAN CIRCULATION INTRODUCTION The waters of the ocean are continually moving in powerful currents like the Gulf Stream, in large gyres, in feautures visible from

More information

2. Can you describe how temperature and dissolved solids changes the density of water?

2. Can you describe how temperature and dissolved solids changes the density of water? Unit 4: Oceanography LT 4.1 Density: I can explain the role density plays to help form some currents. #1 Yes I can: 1. Can you explain what density is and how you calculate it? 2. Can you describe how

More information

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall Lecture 8 Monsoons and the seasonal variation of tropical circulation and rainfall According to the second hypothesis, the monsoon is a manifestation of the seasonal variation of the tropical circulation

More information

S11. Indian Ocean: Supplementary Materials

S11. Indian Ocean: Supplementary Materials C H A P T E R S11 Indian Ocean: Supplementary Materials FIGURE S11.1 Indian Ocean surface circulation (Tables S11.1, S11.2 and Figure 11.1). Surface height (cm). Data from Niiler, Maximenko, and McWilliams

More information

b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation.

b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation. Astronomy 100 Name(s): Exercise 2: Timekeeping and astronomy The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement

More information

Biome type of plant and animal community that covers large geographic areas

Biome type of plant and animal community that covers large geographic areas 1 Physical Environment: Atmosphere and Oceans - Circulation EVPP 110 Lecture Fall 2003 Dr. Largen 2 Global Environments 3 Biome type of plant and animal community that covers large geographic areas Global

More information

Tilted Earth Lab Why Do We Have Seasons?

Tilted Earth Lab Why Do We Have Seasons? Name Class Tilted Earth Lab Why Do We Have Seasons? Purpose: In this investigation, you are going to figure out how the axis (or tilt) of the Earth, combined with the revolution (orbit) of Earth around

More information

Define umbra and penumbra. Then label the umbra and the penumbra on the diagram below. Umbra: Penumbra: Light source

Define umbra and penumbra. Then label the umbra and the penumbra on the diagram below. Umbra: Penumbra: Light source Lesson 3 Eclipses and Tides LA.8.2.2.3, SC.8.E.5.9, SC.8.N.1.1 Skim or scan the heading, boldfaced words, and pictures in the lesson. Identify or predict three facts you will learn from the lesson. Discuss

More information

Shallow, Intermediate, and Deep Overturning Components of the Global Heat Budget

Shallow, Intermediate, and Deep Overturning Components of the Global Heat Budget 530 JOURNAL OF PHYSICAL OCEANOGRAPHY Shallow, Intermediate, and Deep Overturning Components of the Global Heat Budget LYNNE D. TALLEY Scripps Institution of Oceanography, University of California, San

More information

Lecture 17 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Learning objectives: understand the concepts & physics of

Lecture 17 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Learning objectives: understand the concepts & physics of ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 17 Learning objectives: understand the concepts & physics of 1. Ekman layer 2. Ekman transport 3. Ekman pumping 1. The Ekman Layer Scale analyses

More information

The Agulhas Current system: its dynamics and climatic importance

The Agulhas Current system: its dynamics and climatic importance The Agulhas Current system: its dynamics and climatic importance BJØRN BACKEBERG 1 NANSEN-TUTU CENTRE FOR MARINE ENVIRONMENTAL RESEARCH 2 DEPTARTMENT OF OCEANOGRAPHY, UNIVERSITY OF CAPE TOWN Nansen Centers

More information

Physical Oceanography

Physical Oceanography Physical Oceanography SECTION 15.1 The Oceans In your textbook, read about modern oceanography. For each item in Column A, write the letter of the matching item in Column B. Column A 1. German research

More information

Name: Climate Date: EI Niño Conditions

Name: Climate Date: EI Niño Conditions Name: Date: Base your answers to questions 1 and 2 on the maps and the passage below. The maps show differences in trade wind strength, ocean current direction, and water temperature associated with air-pressure

More information

4 Tides. What causes tides? How do tides vary?

4 Tides. What causes tides? How do tides vary? CHAPTER 14 4 Tides SECTION The Movement of Ocean Water BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes tides? How do tides vary? National Science

More information

Time, coordinates and how the Sun and Moon move in the sky

Time, coordinates and how the Sun and Moon move in the sky Time, coordinates and how the Sun and Moon move in the sky Using the colors and magnitudes of quasars drawn from the SDSS Catalog Archive Server to distinguish quasars from stars using the light they emit

More information

Celestial Sphere & Solar Motion Lab (Norton s Star Atlas pages 1-4)

Celestial Sphere & Solar Motion Lab (Norton s Star Atlas pages 1-4) Name: Date: Celestial Sphere & Solar Motion Lab (Norton s Star Atlas pages 1-4) Italicized topics below will be covered only at the instructor s discretion. 1.0 Purpose: To understand a) the celestial

More information

Earth Moon Motions A B1

Earth Moon Motions A B1 Earth Moon Motions A B1 1. The Coriolis effect provides evidence that Earth (1) rotates on its axis (2) revolves around the Sun (3) undergoes cyclic tidal changes (4) has a slightly eccentric orbit 9.

More information

Passwords. ScienceVocabulary

Passwords. ScienceVocabulary Passwords ScienceVocabulary F To the Student Mitosis. Apogee. Ion. Sometimes it seems that scientists speak a language all their own. Passwords: Science Vocabulary will help you learn the words you need

More information

Name Period 4 th Six Weeks Notes 2013 Weather

Name Period 4 th Six Weeks Notes 2013 Weather Name Period 4 th Six Weeks Notes 2013 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

Motions of the Earth

Motions of the Earth Motions of the Earth Our goals for learning: What are the main motions of the Earth in space? How do we see these motions on the ground? How does it affect our lives? How does the orientation of Earth's

More information

RISING SEA. Reading Practice. Paragraph 1. INCREASED TEMPERATURES

RISING SEA. Reading Practice. Paragraph 1. INCREASED TEMPERATURES Reading Practice RISING SEA Paragraph 1. INCREASED TEMPERATURES The average air temperature at the surface of the earth has risen this century, as has the temperature of ocean surface waters. Because water

More information

Winds and Global Circulation

Winds and Global Circulation Winds and Global Circulation Atmospheric Pressure Winds Global Wind and Pressure Patterns Oceans and Ocean Currents El Nino How is Energy Transported to its escape zones? Both atmospheric and ocean transport

More information

The California current is the eastern boundary current that lies to the west of

The California current is the eastern boundary current that lies to the west of I. INTORDUCTION A. California Current System The California current is the eastern boundary current that lies to the west of North America. The California current flows from north, Washington, to south,

More information

1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture.

1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture. Test 2 1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture. 2. Look carefully at the phases of the Moon. Number them (1 to 4) in the order that you would

More information

The surface of the ocean floor is as varied as the land. The five major oceans, from largest to smallest, are

The surface of the ocean floor is as varied as the land. The five major oceans, from largest to smallest, are 11.1 Ocean Basins The surface of the ocean floor is as varied as the land. The five major oceans, from largest to smallest, are w the Pacific w the Atlantic w the Indian w the Southern w the Arctic The

More information

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N 1. In which list are the forms of electromagnetic energy arranged in order from longest to shortest wavelengths? A) gamma rays, x-rays, ultraviolet rays, visible light B) radio waves, infrared rays, visible

More information

Time, Seasons, and Tides

Time, Seasons, and Tides Time, Seasons, and Tides Celestial Sphere Imagine the sky as a great, hollow, sphere surrounding the Earth. The stars are attached to this sphere--- some bigger and brighter than others--- which rotates

More information

psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key

psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key NAME: psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100

More information

Instructions, Instructor Notes and Answer Key for Ocean Gyre Circulation and Patterns of Global Primary Productivity

Instructions, Instructor Notes and Answer Key for Ocean Gyre Circulation and Patterns of Global Primary Productivity Instructions, Instructor Notes and Answer Key for Ocean Gyre Circulation and Patterns of Global Primary Productivity Instructions for activity: The instructions below are described for individual student

More information

EARTHS SHAPE AND POLARIS PRACTICE 2017

EARTHS SHAPE AND POLARIS PRACTICE 2017 1. In the diagram below, letters A through D represent the locations of four observers on the Earth's surface. Each observer has the same mass. 3. Which diagram most accurately shows the cross-sectional

More information

Astronomy Review. Use the following four pictures to answer questions 1-4.

Astronomy Review. Use the following four pictures to answer questions 1-4. Astronomy Review Use the following four pictures to answer questions 1-4. 1. Put an X through the pictures that are NOT possible. 2. Circle the picture that could be a lunar eclipse. 3. Triangle the picture

More information

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory General Circulation Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Latitudinal Radiation Imbalance The annual mean, averaged around latitude circles, of the balance between the

More information

Please be ready for today by:

Please be ready for today by: Please be ready for today by: 1. HW out for a stamp 2. Paper and pencil/pen for notes 3. Be ready to discuss what you know about El Nino after you view the video clip What is El Nino? El Nino Basics El

More information

Ocean Sciences 101 The Marine Environment OCEA 101 THE MARINE ENVIRONMENT MID-TERM EXAM

Ocean Sciences 101 The Marine Environment OCEA 101 THE MARINE ENVIRONMENT MID-TERM EXAM OCEA 101 THE MARINE ENVIRONMENT MID-TERM EXAM Part I. Multiple Choice Questions. Choose the one best answer from the list, and write the letter legibly in the blank to the left of the question. 2 points

More information