Radiative effects of desert dust on weather and climate

Size: px
Start display at page:

Download "Radiative effects of desert dust on weather and climate"

Transcription

1 UNIVERSITY OF ATHENS SCHOOL OF PHYSICS, DIVISION OF ENVIRONMENT AND METEOROLOGY ATMOSPHERIC MODELING AND WEATHER FORECASTING GROUP Radiative effects of desert dust on weather and climate Christos Spyrou, George Kallos, Christina Mitsakou and Christina Kalogeri Atmospheric Modeling and Weather Forecasting Group University of Athens - Greece

2 MOTIVATION The presence of desert dust in the atmosphere has considerable impacts The impacts are ranging from modification of the radiative forcing to cloud formation and precipitation. Therefore, perturbations in dust particle production can have impacts on radiative properties, cloud formation and water budget. These links are not one way but there are feedbacks that are critical for both meteorological and climatological scale phenomena. The links and feedbacks become more complicated because of the coexistence of anthropogenically-produced aerosols and chemical transformations.

3 OBJECTIVES This presentation focuses on the Direct Radiative Effects (DRE) of naturally produced particles. More specifically we discuss: Radiative transfer parameterization by utilizing the RRTMG scheme for both short and long wave components in the framework of SKIRON model Algorithm Evaluation based on actual measurements Dust Feedback on Energy Transfer

4 New Features of SKIRON/Dust Model Eight-size particle bin scheme (Zender et al. 2003; Spyrou et al., 2010) New dust source identification and flux production by utilizing additional soil classes and properties (rocky soil, clay amounts) (Reynolds et al., 1999, Spyrou et al., 2010) New dry and wet deposition schemes (Slinn and Slinn, 1980; Kumar et al., 1996; Pandis, 1998) In-cloud scavenging (Pandis, 1998) Utilization of high resolution SST (Spyrou et al., 2010) Aerosol Optical Depth (AOD) calculation (Kaufman et al., 2002 and others) Incorporation of the RRTMG radiative transfer scheme for SW and LW radiation (Iacono et al., 2008, Clough et al., 2005, Mlawer et al., 1997) Aerosol Radiation feedback

5 RRTMG IN SKIRON Pre-Processing Stage Use refractive indexes for dust particles from OPAC (Optical Properties of Aerosols and Clouds) package data (Hess et al., 1998) Calculate Extinction Efficiency of each size bin for each wavelength of RRTM using MIE theory Input Single Scattering Albedo, Asymmetry Parameter and Extinction Efficiency in the host model (SKIRON) Running Stage Dust radiative parameters are used to calculate AOD at every wavelength and input at RRTM along with several other meteorological parameters SKIRON model Radiative feedback included Calculation of Fluxes and Heating/Cooling rates.

6 Dust Storms over N Africa and Impacts on Radiation Balance A dust storm initiated over the lee of the Atlas Mountains on 5 March Model simulation was performed for the period 2-11 March The strong wind flow across the NW Africa that produced the wide front of dust in northern Algeria has been successfully simulated by the SKIRON system.

7 Dust Storms over N Africa and Impacts on Radiation Balance Measurements of the impact of dust transport on the atmospheric radiation balance at Niamey, Niger (13 29'N, 2 10'E) are reported by Slingo et al. (2006). SKIRON/Dust model calculated radiation components by utilizing the GFDL and RRTMG radiative transfer schemes

8 The Case of February 2006 Strong winds transport dust particles over the Mediterranean and towards Greece. At the 24 th Radiosonde data from Helliniko Airport is used to evaluate the radiative feedback.

9 Aerosol & radiation Effects of Dust Particles on Long Wave Fluxes Height (m) Dust Layer Helliniko Airport - 24/02/2006 at 00 UTC During the night the presence of dust particles: Increases the Long Wave Radiation at the surface by ~10 W/m 2. The dust layer emits LW radiation towards the surface, thus heating the ground Irradiances (Watt/m2) Lwdown (NDE) Lwdown (WDE) Lwup (NDE) Lwup (WDE) Heating below the dust layer Cooling inside the layer

10 Aerosol & radiation Effects of Dust Particles on Short Wave Fluxes Height (m) Helliniko Airport - 24/02/2006 at 12 UTC Dust Layer Irradiances (Watt/m2) During the day the presence of dust particles Decreases the Incoming Solar Radiation at the surface by ~100 W/m 2 (shading effect) Decreases the Outgoing Short Wave Radiation at the surface by ~20 W/m 2 The energy absorbed by the dust layer increases its temperature Swdown (NDE) Swdown (WDE) Swup (NDE) Swup (WDE)

11 Aerosol & radiation Lower Tropospheric Heating Due to Presence of Dust Helliniko Radiosonde 24/2/2006 at 12 UTC Increased Temperature inside the dust layer Height (m) Temperature (C) Radiosonde NDE WDE Such heating of the lower troposphere has as an effect the weakening of convection and therefore reduction in precipitation

12 The Case of 6 8 April 2006 Strong 850hPa winds transport dust particles over the Mediterranean and towards Greece Solar Radiation measurements from a pyranometer located at the roof of Crete TEI (data available from AERONET)

13 Aerosol & radiation 1200 Incoming solar radiation is decreased over Crete in the presence of dust. Atmospheric cooling due to radiation reflectance at the upper level of the dust layer leads in cirrus formation. Inc SW Crete WDE NDE Formation of cirrus clouds at the area explains the abrupt decrease of radiation on 7 April /5/2006 0:00 4/6/2006 0:00 4/7/2006 0:00 4/8/2006 0:00 4/9/2006 0:00 4/10/ :00 Date 4/11/ :00 4/12/ :00 4/13/ :00 4/14/ :00 4/15/ :00

14 Reduction of Incoming Solar Radiation SKIRON/Dust model with RRTM radiative transfer scheme for VIS and IR

15 Impact on Outgoing SR (IR) SKIRON/Dust model with RRTM radiative transfer scheme for VIS and IR

16 Atmospheric heating due to dust (column absorption)

17 Aerosol Radiation Feedback on Temperature Distribution 2W Mid-Tropospheric cooling due to reflection Mid-Tropospheric heating due to absorption Low-Tropospheric cooling due to emission and SW reduction from above Near Surface heating due to incoming LW from above and LW trapping

18 Aerosol Radiation Feedback on Temperature Distribution 18E Mid-Tropospheric cooling due to reflection Mid-Tropospheric heating due to absorption Low-Tropospheric cooling due to emission and SW reduction from above Near Surface heating due to incoming LW from above and LW trapping

19 Some Concluding Remarks The presence of dust cloud creates significant perturbations in SW and LW radiation balance: Dust particles reduce the amount of energy at the surface through scattering and absorption of incoming radiation. Redistribution of available energy inside the atmosphere is affecting the radiation balance and cloud formation. The atmospheric absorption is increased throughout the domain due to absorption by the dust cloud. The outgoing radiation from the surface is decreased in land areas with high concentration values, due to surface cooling. In contrast the outgoing radiation over water areas near is increased. This represents the radiation being emitted from the dust cloud very close to the surface. Dust increases the incoming LW radiation (greenhouse effect). The LW effects of desert dust can no longer be ignored as the infer significant changes mostly during nighttime. It causes warming of the mid tropospheric layers that leads in stabilization and possibly precipitation reduction.

Satellite Observations and Climate Modeling: What They Can and Cannot Reveal About Future Climate

Satellite Observations and Climate Modeling: What They Can and Cannot Reveal About Future Climate Satellite Observations and Climate Modeling: What They Can and Cannot Reveal About Future Climate INCOSE Chesapeake Chapter JHU/APL March 21, 2012 Albert Arking Dept of Earth and Planetary Sciences Johns

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Direct radiative forcing due to aerosols in Asia during March 2002

Direct radiative forcing due to aerosols in Asia during March 2002 Direct radiative forcing due to aerosols in Asia during March 2002 Soon-Ung Park, Jae-In Jeong* Center for Atmospheric and Environmental Modeling *School of Earth and Environmental Sciences, Seoul National

More information

Dependence of Radiative Forcing on Mineralogy in the Community Atmosphere Model

Dependence of Radiative Forcing on Mineralogy in the Community Atmosphere Model Dependence of Radiative Forcing on Mineralogy in the Community Atmosphere Model Rachel Scanza 1, Natalie Mahowald 1, Jasper Kok 2, Steven Ghan 3, Charles Zender 4, Xiaohong Liu 5, Yan Zhang 6 February

More information

Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Earth s Energy Budget: How Is the Temperature of Earth Controlled? 1 NAME Investigation 2 Earth s Energy Budget: How Is the Temperature of Earth Controlled? Introduction As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled? Name(s) Period Date 1 Introduction Earth s Energy Budget: How Is the Temperature of Earth Controlled? As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Global Climate Change

Global Climate Change Global Climate Change Definition of Climate According to Webster dictionary Climate: the average condition of the weather at a place over a period of years exhibited by temperature, wind velocity, and

More information

1. Weather and climate.

1. Weather and climate. Lecture 31. Introduction to climate and climate change. Part 1. Objectives: 1. Weather and climate. 2. Earth s radiation budget. 3. Clouds and radiation field. Readings: Turco: p. 320-349; Brimblecombe:

More information

Estimation of cloud radiative impacts over West Africa, seasonal and meridional patterns.

Estimation of cloud radiative impacts over West Africa, seasonal and meridional patterns. Estimation of cloud radiative impacts over West Africa, seasonal and meridional patterns. Olivier Geoffroy, Dominique Bouniol, Françoise Guichard, and Florence Favot CNRM-GAME, Météo France & CNRS, Toulouse,

More information

Changes in Earth s Albedo Measured by satellite

Changes in Earth s Albedo Measured by satellite Changes in Earth s Albedo Measured by satellite Bruce A. Wielicki, Takmeng Wong, Norman Loeb, Patrick Minnis, Kory Priestley, Robert Kandel Presented by Yunsoo Choi Earth s albedo Earth s albedo The climate

More information

Parameterization for Atmospheric Radiation: Some New Perspectives

Parameterization for Atmospheric Radiation: Some New Perspectives Parameterization for Atmospheric Radiation: Some New Perspectives Kuo-Nan Liou Joint Institute for Regional Earth System Science and Engineering (JIFRESSE) and Atmospheric and Oceanic Sciences Department

More information

9/5/16. Section 3-4: Radiation, Energy, Climate. Common Forms of Energy Transfer in Climate. Electromagnetic radiation.

9/5/16. Section 3-4: Radiation, Energy, Climate. Common Forms of Energy Transfer in Climate. Electromagnetic radiation. Section 3-4: Radiation, Energy, Climate Learning outcomes types of energy important to the climate system Earth energy balance (top of atm., surface) greenhouse effect natural and anthropogenic forcings

More information

Sensitivity of climate forcing and response to dust optical properties in an idealized model

Sensitivity of climate forcing and response to dust optical properties in an idealized model Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd007198, 2007 Sensitivity of climate forcing and response to dust optical properties in an idealized model Karen

More information

8. Clouds and Climate

8. Clouds and Climate 8. Clouds and Climate 1. Clouds (along with rain, snow, fog, haze, etc.) are wet atmospheric aerosols. They are made up of tiny spheres of water from 2-100 m which fall with terminal velocities of a few

More information

GEO1010 tirsdag

GEO1010 tirsdag GEO1010 tirsdag 31.08.2010 Jørn Kristiansen; jornk@met.no I dag: Først litt repetisjon Stråling (kap. 4) Atmosfærens sirkulasjon (kap. 6) Latitudinal Geographic Zones Figure 1.12 jkl TØRR ATMOSFÆRE Temperature

More information

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site:   Lecture 27 Dec Weather Forecasts and Climate AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Climate Natural Variations Feedback Mechanisms Lecture 27 Dec 4 2018 1 Climate

More information

Greenhouse Effect & Venusian Atmospheric Balance. Evan Anders

Greenhouse Effect & Venusian Atmospheric Balance. Evan Anders Greenhouse Effect & Venusian Atmospheric Balance Evan Anders Greenhouse Effect Strong absorption bands of gases and aerosols trap the heat in the lower atmosphere...raising the surface temperature High

More information

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance (1 of 12) Further Reading: Chapter 04 of the text book Outline - matter-energy interactions - shortwave radiation balance - longwave radiation balance - global radiation balance (2 of 12) Previously, we

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

Climate Dynamics (PCC 587): Feedbacks & Clouds

Climate Dynamics (PCC 587): Feedbacks & Clouds Climate Dynamics (PCC 587): Feedbacks & Clouds DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 6: 10-14-13 Feedbacks Climate forcings change global temperatures directly

More information

Climate Dynamics (PCC 587): Clouds and Feedbacks

Climate Dynamics (PCC 587): Clouds and Feedbacks Climate Dynamics (PCC 587): Clouds and Feedbacks D A R G A N M. W. F R I E R S O N U N I V E R S I T Y O F W A S H I N G T O N, D E P A R T M E N T O F A T M O S P H E R I C S C I E N C E S D A Y 7 : 1

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

Mon April 17 Announcements: bring calculator to class from now on (in-class activities, tests) HW#2 due Thursday

Mon April 17 Announcements: bring calculator to class from now on (in-class activities, tests) HW#2 due Thursday Mon April 17 Announcements: bring calculator to class from now on (in-class activities, tests) HW#2 due Thursday Today: Fundamentals of Planetary Energy Balance Incoming = Outgoing (at equilibrium) Incoming

More information

UKCA_RADAER Aerosol-radiation interactions

UKCA_RADAER Aerosol-radiation interactions UKCA_RADAER Aerosol-radiation interactions Nicolas Bellouin UKCA Training Workshop, Cambridge, 8 January 2015 University of Reading 2014 n.bellouin@reading.ac.uk Lecture summary Why care about aerosol-radiation

More information

Radiation, Sensible Heat Flux and Evapotranspiration

Radiation, Sensible Heat Flux and Evapotranspiration Radiation, Sensible Heat Flux and Evapotranspiration Climatological and hydrological field work Figure 1: Estimate of the Earth s annual and global mean energy balance. Over the long term, the incoming

More information

How good are our models?

How good are our models? direct Estimates of regional and global forcing: ^ How good are our models? Bill Collins with Andrew Conley, David Fillmore, and Phil Rasch National Center for Atmospheric Research Boulder, Colorado Models

More information

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 Name: Student ID: Please answer the following questions on your Scantron Multiple Choice [1 point each] (1) The gases that contribute to

More information

Fully coupled aerosol-radiationinteraction

Fully coupled aerosol-radiationinteraction Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Fully coupled aerosol-radiationinteraction with LM-ART D. Bäumer, B. Vogel, H. Vogel, T. Stanelle, R. Rinke, M. Bangert, Ch. Kottmeier Langen,

More information

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems The Atmosphere 1 How big is the atmosphere? Why is it cold in Geneva? Why do mountaineers need oxygen on Everest? 2 A relatively thin layer of gas over the Earths surface Earth s radius ~ 6400km Atmospheric

More information

Torben Königk Rossby Centre/ SMHI

Torben Königk Rossby Centre/ SMHI Fundamentals of Climate Modelling Torben Königk Rossby Centre/ SMHI Outline Introduction Why do we need models? Basic processes Radiation Atmospheric/Oceanic circulation Model basics Resolution Parameterizations

More information

Understanding the Greenhouse Effect

Understanding the Greenhouse Effect EESC V2100 The Climate System spring 200 Understanding the Greenhouse Effect Yochanan Kushnir Lamont Doherty Earth Observatory of Columbia University Palisades, NY 1096, USA kushnir@ldeo.columbia.edu Equilibrium

More information

Development and Implementation of Universal Cloud/Radiation Parameterizations in Navy Operational Forecast Models

Development and Implementation of Universal Cloud/Radiation Parameterizations in Navy Operational Forecast Models DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Development and Implementation of Universal Cloud/Radiation Parameterizations in Navy Operational Forecast Models Harshvardhan

More information

Data and formulas at the end. Real exam is Wednesday May 8, 2002

Data and formulas at the end. Real exam is Wednesday May 8, 2002 ATMS 31: Physical Climatology Practice Mid Term Exam - Spring 001 page 1 Atmospheric Sciences 31 Physical Climatology Practice Mid-Term Examination: Would be Closed Book Data and formulas at the end. Real

More information

Polar regions Temperate Regions Tropics High ( cirro ) 3-8 km 5-13 km 6-18 km Middle ( alto ) 2-4 km 2-7 km 2-8 km Low ( strato ) 0-2 km 0-2 km 0-2 km

Polar regions Temperate Regions Tropics High ( cirro ) 3-8 km 5-13 km 6-18 km Middle ( alto ) 2-4 km 2-7 km 2-8 km Low ( strato ) 0-2 km 0-2 km 0-2 km Clouds and Climate Clouds (along with rain, snow, fog, haze, etc.) are wet atmospheric aerosols. They are made up of tiny spheres of water from 2-100 m which fall with terminal velocities of a few cm/sec.

More information

Boundary layer equilibrium [2005] over tropical oceans

Boundary layer equilibrium [2005] over tropical oceans Boundary layer equilibrium [2005] over tropical oceans Alan K. Betts [akbetts@aol.com] Based on: Betts, A.K., 1997: Trade Cumulus: Observations and Modeling. Chapter 4 (pp 99-126) in The Physics and Parameterization

More information

ATM S 111, Global Warming Climate Models

ATM S 111, Global Warming Climate Models ATM S 111, Global Warming Climate Models Jennifer Fletcher Day 27: July 29, 2010 Using Climate Models to Build Understanding Often climate models are thought of as forecast tools (what s the climate going

More information

Dust Climate Interactions

Dust Climate Interactions School of Earth and Environment INSTITUTE FOR CLIMATE AND ATMOSPHERIC SCIENCE Dust Climate Interactions Kerstin Schepanski k. schepanski@leeds.ac.uk Dust Impacts Direct and indirect climate forcing Regional

More information

2. What does a mercury barometer measure? Describe this device and explain how it physically works.

2. What does a mercury barometer measure? Describe this device and explain how it physically works. Written Homework #1 Key NATS 101, Sec. 13 Fall 2010 40 Points total 10 points per graded question 10 points for attempting all questions. 1. What is the difference between mass and weight? Mass is an intrinsic

More information

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric properties

More information

The history of ECMWF radiation schemes

The history of ECMWF radiation schemes The history of radiation schemes The Radiation Transfer schemes 1 The radiation schemes A number of radiation schemes are in use at. Since January 2011, have been active McRad including RRTM_LW and RRTM_SW

More information

Can dust cause droughts?

Can dust cause droughts? Can dust cause droughts? Dust and sea surface temperature forcing of the 1930 s Dust bowl Cook et al., GRL 2008 Impact of desert dust radiative forcing on Sahel precipitation: Radiative Importance of dust

More information

The Structure and Motion of the Atmosphere OCEA 101

The Structure and Motion of the Atmosphere OCEA 101 The Structure and Motion of the Atmosphere OCEA 101 Why should you care? - the atmosphere is the primary driving force for the ocean circulation. - the atmosphere controls geographical variations in ocean

More information

Lecture 3: Global Energy Cycle

Lecture 3: Global Energy Cycle Lecture 3: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Flux and Flux Density Solar Luminosity (L)

More information

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate between weather and climate Global Climate Focus Question

More information

Aerosol Radiative Forcing DEPARTMENT OF PHYSICS The AeroCom Prescribed Experiment: Towards the Quantification of Host Model Errors

Aerosol Radiative Forcing DEPARTMENT OF PHYSICS The AeroCom Prescribed Experiment: Towards the Quantification of Host Model Errors Aerosol Radiative Forcing DEPARTMENT OF PHYSICS The AeroCom Prescribed Experiment: Towards the Quantification of Host Model Errors AeroCom Meeting, Reykjavik, Island 10/10/2008 Philip Stier Atmospheric,

More information

Chapter 6: Modeling the Atmosphere-Ocean System

Chapter 6: Modeling the Atmosphere-Ocean System Chapter 6: Modeling the Atmosphere-Ocean System -So far in this class, we ve mostly discussed conceptual models models that qualitatively describe the system example: Daisyworld examined stable and unstable

More information

Introduction to Climate ~ Part I ~

Introduction to Climate ~ Part I ~ 2015/11/16 TCC Seminar JMA Introduction to Climate ~ Part I ~ Shuhei MAEDA (MRI/JMA) Climate Research Department Meteorological Research Institute (MRI/JMA) 1 Outline of the lecture 1. Climate System (

More information

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere?

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere? The Atmosphere Introduction to atmosphere, weather, and climate Where is the atmosphere? Everywhere! Completely surrounds Earth February 20, 2010 What makes up the atmosphere? Argon Inert gas 1% Variable

More information

Topic # 11 HOW CLIMATE WORKS PART II

Topic # 11 HOW CLIMATE WORKS PART II Topic # 11 HOW CLIMATE WORKS PART II The next chapter in the story: How differences in INSOLATION between low and high latitudes drive atmospheric circulation! pp 64 in Class Notes THE RADIATION BALANCE

More information

Atmospheric composition modeling over the Arabian Peninsula for Solar Energy applications

Atmospheric composition modeling over the Arabian Peninsula for Solar Energy applications Atmospheric composition modeling over the Arabian Peninsula for Solar Energy applications S Naseema Beegum, Imen Gherboudj, Naira Chaouch, and Hosni Ghedira Research Center for Renewable Energy Mapping

More information

The Ocean-Atmosphere System II: Oceanic Heat Budget

The Ocean-Atmosphere System II: Oceanic Heat Budget The Ocean-Atmosphere System II: Oceanic Heat Budget C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth MAR 555 Lecture 2: The Oceanic Heat Budget Q

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing in in December 4, 27 Outline in 2 : RTE Consider plane parallel Propagation of a signal with intensity (radiance) I ν from the top of the to a receiver on Earth Take a layer of thickness dz Layer will

More information

Applications of the SEVIRI window channels in the infrared.

Applications of the SEVIRI window channels in the infrared. Applications of the SEVIRI window channels in the infrared jose.prieto@eumetsat.int SEVIRI CHANNELS Properties Channel Cloud Gases Application HRV 0.7 Absorption Scattering

More information

Radiative Equilibrium Models. Solar radiation reflected by the earth back to space. Solar radiation absorbed by the earth

Radiative Equilibrium Models. Solar radiation reflected by the earth back to space. Solar radiation absorbed by the earth I. The arth as a Whole (Atmosphere and Surface Treated as One Layer) Longwave infrared (LWIR) radiation earth to space by the earth back to space Incoming solar radiation Top of the Solar radiation absorbed

More information

Mon Oct 20. Today: radiation and temperature (cont) sun-earth geometry energy balance >> conceptual model of climate change Tues:

Mon Oct 20. Today: radiation and temperature (cont) sun-earth geometry energy balance >> conceptual model of climate change Tues: Mon Oct 20 Announcements: bring calculator to class from now on > in-class activities > midterm and final Today: radiation and temperature (cont) sun-earth geometry energy balance >> conceptual model of

More information

Development and Implementation of Universal Cloud/Radiation Parameterizations in Navy Operational Forecast Models

Development and Implementation of Universal Cloud/Radiation Parameterizations in Navy Operational Forecast Models DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Development and Implementation of Universal Cloud/Radiation Parameterizations in Navy Operational Forecast Models Harshvardhan

More information

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation Lecture 6: Radiation Transfer Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere Vertical and latitudinal energy distributions Absorption, Reflection,

More information

Lecture 6: Radiation Transfer

Lecture 6: Radiation Transfer Lecture 6: Radiation Transfer Vertical and latitudinal energy distributions Absorption, Reflection, and Transmission Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature

More information

PTYS 214 Spring Announcements. Midterm 3 next Thursday!

PTYS 214 Spring Announcements. Midterm 3 next Thursday! PTYS 214 Spring 2018 Announcements Midterm 3 next Thursday! 1 Previously Habitable Zone Energy Balance Emission Temperature Greenhouse Effect Vibration/rotation bands 2 Recap: Greenhouse gases In order

More information

Temperature AOSC 200 Tim Canty

Temperature AOSC 200 Tim Canty Temperature AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Daily Temperatures Role of clouds, latitude, land/water Lecture 09 Feb 26 2019 1 Today s Weather

More information

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 17 The Atmosphere: Structure and Temperature 17.1 Atmosphere Characteristics Composition of the Atmosphere Weather is constantly changing, and it refers

More information

Data and formulas at the end. Exam would be Weds. May 8, 2008

Data and formulas at the end. Exam would be Weds. May 8, 2008 ATMS 321: Science of Climate Practice Mid Term Exam - Spring 2008 page 1 Atmospheric Sciences 321 Science of Climate Practice Mid-Term Examination: Would be Closed Book Data and formulas at the end. Exam

More information

Key Feedbacks in the Climate System

Key Feedbacks in the Climate System Key Feedbacks in the Climate System With a Focus on Climate Sensitivity SOLAS Summer School 12 th of August 2009 Thomas Schneider von Deimling, Potsdam Institute for Climate Impact Research Why do Climate

More information

Short-term modulation of Indian summer monsoon rainfall bywest Asian dust

Short-term modulation of Indian summer monsoon rainfall bywest Asian dust SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2107 Short-term modulation of Indian summer monsoon rainfall bywest Asian dust 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 V Vinoj 1,2, Philip J Rasch 1*, Hailong

More information

Modelling of Saharan dust transport to the Southern Italy

Modelling of Saharan dust transport to the Southern Italy Modelling of Saharan dust transport to the Southern Italy Mihaela Mircea a, *, Gino Briganti a, Antonella Malaguti a, Sandro Finardi b, Camillo Silibello b, Christos Spyrou c, Christina Kalogeri c, George

More information

The PRECIS Regional Climate Model

The PRECIS Regional Climate Model The PRECIS Regional Climate Model General overview (1) The regional climate model (RCM) within PRECIS is a model of the atmosphere and land surface, of limited area and high resolution and locatable over

More information

Lecture 2: Light And Air

Lecture 2: Light And Air Lecture 2: Light And Air Earth s Climate System Earth, Mars, and Venus Compared Solar Radiation Greenhouse Effect Thermal Structure of the Atmosphere Atmosphere Ocean Solid Earth Solar forcing Land Energy,

More information

Climate Change: Global Warming Claims

Climate Change: Global Warming Claims Climate Change: Global Warming Claims Background information (from Intergovernmental Panel on Climate Change): The climate system is a complex, interactive system consisting of the atmosphere, land surface,

More information

Meteorology Pretest on Chapter 2

Meteorology Pretest on Chapter 2 Meteorology Pretest on Chapter 2 MULTIPLE CHOICE 1. The earth emits terrestrial radiation a) only at night b) all the time c) only during winter d) only over the continents 2. If an imbalance occurs between

More information

Earth Systems Science Chapter 3

Earth Systems Science Chapter 3 Earth Systems Science Chapter 3 ELECTROMAGNETIC RADIATION: WAVES I. Global Energy Balance and the Greenhouse Effect: The Physics of the Radiation Balance of the Earth 1. Electromagnetic Radiation: waves,

More information

Climate 1: The Climate System

Climate 1: The Climate System Climate 1: The Climate System Prof. Franco Prodi Institute of Atmospheric Sciences and Climate National Research Council Via P. Gobetti, 101 40129 BOLOGNA SIF, School of Energy, Varenna, July 2014 CLIMATE

More information

BST 200 Radia+ve forcing and Greenhouse Gases

BST 200 Radia+ve forcing and Greenhouse Gases BST 200 Radia+ve forcing and Greenhouse Gases Atmospheric Burden and Residence Time suppose a tub holds 100 kg of water (Burden) and Source = Sink = 5 kg/minute Residence +me = 100 kg 5 kg/minute = 20

More information

2. Fargo, North Dakota receives more snow than Charleston, South Carolina.

2. Fargo, North Dakota receives more snow than Charleston, South Carolina. 2015 National Tournament Division B Meteorology Section 1: Weather versus Climate Chose the answer that best answers the question 1. The sky is partly cloudy this morning in Lincoln, Nebraska. 2. Fargo,

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition Contents Preface to the Second Edition Preface to the First Edition iii v 1 Introduction 1 1.1 Relevance for Climate and Weather........... 1 1.1.1 Solar Radiation.................. 2 1.1.2 Thermal Infrared

More information

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Energy Balance and Temperature

Energy Balance and Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 17:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1 Lecture 3. Changes in planetary albedo. Is there a clear signal caused by aerosols and clouds? Outline: 1. Background materials. 2. Papers for class discussion: Palle et al., Changes in Earth s reflectance

More information

Radiation in climate models.

Radiation in climate models. Lecture. Radiation in climate models. Objectives:. A hierarchy of the climate models.. Radiative and radiative-convective equilibrium.. Examples of simple energy balance models.. Radiation in the atmospheric

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust-climate interactions

Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust-climate interactions Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd012063, 2010 Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust-climate interactions Xu Yue,

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

Hand in Question sheets with answer booklets Calculators allowed Mobile telephones or other devices not allowed

Hand in Question sheets with answer booklets Calculators allowed Mobile telephones or other devices not allowed York University Department of Earth and Space Science and Engineering ESSE 3030 Department of Physics and Astronomy PHYS 3080 Atmospheric Radiation and Thermodynamics Final Examination 2:00 PM 11 December

More information

Climate Feedbacks from ERBE Data

Climate Feedbacks from ERBE Data Climate Feedbacks from ERBE Data Why Is Lindzen and Choi (2009) Criticized? Zhiyu Wang Department of Atmospheric Sciences University of Utah March 9, 2010 / Earth Climate System Outline 1 Introduction

More information

Direct radiative effect of mineral dust and volcanic aerosols in a simple aerosol climate model

Direct radiative effect of mineral dust and volcanic aerosols in a simple aerosol climate model Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd007197, 2007 Direct radiative effect of mineral dust and volcanic aerosols in a simple aerosol climate model Karen

More information

Earth: the Goldilocks Planet

Earth: the Goldilocks Planet Earth: the Goldilocks Planet Not too hot (460 C) Fig. 3-1 Not too cold (-55 C) Wave properties: Wavelength, velocity, and? Fig. 3-2 Reviewing units: Wavelength = distance (meters or nanometers, etc.) Velocity

More information

ATMOSPHERIC CIRCULATION AND WIND

ATMOSPHERIC CIRCULATION AND WIND ATMOSPHERIC CIRCULATION AND WIND The source of water for precipitation is the moisture laden air masses that circulate through the atmosphere. Atmospheric circulation is affected by the location on the

More information

Topic 6: Insolation and the Seasons

Topic 6: Insolation and the Seasons Topic 6: Insolation and the Seasons Solar Radiation and Insolation Insolation: In Sol ation The Sun is the primary source of energy for the earth. The rate at which energy is radiated is called Intensity

More information

Surface temperature what does this data tell us about micro-meteorological processes?

Surface temperature what does this data tell us about micro-meteorological processes? Surface temperature what does this data tell us about micro-meteorological processes? Prof. Dr. Eberhard Parlow Meteorology, Climatology and Remote Sensing (MCR Lab) Department of Environmental Sciences

More information

Contribution of vegetation changes to dust decadal variability and its impact on tropical rainfall asymmetry

Contribution of vegetation changes to dust decadal variability and its impact on tropical rainfall asymmetry Contribution of vegetation changes to dust decadal variability and its impact on tropical rainfall asymmetry Presented by Paul Ginoux Geophysical Fluid Dynamics Laboratory NOAA Barcelona Supercomputing

More information

Lecture 4: Global Energy Balance

Lecture 4: Global Energy Balance Lecture : Global Energy Balance S/ * (1-A) T A T S T A Blackbody Radiation Layer Model Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere

More information

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic

More information

Saharan Dust Induced Radiation-Cloud-Precipitation-Dynamics Interactions

Saharan Dust Induced Radiation-Cloud-Precipitation-Dynamics Interactions Saharan Dust Induced Radiation-Cloud-Precipitation-Dynamics Interactions William K. M. Lau NASA/GSFC Co-authors: K. M. Kim, M. Chin, P. Colarco, A. DaSilva Atmospheric loading of Saharan dust Annual emission

More information

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model.

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model. Lecture : Global Energy Balance Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature Blackbody Radiation ocean land Layer Model energy, water, and

More information

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER CHRIS BRIERLEY Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences 5. Human

More information

Results from the ARM Mobile Facility

Results from the ARM Mobile Facility AMMA Workshop, Toulouse, November 2006 Results from the ARM Mobile Facility Background Anthony Slingo Environmental Systems Science Centre University of Reading, UK Selected results, including a major

More information

Common Elements: Nitrogen, 78%

Common Elements: Nitrogen, 78% Chapter 23 Notes Name: Period: 23.1 CHARACTERISTICS OF THE ATMOSPHERE The atmosphere is a layer of that surrounds the earth and influences all living things. Meteorology is the study of the. WHAT S IN

More information

Klimaänderung. Robert Sausen Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen

Klimaänderung. Robert Sausen Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen Klimaänderung Robert Sausen Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen Vorlesung WS 2017/18 LMU München 7. Wolken und Aerosole Contents of IPCC 2013 Working

More information