Lunar Exploration Requirements and Data Acquisition Architectures

Size: px
Start display at page:

Download "Lunar Exploration Requirements and Data Acquisition Architectures"

Transcription

1 Lunar Exploration Requirements and Data Acquisition Architectures J. Plescia P. Spudis B. Bussey Johns Hopkins University / Applied Physics Laboratory 2005 International Lunar Conference

2 The Vision and The Architecture The Vision Use lunar exploration to extend human presence across the solar system, starting with a human return to the Moon before the year 2020, in preparation for human exploration of other destinations. Use the Moon Gain operational experience of a world 3 days away Create new spacefaring capabilities Develop systems and procedures to survive and productively work on a planetary surface Lunar resources Building & operating complex structures and machines with robots and/or humans Exploring a planet with people and robots working together Proposed Architecture Orbital Reconnaissance LRO and international missions Next Lunar Mission Lander / Rover Provide information for resource decisions Evaluate polar site for outpost Outpost Site Survey Civil engineering rover (topography, physical properties) Prepare infrastructure (landing pads, power, etc.) ISRU engineering demonstration Prospect mining site Collect ore and prepare for processing Bench-scale experiment of extraction ISRU infrastructure emplacement (as many as necessary) Water mining; earth-moving equipment feedstock processors Extraction plant

3 Resource Exploitation Decision in the Critical Path Water ice in shadowed regions of both poles Extract oxygen, metals from lunar materials for construction, propellant Recover solar-wind gases (e.g., hydrogen and other volatiles) implanted on lunar dust grains Collect solar energy with photoelectric arrays built from lunar materials and beam energy to Earth or cislunar space

4 Which Resources Are Important? Apollo 11 soil Mare Apollo 16 soil Highlands H ppm 4-40 ppm He* ppm 3-35 ppm Ar ppm ppm Xe ppm ppm C ppm ppm N ppm ppm K ppm ppm P ppm ppm S ppm ppm F ppm ppm Cl 3-40 ppm ppm * 4 He/ 3 He = ~ 2500 One cubic meter (1 m 3 ) of lunar regolith contains enough hydrogen, carbon, nitrogen, potassium, and other trace elements to make lunch for two two cheese sandwiches on rye, two colas (flavored with real sugar, although there s enough Cl to sweeten it with Splenda instead), and two large plums. (credit: Larry Taylor)

5 Why A Polar Site? We will learn more new information from an investigation of a polar site than from an equatorial site. Only 1 highland site visited: Apollo 16 Polar regions have small areas in near-permanent sunlight % illumination; eclipse periods short and noncontiguous Polar regions have areas of permanent darkness (cold traps) Thermal resource for cooling, power generation Collected volatiles over geologic time (water ice) Thermal environment unknown Polar regolith (illuminated) properties and volatile content unknown High H (Lunar Prospector Neutron Spectrometer) Enhanced retention of H in illuminated areas due to relatively low T (compared with low latitude sites) or ice in shadowed craters Polar areas are sites of scientific interest

6 Lunar Prospector Neutron Spectrometer

7 Environments Equatorial Polar Temperature -150 C to +100 C -50 C ± 10 C Sunlight ~354 hours ~ 530 to 708 hours Darkness H content (avg.) ~354 hours ppm 0 to 148 hours (non-continuous) > 200 ppm Surface Lighting All incident angles < 1.7 Resource Potential Earth Communications Solar wind gases, bound oxygen Continuous on near side Solar wind gases, bound oxygen, polar volatiles Inconstant, but predictable (~ ½ time in Earth view)

8 Polar Site Candidates Shackleton Crater South Pole 20 km diameter Permanently shadowed interior; high radar circular polarization ratio on floor Rim spot illuminated >75% of winter day Peary Crater North Pole Peary B km dia. Constant sunlight (?)

9 Lunar Reconnaissance Orbiter Payload Laser altimeter Detailed topography and shape (< 1 km resolution) Imager Image in a uniform format 15 m/pixel and < 1 m/pixel Collimated neutron spectrometer Spatial distribution of H at high resolution (5 km) IR bolometer Temperature permanently dark regions (areas < 1 km) UV imager Lunar atmosphere and image dark areas using Lyman-α UV Radio science

10 What immediately follows LRO? LRO will conduct improved global orbital reconnaissance. Need to understand sites that may be targets for future human missions (especially the outpost site). Better characterize areas on the surface believed to be significantly different from previously visited Apollo sites. Polar regions are unique from an exploration perspective. Then What? Need to evaluate polar resources. Is there really water ice in polar craters? If so, what is its form and distribution? Its presence or absence needs to be resolved for future planning. Focus is on data for human exploration planning not science.

11 An Implementation Lander and Rover combination Land in permanently illuminated site Demonstrate precision landing and hazard avoidance Lander Demonstrate extended lifetime operations Emplace navigational beacon Site topography / morphology Site environment; operational difficulties of polar work Volatiles of illuminated regolith Geotechnical properties of regolith Thermal environment Terminator phenomena Radiation Effects of lunar environment on biotic systems Rover Traverse to cold traps Analyze volatiles Geotechnical properties

12 Exploring for Ice Ice located in large permanently shadowed craters Shackleton 19 km complex impact crater Interior walls steep (25-35 ) loose material Rugged floor with topography Possible heterogenous ice distribution Ice not exposed at the surface Permanent shadow - low temperature (50-75K) Shackleton Requirements Mobility of tens of km 7 km laterally and 3 km vertically Payload to assess the volatiles Ability to penetrate tens of cm m Ice may be heterogeneously distributed Must survive for days or longer Earth not in view Mobility Options Penetrators Rovers Hoppers Dawes analog

13 Mobility Flyers Raytheon Penguin Delta Clipper Penetrators Japanese Lunar A Rovers CMU Nomad

14 Mobility Luna / Lunokhod Apollo Lunar Roving Vehicle

15 Mobility Static point observation vs. exploration

16 Polar Lander Long-term station Payload delivery Static lander based Rover deployment Small lander evolvable to hundreds kg payload Larger lander evolvable to metric tons payload

17 Lunar Landers Luna 9, 13 Surveyor Luna 16, 20, 24 Apollo Lunar Module

18 Payload Lander Descent imager Descent lidar Mast-mounted panoramic imager Arm with various end-effectors Beacon Biology experiment package Rover Ground penetrating radar Neutron spectrometer Drill Volatile analysis Mineralogy / Chemistry (XRD /XRF) One must Touch the Ice before proceeding with ISRU planning.

19 Communications / Navigation Infrastructure Ability to provide communications and navigation for surface operations. Polar craters Farside sites

20 Site Survey Map Topography Regolith thickness Boulder distribution Physical properties Define landing / hab sites

21 Resource Extraction Demonstration Demonstrate Excavation and transport Recovery of volatiles Oxygen production Fuel production Cryogenic storage and transfer Requires advanced power, mobility, large landed payload capacity

22 International Cooperation? International Cooperation Scientific Investigations Operational Investigations Operational Investigations Specific data products Data quality Schedule critical path knowledge LRO LEND 5 km requirement / 10 km actual SNR is ~ 1/15 necessary for low concentration detection

23 Summary Series of landed mission with capability for mobility. Multiple copies may be necessary to achieve goals. Orbital infrastructure for communications. Robotic architecture would change in response to specific ESMD requirement development. Discovery class (i.e., $400M) insufficient.

Rationale of NASA Lunar Precursor Robotic Program (LPRP) for the VSE

Rationale of NASA Lunar Precursor Robotic Program (LPRP) for the VSE Rationale of NASA Lunar Precursor Robotic Program (LPRP) for the VSE (vs. I don t need nuthin but a map) Jeff Plescia, Ben Bussey, Paul Spudis, Tony Lavoie Applied Physics Laboratory, Johns Hopkins University

More information

Mini-RF: An Imaging Radar for the Moon. Ben Bussey The Johns Hopkins University Applied Physics Laboratory

Mini-RF: An Imaging Radar for the Moon. Ben Bussey The Johns Hopkins University Applied Physics Laboratory Mini-RF: An Imaging Radar for the Moon Ben Bussey The Johns Hopkins University Applied Physics Laboratory Paul D. Spudis President s Commission on Implementation of United States Space Exploration Policy

More information

Scientific Contributions of Lunar Robotic Precursor Missions

Scientific Contributions of Lunar Robotic Precursor Missions Scientific Contributions of Lunar Robotic Precursor Missions Paul D. Spudis Johns Hopkins University Applied Physics Laboratory paul.spudis@jhuapl.edu www.spudislunarresources.com Presentation to LEAG

More information

NASA: BACK TO THE MOON

NASA: BACK TO THE MOON NASA: BACK TO THE MOON Don Campbell Cornell University "I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him

More information

Moon Express Advancing Commerce and Science

Moon Express Advancing Commerce and Science Moon Express Advancing Commerce and Science Paul D. Spudis Bob Richards Jack Burns Moon Express Inc. October, 2013 1 Moon Express Landers Possible Missions Surface Network 2 Mission Types: Small lander

More information

The Moon's Dark, Icy Poles

The Moon's Dark, Icy Poles 1 of 5 posted June 4, 2003 The Moon's Dark, Icy Poles --- Permanently shadowed regions on the Moon--where frozen water could be trapped--are more abundant and more widely distributed than originally thought.

More information

DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence

DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence Space Missions DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence International Lunar Conference 2005 Toronto, Canada Paul Fulford 1, Karen

More information

The Moon: Stepping Stone to the Planets

The Moon: Stepping Stone to the Planets The Moon: Stepping Stone to the Planets William A. Ambrose Houston Geological Society May 10, 2017 Schmitt (2004) Why Return to the Moon? Earth s closest neighbor -Three-day trip -Technology already exists

More information

Upgraded Program of Russian Lunar Landers: Studying of Lunar Poles

Upgraded Program of Russian Lunar Landers: Studying of Lunar Poles Upgraded Program of Russian Lunar Landers: Studying of Lunar Poles I.G.Mitrofanov, L.M.Zelenyi and V.I.Tret yakov Institute for Space Research, Moscow, Russia Slide - 1 Main Goals of the Program: 1. To

More information

Malapert Mountain: A Recommended Site for a South Polar Outpost

Malapert Mountain: A Recommended Site for a South Polar Outpost For presentation at the Rutgers Symposium on Lunar Settlements, June 4-8, 2007 Malapert Mountain: A Recommended Site for a South Polar Outpost Paul. D. Lowman Jr. Goddard Space Flight Center, Code 698

More information

James Carpenter, Lunar Lander Office, Directorate of Human Spaceflight and Operations

James Carpenter, Lunar Lander Office, Directorate of Human Spaceflight and Operations The European Lunar Lander James Carpenter, Lunar Lander Office, Directorate of Human Spaceflight and Operations 1 International Context Apollo/Luna Era 1990-2006 2007-2012 2013-2020 Next Decade HITEN CLEMENTINE

More information

Lunar Poles. Status of Understanding a Potential Resource. Paul G. Lucey

Lunar Poles. Status of Understanding a Potential Resource. Paul G. Lucey Lunar Poles Status of Understanding a Potential Resource Paul G. Lucey Hawaii Institute of Geophysics & Planetology School of Ocean and Earth Science and Technology University of Hawaii at Manoa The Most

More information

SCIENCE WITH DIRECTED AERIAL DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS

SCIENCE WITH DIRECTED AERIAL DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS : SCIENCE WITH DIRECTED AERIAL ROBOT EXPLORERS (DARE) DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION 1 NEW ARCHITECTURE FOR PLANETARY EXPLORATION KEY ELEMENTS: Long-Duration Planetary Balloon Platforms

More information

Moon and Mercury 3/8/07

Moon and Mercury 3/8/07 The Reading Assignment Chapter 12 Announcements 4 th homework due March 20 (first class after spring break) Reminder about term paper due April 17. Next study-group session is Monday, March 19, from 10:30AM-12:00Noon

More information

HEOMD Overview March 16, 2015

HEOMD Overview March 16, 2015 National Aeronautics and Space Administration HEOMD Overview March 16, 2015 Ben Bussey Chief Exploration Scientist HEOMD, NASA HQ National Aeronautics and Space Administration NASA Strategic Plan Objective

More information

Lunar Precursor Robotics Program

Lunar Precursor Robotics Program National Aeronautics and Space Administration SCIENCE & MISSION SYSTEMS Lunar Precursor Robotics Program Michael J. Wargo, Sc.D. Chief Lunar Scientist for Exploration Systems Larry Hill LRO Mission Manager

More information

Accessing the Lunar Poles for Human Exploration Missions

Accessing the Lunar Poles for Human Exploration Missions B. KENT JOOSTEN NASA Lyndon B. Johnson Space Center Houston, Texas The National Vision for Space Exploration calls for an American return to the Moon in preparation for the human exploration of Mars and

More information

Robotic Site Survey for ISRU

Robotic Site Survey for ISRU NASA Ames Research Center Maria Bualat Intelligent Robotics Group Maria.Bualat@nasa.gov Outline Site Survey Overview GPR Survey Hydrogen Prospecting 2 Human-Robot Site Survey Project Systematic survey

More information

Lunar Outpost Site Selection: A Review of the past 20 Years John E. Gruener, NASA Johnson Space Center

Lunar Outpost Site Selection: A Review of the past 20 Years John E. Gruener, NASA Johnson Space Center Lunar Outpost Site Selection: A Review of the past 20 Years John E. Gruener, NASA Johnson Space Center Lunar Exploration Analysis Group (LEAG) Workshop on Enabling Exploration: The Lunar Outpost and Beyond

More information

Constellation Program Office Tier 1 Regions of Interest for Lunar Reconnaissance Orbiter Camera (LROC) Imaging

Constellation Program Office Tier 1 Regions of Interest for Lunar Reconnaissance Orbiter Camera (LROC) Imaging Constellation Program Office Tier 1 Regions of Interest for Lunar Reconnaissance Orbiter Camera (LROC) Imaging Regions of Interest listed in alphabetical order ( no priority implied) East longitudes represented

More information

Thermal Wadis: Using Regolith for Thermal Energy Management

Thermal Wadis: Using Regolith for Thermal Energy Management Thermal Wadis: Using Regolith for Thermal Energy Management Kurt Sacksteder, NASA Glenn Research Center Robert Wegeng, Battelle Memorial Institute Nantel Suzuki, NASA Headquarters Annual Meeting of the

More information

Robotic Lunar Exploration Scenario JAXA Plan

Robotic Lunar Exploration Scenario JAXA Plan Workshop May, 2006 Robotic Lunar Exploration Scenario JAXA Plan Tatsuaki HASHIMOTO JAXA 1 Question: What is Space Exploration? Answers: There are as many answers as the number of the people who answer

More information

Little Learners Activity Guide

Little Learners Activity Guide LUNAR RECONNAISSANCE ORBITER CAMERA Little Learners Activity Guide Learn about the Moon with puzzles, coloring, and fun facts! Mare Imbrium Mare Serenitatis Mare Tranquillitatis Oceanus Procellarum Mare

More information

Appendix D. Thermal Modelling of Luna 27 Landing Site. Hannah Rana Vito Laneve Philipp Hager Thierry Tirolien (ESA/ESTEC, The Netherlands)

Appendix D. Thermal Modelling of Luna 27 Landing Site. Hannah Rana Vito Laneve Philipp Hager Thierry Tirolien (ESA/ESTEC, The Netherlands) 47 Appendix D Thermal Modelling of Luna 27 Landing Site Hannah Rana Vito Laneve Philipp Hager Thierry Tirolien (ESA/ESTEC, The Netherlands) 48 Thermal Modelling of Luna 27 Landing Site Abstract Luna 27,

More information

LRO-LOLA: Measurements of Lunar Altimetry and Surface Conditions

LRO-LOLA: Measurements of Lunar Altimetry and Surface Conditions LRO-LOLA: Measurements of Lunar Altimetry and Surface Conditions David E. Smith, MIT Maria T. Zuber, MIT Gregory A. Neumann, GSFC Erwan Mazarico, GSFC and the LOLA Science Team Lunar-Glob Mission International

More information

Rationale for a Geophysics & Geodesy Payload for Lunar Networks

Rationale for a Geophysics & Geodesy Payload for Lunar Networks N. Schmitz, J. Biele, M. Grott, M. Knapmeyer, J. Oberst, F. Sohl, T. Spohn, S.Ulamec Rationale for a Geophysics & Geodesy Payload for Lunar Networks DLR, Institute of Planetary Research, Berlin, Germany

More information

Conducting Subsurface Surveys for Water Ice using Ground Penetrating Radar and a Neutron Spectrometer on the Lunar Electric Rover Never Stop

Conducting Subsurface Surveys for Water Ice using Ground Penetrating Radar and a Neutron Spectrometer on the Lunar Electric Rover Never Stop Conducting Subsurface Surveys for Water Ice using Ground Penetrating Radar and a Neutron Spectrometer on the Lunar Electric Rover LPI/Kring Never Stop Exploring David A. Kring Lunar and Planetary Institute

More information

Expanding Science with SmallSats/CubeSats

Expanding Science with SmallSats/CubeSats National Aeronautics and Space Administration Expanding Science with SmallSats/CubeSats Outer Planets Analysis Group John D. Baker 2/2/2016 2016, Government Sponsorship Acknowledged National Aeronautics

More information

Exploring the Moon & Asteroids: A Synergistic Approach

Exploring the Moon & Asteroids: A Synergistic Approach Exploring the Moon & Asteroids: A Synergistic Approach Clive R. Neal Dept. Civil Eng. & Geological Sci. University of Notre Dame Notre Dame, IN 46556, USA neal.1@nd.edu Perspective Perspective SCIENCE

More information

Plans for an International Lunar Network

Plans for an International Lunar Network Science Mission Directorate Plans for an International Lunar Network Tom Morgan May 2008 ROBOTIC LUNAR EXPLORATION Starting no later than 2008, initiate a series of robotic missions to the Moon to prepare

More information

Lunar Knowledge Requirements for Human Exploration

Lunar Knowledge Requirements for Human Exploration Lunar Knowledge Requirements for Human Exploration G. Jeffrey Taylor and Stephen Mackwell Report of a Workshop 24 March 2004 (gjtaylor@higp.hawaii.edu) 1 Overview Background Context for the workshop is

More information

InSight Spacecraft Launch for Mission to Interior of Mars

InSight Spacecraft Launch for Mission to Interior of Mars InSight Spacecraft Launch for Mission to Interior of Mars InSight is a robotic scientific explorer to investigate the deep interior of Mars set to launch May 5, 2018. It is scheduled to land on Mars November

More information

THE EUROPEAN LUNAR LANDER: ROBOTIC OPERATIONS IN A HARSH ENVIRONMENT

THE EUROPEAN LUNAR LANDER: ROBOTIC OPERATIONS IN A HARSH ENVIRONMENT THE EUROPEAN LUNAR LANDER: ROBOTIC OPERATIONS IN A HARSH ENVIRONMENT ESA/ESTEC, NOORDWIJK, THE NETHERLANDS / 12 14 APRIL 2011 Richard Fisackerly (1), James Carpenter (1), Diego De Rosa (1), Bérengère Houdou

More information

The Moon: A New Destination For Humanity

The Moon: A New Destination For Humanity The Moon: A New Destination For Humanity Paul D. Spudis Johns Hopkins University Applied Physics Laboratory Laurel, Maryland USA Space Soon Conference, 2006 London UK 9-13 September, 2006 1 The Vision

More information

The Science Scenario of the SELENE-2 Mission

The Science Scenario of the SELENE-2 Mission The Science Scenario of the SELENE-2 Mission Manabu Kato, Kohtaro Matsumoto, Tatsuaki Okada, Satoshi Tanaka, and Science Working Group for Post- SELENE Project Japan Aerospace Exploration Agency ISAS &

More information

SAILING THE PLANETS: PLANETARY EXPLORATION FROM GUIDED BALLOONS. 7 th Annual Meeting of the NASA Institute for Advanced Concepts

SAILING THE PLANETS: PLANETARY EXPLORATION FROM GUIDED BALLOONS. 7 th Annual Meeting of the NASA Institute for Advanced Concepts SAILING THE PLANETS: PLANETARY EXPLORATION FROM GUIDED BALLOONS 7 th Annual Meeting of the NASA Institute for Advanced Concepts DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS 1 MARS

More information

Launch Completion Chapter Name Type date date[ described

Launch Completion Chapter Name Type date date[ described Reference Material ]60 Appendix I Appendix I. Lunar Spaceflights. Successful missions are indicate d by an asterisk; dates are Greenwich Mean T im e. 1958 Launch Completion Chapter Name Type date date[

More information

Student Guide to Moon 101

Student Guide to Moon 101 Student Guide to Moon 101 LINKS TO WEBSITES AND DOCUMENTS NECESSARY TO COMPLETE MOON 101 CAN BE FOUND AT: 1) Read the following articles: PART 1 - FORMATION OF THE MOON a) The Scientific Legacy of Apollo,

More information

Asteroid Sample Return and the Path to Exploration of Near-Earth Space* By Dante S. Lauretta 1

Asteroid Sample Return and the Path to Exploration of Near-Earth Space* By Dante S. Lauretta 1 Asteroid Sample Return and the Path to Exploration of Near-Earth Space* By Dante S. Lauretta 1 Search and Discovery Article #70044 (2008) Posted August 25, 2008 *Adapted from oral presentation at AAPG

More information

Technology Goals for Small Bodies

Technology Goals for Small Bodies Technology Goals for Small Bodies Carolyn Mercer Julie Castillo-Rogez Members of the Steering Committee 19 th Meeting of the NASA Small Bodies Assessment Group June 14, 2018 College Park, MD 1 Technology

More information

What is there in thee, moon, That thou shouldst move My heart so potently? By John Keats

What is there in thee, moon, That thou shouldst move My heart so potently? By John Keats What is there in thee, moon, That thou shouldst move My heart so potently? By John Keats The most popular view about how the moon formed was that a space object collided with the Earth. The material that

More information

mission status & ISRU related activity in Japan

mission status & ISRU related activity in Japan SELENE mission status & ISRU related activity in Japan JAXA SELENE project Oct. 2, 2007 SELENE Kaguya overview Plasma Energy Angle and Composition Experiment (PACE) Upper Atmosphere and Plasma Imager (UPI)

More information

Moonstruck: Illuminating Early Planetary History

Moonstruck: Illuminating Early Planetary History Moonstruck: Illuminating Early Planetary History G. Jeffrey Taylor Hawai`i Institute of Geophysics and Planetology University of Hawai`i at Manoa Jeff Taylor Lunar Science 1 View of the Earth and Moon

More information

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury = Hermes Mythology Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury s Orbit Mercury never seen more than 28 from the sun Revolves/orbits

More information

NASA Lunar Science Activities. Lunar Science and Exploration

NASA Lunar Science Activities. Lunar Science and Exploration NASA Lunar Science Activities Lunar Science and Exploration James L. Green Director, Planetary Sciences Division Science Directorate Mission Directorate NASA In NASA s James Science L. Green Mission Presented

More information

Mars Science Laboratory - Overview Mars Express Conference

Mars Science Laboratory - Overview Mars Express Conference Mars Science Laboratory - Overview Mars Express Conference February 2005 Michael Meyer MSL Program Scientist Mars Science Laboratory the AO The overall MSL science objective is to explore and quantitatively

More information

Results of the LEAG GAP-SAT 1 and 2. Examination of SKGs for a Moon first scenario for human exploration of the Solar System

Results of the LEAG GAP-SAT 1 and 2. Examination of SKGs for a Moon first scenario for human exploration of the Solar System Results of the LEAG GAP-SAT 1 and 2. Examination of SKGs for a Moon first scenario for human exploration of the Solar System GAP-SAT 1 Team GAP-SAT 2 Team Representative: C.K. Shearer 1 1 University of

More information

NEXT STEPS ON THE MOON REPORT OF THE SPECIFIC ACTION TEAM

NEXT STEPS ON THE MOON REPORT OF THE SPECIFIC ACTION TEAM NEXT STEPS ON THE MOON REPORT OF THE SPECIFIC ACTION TEAM Specific Action Team Charter SAT commissioned by Science Mission Directorate, Planetary Science Division Assess lunar missions needed to address

More information

Terrestrial Atmospheres

Terrestrial Atmospheres Terrestrial Atmospheres Why Is There Air? An atmosphere is a layer of gas trapped by the gravity of a planet or moon. Here s Earth s atmosphere viewed from orbit: Why Is There Air? If atoms move faster

More information

Chandrayaan Mission Objectives and future lunar programs

Chandrayaan Mission Objectives and future lunar programs Chandrayaan Mission Objectives and future lunar programs CHANDRAYAAN -I Paul Spudis, channeling J. N. Goswami Principal Scientist, Chandrayaan-1 Mission The Clementine & Lunar Prospector Missions to Moon

More information

Luna Resource / Glob Missions: Starting list of potential landing sites

Luna Resource / Glob Missions: Starting list of potential landing sites Luna Resource / Glob Missions: Starting list of potential landing sites A.T. Basilevsky, A.M. Abdrakhimov, M.A. Ivanov, R.O. Kuzmin, E.N. Slyuta Vernadsky Institute of Geochemistry & Analytical Chemistry,

More information

Dive In What is an advantage of sending unmanned crafts to space?

Dive In What is an advantage of sending unmanned crafts to space? Dive In What is an advantage of sending unmanned crafts to space? Manned and Robotic Spacecraft For Each Space Vehicle, complete the worksheet including: 1. If the spacecraft is manned or unmanned. 2.

More information

The SPE Foundation through member donations and a contribution from Offshore Europe

The SPE Foundation through member donations and a contribution from Offshore Europe Primary funding is provided by The SPE Foundation through member donations and a contribution from Offshore Europe The Society is grateful to those companies that allow their professionals to serve as

More information

Where we are now. The Moon Chapters 8.2, 9. Topography. Outline

Where we are now. The Moon Chapters 8.2, 9. Topography. Outline Where we are now Introduction Little things - comets, asteroids, KBOs Slightly larger things - Moon Larger still - Terrestrial planets Really large - Jovian planets Jovian moons + Pluto Extrasolar Planets

More information

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy LESSON 2 THE EARTH-SUN-MOON SYSTEM Chapter 8 Astronomy OBJECTIVES Investigate how the interaction of Earth, the Moon, and the Sun causes lunar phases. Describe conditions that produce lunar and solar eclipses.

More information

SATELLITES: ACTIVE WORLDS AND EXTREME ENVIRONMENTS. Jessica Bolda Chris Gonzalez Crystal Painter Natalie Innocenzi Tyler Vasquez.

SATELLITES: ACTIVE WORLDS AND EXTREME ENVIRONMENTS. Jessica Bolda Chris Gonzalez Crystal Painter Natalie Innocenzi Tyler Vasquez. SATELLITES: ACTIVE WORLDS AND EXTREME ENVIRONMENTS Jessica Bolda Chris Gonzalez Crystal Painter Natalie Innocenzi Tyler Vasquez. Areas of interest! How did the Satellites of the outer solar system form

More information

Stas Barabash 1 Yoshifumi Futaana 1 and the SELMA Team. Swedish Institute of Space Physics Kiruna, Sweden. DAP, Boulder, January, 2017

Stas Barabash 1 Yoshifumi Futaana 1 and the SELMA Team. Swedish Institute of Space Physics Kiruna, Sweden. DAP, Boulder, January, 2017 Stas Barabash 1 Yoshifumi Futaana 1 and the SELMA Team 1 Swedish Institute of Space Physics Kiruna, Sweden DAP, Boulder, January, 2017 1 SELMA core team 2 SELMA main scientific questions SELMA (Surface,

More information

Space and Robotics. History of Unmanned Spacecraft David Wettergreen The Robotics Institute Carnegie Mellon University

Space and Robotics. History of Unmanned Spacecraft David Wettergreen The Robotics Institute Carnegie Mellon University Space and Robotics History of Unmanned Spacecraft David Wettergreen The Robotics Institute University Era of Space Access Access to space began 46 years ago (tomorrow) with the launch of Sputnik 1 aboard

More information

Today s Class. Results for Exam #2 11/7/2017. Today s Class: Robotic & Human Exploration of Mars

Today s Class. Results for Exam #2 11/7/2017. Today s Class: Robotic & Human Exploration of Mars 11/7/2017 Today s Class: Robotic & Human Exploration of Mars Results for Exam #2 Homework: 1. Reading for Earth as a Planet: Section 9.4 of Cosmic Perspective. 2. Meet at Fiske on Thursday! Average Median

More information

Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer

Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer Benjamin T. Greenhagen Jet Propulsion Laboratory David A. Paige and the Diviner Science Team LEAG

More information

Life in the Solar System

Life in the Solar System Life in the Solar System Basic Requirements for Life 1. Chemical elements to make biological molecules. On Earth these are mostly C, H, O and N 2. Source of energy for metabolism. This can come from a

More information

Lunar Discovery and Exploration program

Lunar Discovery and Exploration program Lunar Discovery and Exploration program Space Policy Directive-1 (December 11, 2017) amends the National Space Policy to include the following paragraph: Lead an innovative and sustainable program of exploration

More information

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars Mars: Overview General properties Telescopic observations Space missions Atmospheric Characteristics Reading: Chapters 7.1 (Mars), 9.4, 10.4 Lecture #19: Mars The Main Point Changes in the Martian surface

More information

SOLAR WIND VOLATILE PRESERVATION. Samantha R. Jacob Department of Geology and Geophysics University of Hawai i at Mānoa Honolulu, HI ABSTRACT

SOLAR WIND VOLATILE PRESERVATION. Samantha R. Jacob Department of Geology and Geophysics University of Hawai i at Mānoa Honolulu, HI ABSTRACT SOLAR WIND VOLATILE PRESERVATION Samantha R. Jacob Department of Geology and Geophysics University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT Because the Moon has a negligible atmosphere and magnetosphere,

More information

E X O M A R S. The ESA/NASA ExoMars Programme

E X O M A R S. The ESA/NASA ExoMars Programme The ESA/NASA ExoMars Programme 1 International Scene Recognising that a Mars Sample Return (MSR) mission is very challenging, and that its and that its undertaking will likely exceed the financial capabilities

More information

Iron and Titanium: Important Elements. posted October 20, References:

Iron and Titanium: Important Elements. posted October 20, References: 1 of 6 posted October 20, 1997 Moonbeams and Elements Written by G. Jeffrey Taylor Hawai'i Institute of Geophysics and Planetology To determine how a planetary body formed and evolved, we must determine

More information

2008 Lunar Recon Orbiter. Obj/Reqt s Defn Team Findings March 3, 2004

2008 Lunar Recon Orbiter. Obj/Reqt s Defn Team Findings March 3, 2004 2008 Lunar Recon Orbiter Obj/Reqt s Defn Team Findings March 3, 2004 LEVEL 0 s: LRO Advance U.S. scientific, security, and economic interests through a robust space exploration program. Rationale: Established

More information

10. Our Barren Moon. Moon Data (Table 10-1) Moon Data: Numbers. Moon Data: Special Features 1. The Moon As Seen From Earth

10. Our Barren Moon. Moon Data (Table 10-1) Moon Data: Numbers. Moon Data: Special Features 1. The Moon As Seen From Earth 10. Our Barren Moon Lunar plains & craters Manned lunar exploration The lunar interior The Moon s geologic history The formation of the Moon Moon Data (Table 10-1) Moon Data: Numbers Diameter: 3,476.km

More information

GLEX x12501 FEASIBILITY AND DEFINITION OF A LUNAR POLAR VOLATILES PROSPECTING MISSION

GLEX x12501 FEASIBILITY AND DEFINITION OF A LUNAR POLAR VOLATILES PROSPECTING MISSION GLEX-2012.0202.4x12501 FEASIBILITY AND DEFINITION OF A LUNAR POLAR VOLATILES PROSPECTING MISSION Jennifer L. Heldmann NASA Ames Research Center, USA, Jennifer.Heldmann@nasa.gov Richard C. Elphic NASA Ames

More information

Water and Hydrogen Resources on the Moon, Mercury, and Mars*

Water and Hydrogen Resources on the Moon, Mercury, and Mars* Water and Hydrogen Resources on the Moon, Mercury, and Mars* William Ambrose 1 Search and Discovery Article #70166 (2014)** Posted August 11, 2014 *Adapted from oral presentation at AAPG Annual Convention

More information

Life and habitability in the Solar System and beyond: the Roadmap

Life and habitability in the Solar System and beyond: the Roadmap "There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy." Hamlet (I, v, 166-167) Life and habitability in the Solar System and beyond: the Roadmap Lucia Marinangeli and

More information

Lunar Flashlight Project

Lunar Flashlight Project ABSTRACT Recent observations of the Moon with the Moon Mineralogy Mapper (M3), Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and other evidence suggest

More information

PROSPECT: ESA s Package for Resource Observation and In-Situ Prospecting for Exploration, Commercial Exploitation and Transportation

PROSPECT: ESA s Package for Resource Observation and In-Situ Prospecting for Exploration, Commercial Exploitation and Transportation PROSPECT: ESA s Package for Resource Observation and In-Situ Prospecting for Exploration, Commercial Exploitation and Transportation E. Sefton-Nash, J. Carpenter and the PROSPECT Team LRO/LROC/ASU Lunar

More information

Scale: Mars is 6,787 km in diameter. Image 1. What is the feature across the middle? What do you think the circles on the left side are?

Scale: Mars is 6,787 km in diameter. Image 1. What is the feature across the middle? What do you think the circles on the left side are? Image Set Scale: Mars is 6,787 km in diameter. Image 1 What is the feature across the middle? What do you think the circles on the left side are? Image 2 On Earth, what are some things about the size of

More information

Detection of Adsorbed Water and Hydroxyl on the Moon

Detection of Adsorbed Water and Hydroxyl on the Moon Detection of Adsorbed Water and Hydroxyl on the Moon Roger N. Clark U. S. Geological Survey, MS 964, Box 25046 Federal Center, Denver CO 80227, USA. E-mail: rclark@usgs.gov Data from the Visual and Infrared

More information

Imaging the Earth from the Moon FUV Imaging of the Earth s Space Weather. Dr. Larry J. Paxton (office)

Imaging the Earth from the Moon FUV Imaging of the Earth s Space Weather. Dr. Larry J. Paxton (office) Imaging the Earth from the Moon FUV Imaging of the Earth s Space Weather Dr. Larry J. Paxton 240 228 6871 (office) Larry.paxton@jhuapl.edu Making Observations of the Earth from the Moon Makes Sense Once

More information

Direct Aerial Robot Explorers (DARE) For Planetary Exploration

Direct Aerial Robot Explorers (DARE) For Planetary Exploration Direct Aerial Robot Explorers (DARE) For Planetary Exploration Presentation to NIAC Fellows Meeting By Dr. Alexey Pankine Global www.gaerospace.com Global October 23, 2002 CONTRIBUTORS Global Prof. Andrew

More information

China s Chang E Program

China s Chang E Program China s Chang E Program --- Missions Objectives, Plans, Status, and Opportunity for Astronomy Maohai Huang Science and Application Research Center for Lunar and Deepspace Explorations National Astronomical

More information

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

A Day in the Life of the Constellation Arcitecture Teamlunar (CxAT-lunar) Science Team

A Day in the Life of the Constellation Arcitecture Teamlunar (CxAT-lunar) Science Team A Day in the Life of the Constellation Arcitecture Teamlunar (CxAT-lunar) Science Team John E. Gruener Lunar Surface Systems Project Office/Constellation Program Johnson Space Center CxAT-lunar Science

More information

Human Lunar Exploration Mission Architectures

Human Lunar Exploration Mission Architectures Human Lunar Exploration Mission Architectures LPI Lunar Knowledge Requirements Workshop March 1-2, 2004 1 1 March 2004 Guiding Principles for Exploration (excerpt NASA New Space Exploration Vision, January

More information

Ludwig Combrinck HartRAO 3rd Space Geodesy Workshop 16 March 2009 Matjiesfontein

Ludwig Combrinck HartRAO 3rd Space Geodesy Workshop 16 March 2009 Matjiesfontein Space Geodesy and Space Science Ludwig Combrinck HartRAO 3rd Space Geodesy Workshop 16 March 2009 Matjiesfontein DST s Concept of Space Science SA Space Agency, commercial applications, CSIR Satellite

More information

REVISED COORDINATES FOR APOLLO HARDWARE

REVISED COORDINATES FOR APOLLO HARDWARE REVISED COORDINATES FOR APOLLO HARDWARE R. V. Wagner *, E. J. Speyerer, K. N. Burns, J. Danton, M.S. Robinson Lunar Reconnaissance Orbiter Camera, School of Earth and Space Exploration, Arizona State University,

More information

Italian Lunar Science Studies and Possible Missions a.k.a. The Moon: an Italian Approach. Angioletta Coradini Istituto Nazionale di Astrofisica

Italian Lunar Science Studies and Possible Missions a.k.a. The Moon: an Italian Approach. Angioletta Coradini Istituto Nazionale di Astrofisica Italian Lunar Science Studies and Possible Missions a.k.a. The Moon: an Italian Approach Angioletta Coradini Istituto Nazionale di Astrofisica Goals of the Study The primary goal of the present study is

More information

The Moon - stepping stone for Exploration of our Solar System

The Moon - stepping stone for Exploration of our Solar System The Moon - stepping stone for Exploration of our Solar System Norbert Henn German Aerospace Center Space Agency Human Spaceflight, ISS and Exploration 9th international Lunar Exploration Working Group

More information

PSRD:: Cosmochemistry and Human Exploration

PSRD:: Cosmochemistry and Human Exploration 1 of 12 posted December 23, 2004 Cosmochemistry and Human Exploration --- Cosmochemistry plays an important role in developing local resources on the Moon and Mars, essential to sustained human presence

More information

Agenda. Chapter 7. The Earth s Moon. The Moon. Surface Features. Magnificent Desolation. The Moon

Agenda. Chapter 7. The Earth s Moon. The Moon. Surface Features. Magnificent Desolation. The Moon Chapter 7 The 1 Agenda Announce: Project Part II due Tue No class next Thursday...Tgiving break! No class 12/14 (last day) Spectral Lines Lab due Pass Back Test 2 Discuss grades NYT article on gamma ray

More information

Симпозиум Исследования Солнечной системы

Симпозиум Исследования Солнечной системы Производство гамма и нейтронного излучения в приповерхностном слое Production of gamma and neutron radiation in the subsurface Определение элементного состава поверхности по гамма линиям Analysis of elemental

More information

Paper Session II-B - The Mars Environmental Survey (MESUR) Network and Pathfinder Missions

Paper Session II-B - The Mars Environmental Survey (MESUR) Network and Pathfinder Missions The Space Congress Proceedings 1993 (30th) Yesterday's Vision is Tomorrow's Reality Apr 28th, 2:00 PM - 5:30 PM Paper Session II-B - The Mars Environmental Survey (MESUR) Network and Pathfinder Missions

More information

Presentation given to computer science undergraduate students at the University of Houston July 2007

Presentation given to computer science undergraduate students at the University of Houston July 2007 Presentation given to computer science undergraduate students at the University of Houston July 2007 Machine Learning and Data Mining in Mars Tomasz F. Stepinski Lunar and Planetary Institute MARS/EARTH

More information

US Vision of Space Exploration: LRO as a 1 st step. Dr. Jim Garvin Chief Scientist ILC 2005, Toronto, Canada

US Vision of Space Exploration: LRO as a 1 st step. Dr. Jim Garvin Chief Scientist ILC 2005, Toronto, Canada US Vision of Space Exploration: LRO as a 1 st step Dr. Jim Garvin Chief Scientist ILC 2005, Toronto, Canada Sept. 19, 2005 From a New Earth to a New Moon Earth MOON: S. Polar Region (Arecibo-Greenbank

More information

A Summary of Human History on the Moon

A Summary of Human History on the Moon A Summary of Human History on the Moon Only One of These Footprints is Protected The narrative of human history on the Moon represents the dawn of our evolution into a spacefaring species. The landing

More information

Shining Dark on Dust. Using Total Lunar Eclipses to expose Dust Accumulation on Apollo Reflectors. Tom Murphy (UCSD)

Shining Dark on Dust. Using Total Lunar Eclipses to expose Dust Accumulation on Apollo Reflectors. Tom Murphy (UCSD) Shining Dark on Dust Using Total Lunar Eclipses to expose Dust Accumulation on Apollo Reflectors Tom Murphy (UCSD) APOLLO: one giant leap for LLR APOLLO performs lunar laser ranging (LLR) to test the foundations

More information

Chapter 17. Chapter 17

Chapter 17. Chapter 17 Chapter 17 Moons and Other Solar System Objects Sections 17.1-17.2 Chapter 17 Parallax http://www.youtube.com/watc h?v=xuqaildqpww The Moon July 20, 1969 humans first landed on moon What was the first

More information

How Can radar See? Introduction to radar Imaging

How Can radar See? Introduction to radar Imaging How Can radar See? Introduction to radar Imaging Teacher Guide Purpose To understand the complexities of radar imaging, this series of activities will cover some basic concepts of the electromagnetic spectrum.

More information

Surface Observations Including from the 2012 Mars Curiosity Rover. Martian Atmosphere

Surface Observations Including from the 2012 Mars Curiosity Rover. Martian Atmosphere Aspects Dynamical of Martian Meteorology Meteorology of From the Surface Observations Including from the 2012 Mars Curiosity Rover Martian Atmosphere Mars Science Laboratory Curiosity The Curiosity rover

More information

Mars Program Re-Planning 2012

Mars Program Re-Planning 2012 SBAG 11: AES/JRPA Update Mars Program Re-Planning 2012 Victoria Friedensen Robotic Precursor Domain Lead Advanced Exploration Systems Human Exploration and Operations Mission Directorate NASA HQ July 31,

More information

Oil and natural gas on Mars

Oil and natural gas on Mars Oil and natural gas on Mars John F. McGowan NASA Ames Research Center Mail Stop 233-18 Moffett Field, CA 94035-1000 7/28/00 1 Outline of Talk Oil and natural gas on Earth and Mars Instrumentation Ground

More information

General Assembly. United Nations A/AC.105/C.2/L.271/Add.2

General Assembly. United Nations A/AC.105/C.2/L.271/Add.2 United Nations A/AC.105/C.2/L.271/Add.2 General Assembly Distr.: Limited 21 February 2012 Original: English Committee on the Peaceful Uses of Outer Space Legal Subcommittee Fifty-first session Vienna,

More information

Exercise 1: Earth s Moon

Exercise 1: Earth s Moon PHYS1014 Physical Science Summer 2013 Professor Kenny L. Tapp Exercise 1: Earth s Moon Complete and submit this packet, securely stapled, at the beginning of Exam 1. PART I --- Online Video Lecture from

More information