Conducting Subsurface Surveys for Water Ice using Ground Penetrating Radar and a Neutron Spectrometer on the Lunar Electric Rover Never Stop

Size: px
Start display at page:

Download "Conducting Subsurface Surveys for Water Ice using Ground Penetrating Radar and a Neutron Spectrometer on the Lunar Electric Rover Never Stop"

Transcription

1 Conducting Subsurface Surveys for Water Ice using Ground Penetrating Radar and a Neutron Spectrometer on the Lunar Electric Rover LPI/Kring Never Stop Exploring David A. Kring Lunar and Planetary Institute Lunar Exploration Analysis Group 11 October 2017 Art by Daniel D. Durda Art by Daniel D. Durda NASA

2 David A. Kring Roadmap for Human Exploration Outlines a plan that extends human exploration beyond low- Earth orbit (LEO) Includes multiple destinations (the Moon, asteroids, and eventually Mars) Develops a mission scenario with Precursor lunar robotic explorers, a Human-assisted lunar sample return mission, and Human lunar sample return missions.

3 David A. Kring EXPLORATION IN PARALLEL WITH ORION & SLS VEHICLE DEVELOPMENT Detail of illustration from the GER (2013) with small modifications. Because the human missions could involve NASA s Orion vehicle and ESA s service module, notional Exploration Mission numbers have been added.

4 Deep Space Gateway NASA The components of ISECG Design Reference Mission (DRM) as outlined by Hufenbach et al. (IAC, 2015) NASA s Orion crew vehicle, with ESA s service module, transports crew to/from a Deep Space Gateway The Gateway is in the vicinity of the Moon, such as a halo orbit about the Earth-Moon L2 point above the lunar farside

5 The components of ISECG Design Reference Mission (DRM) (continued) Two small pressurized rovers (SPRs) for crew to explore the lunar surface; e.g., the Lunar Electric Rover (LER) A crew lander with an expendable descent stage and reusable ascent stage NASA NASA Generation I vehicle built & field tested Generation II vehicle is designed Once the Gen II vehicle has been tested, vehicles for flight can be built Notional No design for crew lander yet exists

6 Distribution of Landing Sites Nearside: Malapert Massif South Polar Region: South Pole (Shackleton ) Farside: Schrödinger Basin Antoniadi South Pole-Aitken Basin Center WAC mosaic with 100 m/px resolution

7 Traverse Studies LER traverse studies between landing sites and at each landing site have been conducted and reported in preliminary form: Kamps et al. (LPSC 2017) Ende et al. (LPSC 2017) Orgel et al. (ELS 2017) Mazrouei et al. (ELS 2017) WAC mosaic with 100 m/px resolution

8 Traverse: Malapert Massif to Shackleton Traverse limit: 933km Efficient traverse: 208 km Science traverse: 911 km Science: Volatiles in Cabeus Malapert Massif Cabeus Drygalski Shackleton Impact melt in Drygalski and Ashbrook s Structure of complex craters Ashbrook LOLA 100 m/px slope map over hillshade

9 ADDRESSING SCIENCE & EXPLORATION OBJECTIVES EN ROUTE Heggy & Kring installed a GPR in the frame of the LER. An initial test was conducted at Moses Lake (2008), where the GPR successfully detected subsurface water. GPR The GPR was also deployed during a 14-day-long simulation at Black Point (2009) and remained functional throughout a traverse in challenging terrain.

10 ADDRESSING SCIENCE & EXPLORATION OBJECTIVES EN ROUTE Exploration of lunar subsurface structure using GPR can investigate: thickness and layer structure in lunar regolith geological structure in the shallow lunar crust Chang e-3 s Lunar Penetrating Radar aboard the Yutu rover illustrated the potential of a GPR, providing significant data on the subsurface Fa et al. (2015)

11 ADDRESSING SCIENCE & EXPLORATION OBJECTIVES EN ROUTE Exploration of lunar subsurface structure using GPR can investigate: thickness and layer structure in lunar regolith geological structure in the shallow lunar crust Thus, an LER tele-operated in survey mode may be able to detect and map the distribution of recoverable deposits of volatiles Fa et al. (2015)

12 ADDRESSING SCIENCE & EXPLORATION OBJECTIVES EN ROUTE Neutron Spectrometer To enhance the survey for subsurface volatiles, a neutron spectrometer, like the one Rick Elphic produced for the Resource Prospector rover (left), could be installed too. For good signal-to-noise, LER speed would need to be 10 cm/s, but there is plenty of margin in the traverse schedule to allow that relatively slow speed.

13 Traverse: Shackleton to Schrödinger Basin Amundsen Shackleton Traverse limit: 938 km Efficient traverse: 734 km Science traverse: 923 km Science: Volatile distribution and structures in complex crater in Amundsen Geological contacts around the South Pole Stratigraphy in Schrödinger Basin wall Schrödinger Basin LOLA 100 m/px slope map over hillshade

14 Traverse: Shackleton to Schrödinger Basin Amundsen Shackleton Schrödinger Basin Within Amundsen GPR & NS survey of volatiles en route Kamps et al. (LPSC 2017)

15 Traverse: Shackleton to Schrödinger Basin Amundsen Shackleton Schrödinger Basin Within Amundsen GPR & NS survey of volatiles en route Kamps et al. (LPSC 2017)

16 Traverse: Shackleton to Schrödinger Basin Amundsen Shackleton Schrödinger Basin Within Amundsen GPR & NS survey of volatiles en route Kamps et al. (LPSC 2017)

17 Summary The LER component of the ISECG design reference mission is a mature concept A Generation I vehicle has been tested in the field in a series of 3-day, 14-day, and 28-day mission simulations Tests include >1152 hours of astronaut time in the vehicle and 2832 hours of total crew time in highfidelity simulations. Traverse studies (Kamps et al., 2017; Orgel et al., 2017) indicate routes between the 5 sites in the ISECG DRM are feasible in this vehicle. Moreover, the tele-operated phases are excellent opportunities to survey for subsurface volatiles.

Analogue Mission Simulations

Analogue Mission Simulations Analogue Mission Simulations Briefing Topic: Potential Locations for NEO Mission Simulations, Black Point Lava Flow, Arizona David A. Kring Analogue Mission Simulations Contents: Previous BPLF Mission

More information

ORION/MOONRISE: JOINT HUMAN-ROBOTIC LUNAR SAMPLE RETURN MISSION CONCEPT

ORION/MOONRISE: JOINT HUMAN-ROBOTIC LUNAR SAMPLE RETURN MISSION CONCEPT ORION/MOONRISE: JOINT HUMAN-ROBOTIC LUNAR SAMPLE RETURN MISSION CONCEPT Leon Alkalai, Ben Solish, John Elliott, Tim McElrath, Juergen Mueller, Jeff Parker Jet Propulsion Laboratory, California Institute

More information

HEOMD Overview March 16, 2015

HEOMD Overview March 16, 2015 National Aeronautics and Space Administration HEOMD Overview March 16, 2015 Ben Bussey Chief Exploration Scientist HEOMD, NASA HQ National Aeronautics and Space Administration NASA Strategic Plan Objective

More information

Malapert Mountain: A Recommended Site for a South Polar Outpost

Malapert Mountain: A Recommended Site for a South Polar Outpost For presentation at the Rutgers Symposium on Lunar Settlements, June 4-8, 2007 Malapert Mountain: A Recommended Site for a South Polar Outpost Paul. D. Lowman Jr. Goddard Space Flight Center, Code 698

More information

InSight Spacecraft Launch for Mission to Interior of Mars

InSight Spacecraft Launch for Mission to Interior of Mars InSight Spacecraft Launch for Mission to Interior of Mars InSight is a robotic scientific explorer to investigate the deep interior of Mars set to launch May 5, 2018. It is scheduled to land on Mars November

More information

Robotic and Human Lunar Missions

Robotic and Human Lunar Missions VOL. 96 j NO. 5 j 15 MAR 2015 Earth & Space Science News Robotic and Human Lunar Missions Past and Future Increasing Diversity in the Geosciences Do Tiny Mineral Grains Drive Plate Tectonics? Cover Lines

More information

Lunar Exploration Requirements and Data Acquisition Architectures

Lunar Exploration Requirements and Data Acquisition Architectures Lunar Exploration Requirements and Data Acquisition Architectures J. Plescia P. Spudis B. Bussey Johns Hopkins University / Applied Physics Laboratory 2005 International Lunar Conference The Vision and

More information

Robotic Site Survey for ISRU

Robotic Site Survey for ISRU NASA Ames Research Center Maria Bualat Intelligent Robotics Group Maria.Bualat@nasa.gov Outline Site Survey Overview GPR Survey Hydrogen Prospecting 2 Human-Robot Site Survey Project Systematic survey

More information

NASA: BACK TO THE MOON

NASA: BACK TO THE MOON NASA: BACK TO THE MOON Don Campbell Cornell University "I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him

More information

Accessing the Lunar Poles for Human Exploration Missions

Accessing the Lunar Poles for Human Exploration Missions B. KENT JOOSTEN NASA Lyndon B. Johnson Space Center Houston, Texas The National Vision for Space Exploration calls for an American return to the Moon in preparation for the human exploration of Mars and

More information

Today s Class. Results for Exam #2 11/7/2017. Today s Class: Robotic & Human Exploration of Mars

Today s Class. Results for Exam #2 11/7/2017. Today s Class: Robotic & Human Exploration of Mars 11/7/2017 Today s Class: Robotic & Human Exploration of Mars Results for Exam #2 Homework: 1. Reading for Earth as a Planet: Section 9.4 of Cosmic Perspective. 2. Meet at Fiske on Thursday! Average Median

More information

Luna Resource / Glob Missions: Starting list of potential landing sites

Luna Resource / Glob Missions: Starting list of potential landing sites Luna Resource / Glob Missions: Starting list of potential landing sites A.T. Basilevsky, A.M. Abdrakhimov, M.A. Ivanov, R.O. Kuzmin, E.N. Slyuta Vernadsky Institute of Geochemistry & Analytical Chemistry,

More information

MIKE HAWES VICE PRESIDENT & ORION PROGRAM MANAGER

MIKE HAWES VICE PRESIDENT & ORION PROGRAM MANAGER MIKE HAWES VICE PRESIDENT & ORION PROGRAM MANAGER NASA S EXPLORATION SYSTEM EXPLORATION DESTINATIONS 100s of Miles 1,000s of Miles 10,000s of Miles 100,000s of Miles 1,000,000s of Miles 10,000,000s of

More information

NEXT STEPS ON THE MOON REPORT OF THE SPECIFIC ACTION TEAM

NEXT STEPS ON THE MOON REPORT OF THE SPECIFIC ACTION TEAM NEXT STEPS ON THE MOON REPORT OF THE SPECIFIC ACTION TEAM Specific Action Team Charter SAT commissioned by Science Mission Directorate, Planetary Science Division Assess lunar missions needed to address

More information

Using analogue missions to develop Lunar exploration strategies. Marianne Mader Carleton University, Ottawa, Canada

Using analogue missions to develop Lunar exploration strategies. Marianne Mader Carleton University, Ottawa, Canada Using analogue missions to develop Lunar exploration strategies Marianne Mader Carleton University, Ottawa, Canada Space fairing Nations are developing their plans for space exploration: US Vision for

More information

LRO Lunar Reconnaissance Orbiter

LRO Lunar Reconnaissance Orbiter LRO Lunar Reconnaissance Orbiter Launch Date: June 18, 2009 Destination: Earth s moon Reached Moon: June 23, 2009 Type of craft: Orbiter Intended purpose: to map the moon like never before, add additional

More information

Appendix D. Thermal Modelling of Luna 27 Landing Site. Hannah Rana Vito Laneve Philipp Hager Thierry Tirolien (ESA/ESTEC, The Netherlands)

Appendix D. Thermal Modelling of Luna 27 Landing Site. Hannah Rana Vito Laneve Philipp Hager Thierry Tirolien (ESA/ESTEC, The Netherlands) 47 Appendix D Thermal Modelling of Luna 27 Landing Site Hannah Rana Vito Laneve Philipp Hager Thierry Tirolien (ESA/ESTEC, The Netherlands) 48 Thermal Modelling of Luna 27 Landing Site Abstract Luna 27,

More information

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury = Hermes Mythology Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury s Orbit Mercury never seen more than 28 from the sun Revolves/orbits

More information

Mini-RF: An Imaging Radar for the Moon. Ben Bussey The Johns Hopkins University Applied Physics Laboratory

Mini-RF: An Imaging Radar for the Moon. Ben Bussey The Johns Hopkins University Applied Physics Laboratory Mini-RF: An Imaging Radar for the Moon Ben Bussey The Johns Hopkins University Applied Physics Laboratory Paul D. Spudis President s Commission on Implementation of United States Space Exploration Policy

More information

Overview of Lunar Science Objectives. Opportunities and guidelines for future missions.

Overview of Lunar Science Objectives. Opportunities and guidelines for future missions. Overview of Lunar Science Objectives. Opportunities and guidelines for future missions. Chip Shearer Institute of Meteoritics University of New Mexico Albuquerque, New Mexico 87131 A rich scientific target

More information

Iron and Titanium: Important Elements. posted October 20, References:

Iron and Titanium: Important Elements. posted October 20, References: 1 of 6 posted October 20, 1997 Moonbeams and Elements Written by G. Jeffrey Taylor Hawai'i Institute of Geophysics and Planetology To determine how a planetary body formed and evolved, we must determine

More information

E X O M A R S. The ESA/NASA ExoMars Programme

E X O M A R S. The ESA/NASA ExoMars Programme The ESA/NASA ExoMars Programme 1 International Scene Recognising that a Mars Sample Return (MSR) mission is very challenging, and that its and that its undertaking will likely exceed the financial capabilities

More information

The Moon's Dark, Icy Poles

The Moon's Dark, Icy Poles 1 of 5 posted June 4, 2003 The Moon's Dark, Icy Poles --- Permanently shadowed regions on the Moon--where frozen water could be trapped--are more abundant and more widely distributed than originally thought.

More information

Constellation Program Office Tier 1 Regions of Interest for Lunar Reconnaissance Orbiter Camera (LROC) Imaging

Constellation Program Office Tier 1 Regions of Interest for Lunar Reconnaissance Orbiter Camera (LROC) Imaging Constellation Program Office Tier 1 Regions of Interest for Lunar Reconnaissance Orbiter Camera (LROC) Imaging Regions of Interest listed in alphabetical order ( no priority implied) East longitudes represented

More information

estec Request for Information Lunar Exploration Campaign Science and Technology Payloads ESA UNCLASSIFIED - Releasable to the Public

estec Request for Information Lunar Exploration Campaign Science and Technology Payloads ESA UNCLASSIFIED - Releasable to the Public estec European Space Research and Technology Centre Keplerlaan 1 2201 AZ Noordwijk The Netherlands T +31 (0)71 565 6565 F +31 (0)71 565 6040 www.esa.int Lunar Exploration Campaign Science and Technology

More information

The Path to Mars. December Matthew Duggan. Copyright 2010 Boeing. All rights reserved.

The Path to Mars. December Matthew Duggan. Copyright 2010 Boeing. All rights reserved. The Path to Mars Matthew Duggan December 2015 1 Overview ISS as a testbed for Exploration Systems Development Human Health and Performance Research LEO Cislunar Exploration Habitation capabilities for

More information

PROSPECT: ESA s Package for Resource Observation and In-Situ Prospecting for Exploration, Commercial Exploitation and Transportation

PROSPECT: ESA s Package for Resource Observation and In-Situ Prospecting for Exploration, Commercial Exploitation and Transportation PROSPECT: ESA s Package for Resource Observation and In-Situ Prospecting for Exploration, Commercial Exploitation and Transportation E. Sefton-Nash, J. Carpenter and the PROSPECT Team LRO/LROC/ASU Lunar

More information

A Day in the Life of the Constellation Arcitecture Teamlunar (CxAT-lunar) Science Team

A Day in the Life of the Constellation Arcitecture Teamlunar (CxAT-lunar) Science Team A Day in the Life of the Constellation Arcitecture Teamlunar (CxAT-lunar) Science Team John E. Gruener Lunar Surface Systems Project Office/Constellation Program Johnson Space Center CxAT-lunar Science

More information

The Earth's Moon. The Earth's Moon, in many ways, is prototypical of a substantial fraction of the objects in the Solar System.

The Earth's Moon. The Earth's Moon, in many ways, is prototypical of a substantial fraction of the objects in the Solar System. 1 The Earth's Moon The Earth's Moon, in many ways, is prototypical of a substantial fraction of the objects in the Solar System. Like many other moons and planets it exhibits a heavily cratered surface

More information

NASA Lunar Science Activities. Lunar Science and Exploration

NASA Lunar Science Activities. Lunar Science and Exploration NASA Lunar Science Activities Lunar Science and Exploration James L. Green Director, Planetary Sciences Division Science Directorate Mission Directorate NASA In NASA s James Science L. Green Mission Presented

More information

Robotic Lunar Exploration Scenario JAXA Plan

Robotic Lunar Exploration Scenario JAXA Plan Workshop May, 2006 Robotic Lunar Exploration Scenario JAXA Plan Tatsuaki HASHIMOTO JAXA 1 Question: What is Space Exploration? Answers: There are as many answers as the number of the people who answer

More information

General Assembly. United Nations A/AC.105/C.2/L.271/Add.2

General Assembly. United Nations A/AC.105/C.2/L.271/Add.2 United Nations A/AC.105/C.2/L.271/Add.2 General Assembly Distr.: Limited 21 February 2012 Original: English Committee on the Peaceful Uses of Outer Space Legal Subcommittee Fifty-first session Vienna,

More information

Little Learners Activity Guide

Little Learners Activity Guide LUNAR RECONNAISSANCE ORBITER CAMERA Little Learners Activity Guide Learn about the Moon with puzzles, coloring, and fun facts! Mare Imbrium Mare Serenitatis Mare Tranquillitatis Oceanus Procellarum Mare

More information

Lunar Exploration Analysis Group. Report to the Planetary Science Subcommittee. 31 March 2015

Lunar Exploration Analysis Group. Report to the Planetary Science Subcommittee. 31 March 2015 Lunar Exploration Analysis Group Report to the Planetary Science Subcommittee 31 March 2015 LEAG Executive Committee Clive Neal Chair Samuel Lawrence Vice Chair James Carpenter Jasper Halekas Steve Mackwell

More information

Lunar Discovery and Exploration program

Lunar Discovery and Exploration program Lunar Discovery and Exploration program Space Policy Directive-1 (December 11, 2017) amends the National Space Policy to include the following paragraph: Lead an innovative and sustainable program of exploration

More information

The ExoMars Programme

The ExoMars Programme E X O M A R S The ExoMars Programme PHOOTPRINT Scientific context E X O M A R S - A primitive Mars and an early evolution similar to that early of evolution the Earth similar to that A primitive Mars likely

More information

Life in the Solar System

Life in the Solar System Life in the Solar System Basic Requirements for Life 1. Chemical elements to make biological molecules. On Earth these are mostly C, H, O and N 2. Source of energy for metabolism. This can come from a

More information

Moon and Mercury 3/8/07

Moon and Mercury 3/8/07 The Reading Assignment Chapter 12 Announcements 4 th homework due March 20 (first class after spring break) Reminder about term paper due April 17. Next study-group session is Monday, March 19, from 10:30AM-12:00Noon

More information

LRO-LOLA: Measurements of Lunar Altimetry and Surface Conditions

LRO-LOLA: Measurements of Lunar Altimetry and Surface Conditions LRO-LOLA: Measurements of Lunar Altimetry and Surface Conditions David E. Smith, MIT Maria T. Zuber, MIT Gregory A. Neumann, GSFC Erwan Mazarico, GSFC and the LOLA Science Team Lunar-Glob Mission International

More information

The Moon: Stepping Stone to the Planets

The Moon: Stepping Stone to the Planets The Moon: Stepping Stone to the Planets William A. Ambrose Houston Geological Society May 10, 2017 Schmitt (2004) Why Return to the Moon? Earth s closest neighbor -Three-day trip -Technology already exists

More information

NASA's Discovery Program gives scientists the opportunity to dig deep into their imaginations and find innovative ways to unlock the mysteries of the

NASA's Discovery Program gives scientists the opportunity to dig deep into their imaginations and find innovative ways to unlock the mysteries of the The Discovery Program's prime objective is to enhance our understanding of the Solar System by exploring the planets, their moons and small bodies such as comets and asteroids. Another important objective

More information

Moon Express Advancing Commerce and Science

Moon Express Advancing Commerce and Science Moon Express Advancing Commerce and Science Paul D. Spudis Bob Richards Jack Burns Moon Express Inc. October, 2013 1 Moon Express Landers Possible Missions Surface Network 2 Mission Types: Small lander

More information

The Genealogy of OSIRIS-REx Asteroid Sample Return Mission

The Genealogy of OSIRIS-REx Asteroid Sample Return Mission The Genealogy of OSIRIS-REx Asteroid Sample Return Mission New Frontiers-3 Proposal Due July 31, 2009 Principal Investigator Michael Drake (UA) Deputy PI Dante Lauretta (UA) May 18, 2009 University of

More information

Plans for an International Lunar Network

Plans for an International Lunar Network Science Mission Directorate Plans for an International Lunar Network Tom Morgan May 2008 ROBOTIC LUNAR EXPLORATION Starting no later than 2008, initiate a series of robotic missions to the Moon to prepare

More information

of space exploration, because they pioneered the robotic methods used to explore planetary surfaces.

of space exploration, because they pioneered the robotic methods used to explore planetary surfaces. 50 Years of Robotic Planetary Exploration: David Kring, Senior Staff Scientist, Universities Space Research Association, Houston; Principal Investigator, LPI-JSC Apollo 12 Commander Charles Conrad Jr.

More information

LOW-COST LUNAR COMMUNICATION AND NAVIGATION

LOW-COST LUNAR COMMUNICATION AND NAVIGATION LOW-COST LUNAR COMMUNICATION AND NAVIGATION Keric Hill, Jeffrey Parker, George H. Born, and Martin W. Lo Introduction Spacecraft in halo orbits near the Moon could relay communications for lunar missions

More information

Student Briefing: Lunar Electric Rover (LER) and Crew Activities, Black Point Lava Flow David A. Kring

Student Briefing: Lunar Electric Rover (LER) and Crew Activities, Black Point Lava Flow David A. Kring Student Briefing: Lunar Electric Rover (LER) and Crew Activities, Black Point Lava Flow David A. Kring December 2009 2009 Desert Research and Technology Studies (Desert RATS) Joe Kosmo, Mission Manager

More information

Lowell II, Candor Chasma Base Station Mission Backstory

Lowell II, Candor Chasma Base Station Mission Backstory Mission Backstory - 1 of 12 Lowell II, Candor Chasma Base Station Mission Backstory Sources and Resources NASA s Journey to Mars Plan as of 2016 o http://www.nasa.gov/topics/journeytomars/index.html o

More information

Dana Felberg Steven Hester David Nielsen Zach Weddle Jack Williams

Dana Felberg Steven Hester David Nielsen Zach Weddle Jack Williams Dana Felberg Steven Hester David Nielsen Zach Weddle Jack Williams To identify key features on the lunar surface near the Apollo 11 Landing site in the Mare Tranquillitatis. Apollo 11 launched: 16 July

More information

Presentation given to computer science undergraduate students at the University of Houston July 2007

Presentation given to computer science undergraduate students at the University of Houston July 2007 Presentation given to computer science undergraduate students at the University of Houston July 2007 Machine Learning and Data Mining in Mars Tomasz F. Stepinski Lunar and Planetary Institute MARS/EARTH

More information

High Speed Penetrator deployable mass spectrometers. Presented by Simon Sheridan The Open University on behalf of the UK Penetrator Consortium

High Speed Penetrator deployable mass spectrometers. Presented by Simon Sheridan The Open University on behalf of the UK Penetrator Consortium High Speed Penetrator deployable mass spectrometers Presented by Simon Sheridan The Open University on behalf of the UK Penetrator Consortium 11 th Workshop on Harsh Environment Mass Spectrometry Oxnard,

More information

SCIENCE ON THE LUNAR SURFACE FACILITATED BY LOW LATENCY TELEROBOTICS FROM A LUNAR ORBITING PLATFORM-GATEWAY

SCIENCE ON THE LUNAR SURFACE FACILITATED BY LOW LATENCY TELEROBOTICS FROM A LUNAR ORBITING PLATFORM-GATEWAY SCIENCE ON THE LUNAR SURFACE FACILITATED BY LOW LATENCY TELEROBOTICS FROM A LUNAR ORBITING PLATFORM-GATEWAY Jack O. Burns, Benjamin Mellinkoff, and Matthew Spydell University of Colorado Boulder jack.burns@colorado.edu,

More information

Update to LEAG Annual Meeting, 11/16/09 Barbara A. Cohen J. A. Bassler, D. W. Harris, L. Hill, M. S.

Update to LEAG Annual Meeting, 11/16/09 Barbara A. Cohen J. A. Bassler, D. W. Harris, L. Hill, M. S. Update to LEAG Annual Meeting, 11/16/09 Barbara A. Cohen (Barbara.A.Cohen@nasa.gov); J. A. Bassler, D. W. Harris, L. Hill, M. S. Hammond NASA Marshall Space Flight Center, Huntsville AL 35812 B. J. Morse,

More information

The Moon. Impacts in the Earth-Moon System What, When and Why? N. E. B. Zellner Department of Physics. To the Moon! The Moon

The Moon. Impacts in the Earth-Moon System What, When and Why? N. E. B. Zellner Department of Physics. To the Moon! The Moon Impacts in the Earth-Moon System What, When and Why? The Moon N. E. B. Zellner Department of Physics Apollo 11 footprint in soft lunar regolith 1/4 the size of Earth 1/6 the gravity of Earth Covered in

More information

Dive In What is an advantage of sending unmanned crafts to space?

Dive In What is an advantage of sending unmanned crafts to space? Dive In What is an advantage of sending unmanned crafts to space? Manned and Robotic Spacecraft For Each Space Vehicle, complete the worksheet including: 1. If the spacecraft is manned or unmanned. 2.

More information

Space Scientists Meet Amidst Uncertainty and Hope

Space Scientists Meet Amidst Uncertainty and Hope EIR Science INTERNATIONAL ASTRONAUTICAL CONGRESS Space Scientists Meet Amidst Uncertainty and Hope by Marsha Freeman As space scientists, engineers, and program managers gathered for the annual International

More information

DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence

DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence Space Missions DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence International Lunar Conference 2005 Toronto, Canada Paul Fulford 1, Karen

More information

Future Space. Where are we going? Philip Stooke

Future Space. Where are we going? Philip Stooke Future Space Where are we going? Philip Stooke What can we expect to see next in space? Apollo went to the Moon, then we built a space station, but where are we going now? Pat Rawlings Will we go anywhere?

More information

V. The Moon s Motion and Phases

V. The Moon s Motion and Phases V. The Moon s Motion and Phases A. The Moon s Orbit revolves west 1. The moon around Earth from to. east 2. The moon s orbit is an. ellipse 3. The plane of the moon s orbit is inclined to Earth s at about

More information

Living on the Moon. Polar Plus. By Lisa M. Guidone. NASA shoots for the moon, then Mars.

Living on the Moon. Polar Plus. By Lisa M. Guidone. NASA shoots for the moon, then Mars. Living on the Moon By Lisa M. Guidone NASA shoots for the moon, then Mars. Only 12 people have set foot on the moon so far. The last time was in late 1972, when two astronauts walked on its surface. Their

More information

BEYOND LOW-EARTH ORBIT

BEYOND LOW-EARTH ORBIT SCIENTIFIC OPPORTUNITIES ENABLED BY HUMAN EXPLORATION BEYOND LOW-EARTH ORBIT AN ISECG SCIENCE WHITE PAPER 1 ABOUT ISECG Space agencies participating in the International Space Exploration Coordination

More information

Scientific Contributions of Lunar Robotic Precursor Missions

Scientific Contributions of Lunar Robotic Precursor Missions Scientific Contributions of Lunar Robotic Precursor Missions Paul D. Spudis Johns Hopkins University Applied Physics Laboratory paul.spudis@jhuapl.edu www.spudislunarresources.com Presentation to LEAG

More information

SCIENCE AND EXPLORATION AT THE MOON AND MARS ENABLED BY SURFACE TELEROBOTICS

SCIENCE AND EXPLORATION AT THE MOON AND MARS ENABLED BY SURFACE TELEROBOTICS INTERNATIONAL ACADEMY OF ASTRONAUTICS 10th IAA SYMPOSIUM ON THE FUTURE OF SPACE EXPLORATION: TOWARDS THE MOON VILLAGE AND BEYOND Torino, Italy, June 27-29, 2017 SCIENCE AND EXPLORATION AT THE MOON AND

More information

Technologies for Transparency Dynamic Open Data Publishing with Open APIs

Technologies for Transparency Dynamic Open Data Publishing with Open APIs International Open Government Data Conference Technologies for Transparency Dynamic Open Data Publishing with Open APIs Kendall Clark, Cofounder and Managing Principal, Clark & Parsia LLC Dan Melton, Ph.D.,

More information

Habitat Concepts for Deep Space Exploration

Habitat Concepts for Deep Space Exploration Habitat Concepts for Deep Space Exploration David Smitherman * NASA Marshall Space Flight Center, Huntsville, Alabama, 35812 and Brand N. Griffin Gray Research, Huntsville, Alabama, 35806 Future missions

More information

Lunar Outpost Site Selection: A Review of the past 20 Years John E. Gruener, NASA Johnson Space Center

Lunar Outpost Site Selection: A Review of the past 20 Years John E. Gruener, NASA Johnson Space Center Lunar Outpost Site Selection: A Review of the past 20 Years John E. Gruener, NASA Johnson Space Center Lunar Exploration Analysis Group (LEAG) Workshop on Enabling Exploration: The Lunar Outpost and Beyond

More information

REVISED COORDINATES FOR APOLLO HARDWARE

REVISED COORDINATES FOR APOLLO HARDWARE REVISED COORDINATES FOR APOLLO HARDWARE R. V. Wagner *, E. J. Speyerer, K. N. Burns, J. Danton, M.S. Robinson Lunar Reconnaissance Orbiter Camera, School of Earth and Space Exploration, Arizona State University,

More information

Geological Setting of the Luna Glob Candidate Landing Site Region in the Northern High Latitudes: Characterization from LOLA and Related Data

Geological Setting of the Luna Glob Candidate Landing Site Region in the Northern High Latitudes: Characterization from LOLA and Related Data Geological Setting of the Luna Glob Candidate Landing Site Region in the Northern High Latitudes: Characterization from LOLA and Related Data A.M. Abdrakhimov, A.T. Basilevsky, M.A. Ivanov, Vernadsky Institute,

More information

LEAG Illumination Modeling at the Lunar Poles and its Benefits to Exploration and Science Investigations

LEAG Illumination Modeling at the Lunar Poles and its Benefits to Exploration and Science Investigations LEAG 2015 2015.10.21 Illumination Modeling at the Lunar Poles and its Benefits to Exploration and Science Investigations Erwan Mazarico and J.B. Nicholas NASA GSFC Erwan Mazarico - LEAG - October 21, 2015

More information

Exploring the Moon & Asteroids: A Synergistic Approach

Exploring the Moon & Asteroids: A Synergistic Approach Exploring the Moon & Asteroids: A Synergistic Approach Clive R. Neal Dept. Civil Eng. & Geological Sci. University of Notre Dame Notre Dame, IN 46556, USA neal.1@nd.edu Perspective Perspective SCIENCE

More information

Robotic Missions of Russian Lunar Program

Robotic Missions of Russian Lunar Program Robotic Missions of Russian Lunar Program Alexander Zakharov & Ilia Kuznetsov on behalf lunar science team of Space Research Institute of the Russian Academy of Sciences Moscow RUSSIAN FEDERAL SPACE PROGRAM

More information

Parametric Design MARYLAND. The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F

Parametric Design MARYLAND. The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F Parametric Design The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F MARYLAND 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Parametric

More information

Mars Program Re-Planning 2012

Mars Program Re-Planning 2012 SBAG 11: AES/JRPA Update Mars Program Re-Planning 2012 Victoria Friedensen Robotic Precursor Domain Lead Advanced Exploration Systems Human Exploration and Operations Mission Directorate NASA HQ July 31,

More information

Rationale of NASA Lunar Precursor Robotic Program (LPRP) for the VSE

Rationale of NASA Lunar Precursor Robotic Program (LPRP) for the VSE Rationale of NASA Lunar Precursor Robotic Program (LPRP) for the VSE (vs. I don t need nuthin but a map) Jeff Plescia, Ben Bussey, Paul Spudis, Tony Lavoie Applied Physics Laboratory, Johns Hopkins University

More information

Deimos and Phobos as Destinations for Human Exploration

Deimos and Phobos as Destinations for Human Exploration Deimos and Phobos as Destinations for Human Exploration Josh Hopkins Space Exploration Architect Lockheed Martin Caltech Space Challenge March 2013 2013 Lockheed Martin Corporation. All Rights Reserved

More information

Latitudinal Enrichment of Hydrogen in the Lunar Polar Regions: Constraints on Hydrogen Mobility

Latitudinal Enrichment of Hydrogen in the Lunar Polar Regions: Constraints on Hydrogen Mobility Latitudinal Enrichment of Hydrogen in the Lunar Polar Regions: Constraints on Hydrogen Mobility W. V. Boynton, G. F. Droege, K. Harshman, M. A. Schaffner, I. G. Mitrofanov, T. P. McClanahan, and the LEND

More information

Welcome! To The Restructured, Reconfigured, NASA Advisory Council!

Welcome! To The Restructured, Reconfigured, NASA Advisory Council! Welcome! To The Restructured, Reconfigured, NASA Advisory Council! NASA Advisory Council and Other Thoughts About the Future Harrison H. Schmitt, Chairman The Council s Profound Thanks Go to the Science

More information

Living on the Moon. Polar Plus. By Lisa M. Guidone. NASA shoots for the moon, then Mars.

Living on the Moon. Polar Plus. By Lisa M. Guidone. NASA shoots for the moon, then Mars. Name: Date: Living on the Moon By Lisa M. Guidone NASA shoots for the moon, then Mars. Only 12 people have set foot on the moon so far [2007]. The last time was in late 1972, when two astronauts walked

More information

Lunar Poles. Status of Understanding a Potential Resource. Paul G. Lucey

Lunar Poles. Status of Understanding a Potential Resource. Paul G. Lucey Lunar Poles Status of Understanding a Potential Resource Paul G. Lucey Hawaii Institute of Geophysics & Planetology School of Ocean and Earth Science and Technology University of Hawaii at Manoa The Most

More information

The Science Scenario of the SELENE-2 Mission

The Science Scenario of the SELENE-2 Mission The Science Scenario of the SELENE-2 Mission Manabu Kato, Kohtaro Matsumoto, Tatsuaki Okada, Satoshi Tanaka, and Science Working Group for Post- SELENE Project Japan Aerospace Exploration Agency ISAS &

More information

2) Elucidate a weakness of two of the lines of evidence you listed in the previous question.

2) Elucidate a weakness of two of the lines of evidence you listed in the previous question. GEO 110 Final Test May 30 2003 Name: IMPORTANT: Please write legibly!!! Short Answer (2 points each) 1) List three of the four lines of evidence that the Johnson Space Center team presented as evidence

More information

Background Image: SPA Basin Interior; LRO WAC, NASA/GSFC/ASU

Background Image: SPA Basin Interior; LRO WAC, NASA/GSFC/ASU B. L. Jolliff1, C. K. Shearer2, N. E. Petro3, D. A. Papanastassiou,4 Y. Liu,4 and L. Alkalai4 1Dept. of Earth & Planetary Sciences, Washington University, St. Louis, MO 2Institute of Meteoritics, University

More information

4.8 Space Research and Exploration. Getting Into Space

4.8 Space Research and Exploration. Getting Into Space 4.8 Space Research and Exploration Getting Into Space Astronauts are pioneers venturing into uncharted territory. The vehicles used to get them into space are complex and use powerful rockets. Space vehicles

More information

Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO

Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011je003956, 2012 Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO I. Mitrofanov, 1 M. Litvak, 1 A. Sanin,

More information

Life and habitability in the Solar System and beyond: the Roadmap

Life and habitability in the Solar System and beyond: the Roadmap "There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy." Hamlet (I, v, 166-167) Life and habitability in the Solar System and beyond: the Roadmap Lucia Marinangeli and

More information

Italian Lunar Science Studies and Possible Missions a.k.a. The Moon: an Italian Approach. Angioletta Coradini Istituto Nazionale di Astrofisica

Italian Lunar Science Studies and Possible Missions a.k.a. The Moon: an Italian Approach. Angioletta Coradini Istituto Nazionale di Astrofisica Italian Lunar Science Studies and Possible Missions a.k.a. The Moon: an Italian Approach Angioletta Coradini Istituto Nazionale di Astrofisica Goals of the Study The primary goal of the present study is

More information

Moonstruck: Illuminating Early Planetary History

Moonstruck: Illuminating Early Planetary History Moonstruck: Illuminating Early Planetary History G. Jeffrey Taylor Hawai`i Institute of Geophysics and Planetology University of Hawai`i at Manoa Jeff Taylor Lunar Science 1 View of the Earth and Moon

More information

Near Term Lunar Surface Gravimetry Science Opportunities

Near Term Lunar Surface Gravimetry Science Opportunities Near Term Lunar Surface Gravimetry Science Opportunities Kieran A. Carroll, Gedex Inc. Co authors: David Hatch, Rebecca Ghent, Sabine Stanley, Natasha Urbancic, Marie Claude Williamson, Brent Garry, Manik

More information

Mars Update. Presented by NASA/JPL Solar System Educator Don W. Brown

Mars Update. Presented by NASA/JPL Solar System Educator Don W. Brown Mars Update Presented by NASA/JPL Solar System Educator Don W. Brown http://www.wired.com/wiredscience/2010/01/gallery-mars/6/ Mariner Mars Climate Orbiter Mars Exploration Rovers Mars Global Surveyor

More information

New Views of the Moon 2, Asia Workshop Report April 2018 Aizu University, Japan.

New Views of the Moon 2, Asia Workshop Report April 2018 Aizu University, Japan. New Views of the Moon 2, Asia Workshop Report 18-20 April 2018 Aizu University, Japan. The New Views of the Moon 2 (NVM-2) Asia workshop was the third of three workshops (https://www.hou.usra.edu/meetings/newviews2018/)

More information

Advanced Probes for Planetary Surface and Subsurface Exploration

Advanced Probes for Planetary Surface and Subsurface Exploration Workshop on Space Robotics, ICRA 2011 Advanced Probes for Planetary Surface and Subsurface Exploration Takashi Kubota (JAXA/ISAS/JSPEC) Hayato Omori, Taro Nakamura (Chuo Univ.) JAXA Space Exploration Program

More information

Chapter 21. The Moon and Mercury: Comparing Airless Worlds

Chapter 21. The Moon and Mercury: Comparing Airless Worlds Chapter 21 The Moon and Mercury: Comparing Airless Worlds Outline I. The Moon A. The View From Earth B. The Apollo Missions C. Moon Rocks D. The History of the Moon E. The Origin of Earth's Moon II. Mercury

More information

Upgraded Program of Russian Lunar Landers: Studying of Lunar Poles

Upgraded Program of Russian Lunar Landers: Studying of Lunar Poles Upgraded Program of Russian Lunar Landers: Studying of Lunar Poles I.G.Mitrofanov, L.M.Zelenyi and V.I.Tret yakov Institute for Space Research, Moscow, Russia Slide - 1 Main Goals of the Program: 1. To

More information

NASA Planetary Science Programs

NASA Planetary Science Programs NASA Planetary Science Programs James L. Green NASA, Planetary Science Division February 19, 2015 Presentation at OPAG 1 Outline Mission events Passed FY15 Budget elements President s FY16 Budget Discovery

More information

4.2 Detecting Celestial Bodies and the Moon

4.2 Detecting Celestial Bodies and the Moon 4.2 Detecting Celestial Bodies and the Moon Astronomers cannot conduct experiments on celestial objects, they can only observe them at a distance. However, today's technology allows us to see farther into

More information

Grading Summary: Questions 1: 22 points. Question 2: 12 points. Question 3: 12 points. Question 4: 18 points. Question 5: 36 points.

Grading Summary: Questions 1: 22 points. Question 2: 12 points. Question 3: 12 points. Question 4: 18 points. Question 5: 36 points. HOMEWORK #3 Moon Concepts Due Friday, May 5 th IN CLASS Answers to the questions must be given in complete sentences (except where indicated), using correct grammar and spelling. Please be as brief and

More information

MARYLAND. The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F.

MARYLAND. The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F. Parametric Design The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F MARYLAND 2004 David L. Akin - All rights reserved http://spacecraft.ssl.

More information

Class Exercise. Today s Class: The Origin & Evolution of the Moon. Space in the News: NASA and Russia Partner Up for Crewed Deep-Space Missions

Class Exercise. Today s Class: The Origin & Evolution of the Moon. Space in the News: NASA and Russia Partner Up for Crewed Deep-Space Missions Today s Class: The Origin & Evolution of the Moon 1. 2. 3. 4. Homework. Read: Sections 9.2-9.3 in Cosmic Perspective. Next class is at Fiske Planetarium! Need volunteers for Space in the News. Exam #2

More information

Human Lunar Exploration Mission Architectures

Human Lunar Exploration Mission Architectures Human Lunar Exploration Mission Architectures LPI Lunar Knowledge Requirements Workshop March 1-2, 2004 1 1 March 2004 Guiding Principles for Exploration (excerpt NASA New Space Exploration Vision, January

More information

Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil

Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil ICRA '07 Space Robotics Workshop 14 April, 2007 Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil Kazuya Yoshida and Keiji Nagatani Dept. Aerospace Engineering Graduate

More information