Khmelnik S.I. Mathematical Model of Dust Whirl

Size: px
Start display at page:

Download "Khmelnik S.I. Mathematical Model of Dust Whirl"

Transcription

1 Khmelnik S.I. Mathematial Model of Dust Whil Abstat The question of the soue of enegy in a dust whil is onsideed. Atmosphei onditions annot be the sole soue of enegy, as suh dust whils exist on Mas, whee the atmosphee is absent. Hee we show that the soue of enegy fo the dust whil is the enegy of the gavitational field. We pesent a mathematial model of the sand votex, whih uses a system of Maxwell-like gavitational equations. The model explains some of the popeties of the dust whil pesevation of ylindial vetial shape of the dust whil, motion of the dust whil as a whole. Contents 1. Intodution. Mathematial Model 3. The Enegy Flows 4. Vetial Stability 5. The Motion of the Dust Whil Appendix Refeenes 1. Intodution Thee exists a widely known dust dust whil, whih is an almost vetial loud of dust see Fig. 1. Suh a dust whil has a vetial axis of otation, height of a few tens of metes, diamete - a few metes, the time of existene - a few tens of seonds [1]. Thee ae simila phenomena - wate, ai, ash dust whils. The ause of thei existene is assumed to be vaious atmosphei phenomena (wind, heating of the atmosphee). Howeve, the vey existene of the dust whil its shape etention and movement, - ae diffiult to explain by the same easons. Futhemoe, suh dust whils ae also moving on Mas, whee thee is no atmosphee - see. Fig. [1]. Theefoe, in the explanation of the dust whils the main question is about the soue of enegy. 1

2 Fig. 1. Fig.. Thee ae muh moe poweful phenomena elated to dust whils - Sandy tsunami - see Fig. a and Fig.. The existing view that the auses of the movement of this olossus ae a beee and nonlinea medium seems unonvining. It seems that this "devie" has its own moto within, and the esistane of the medium is just a atalyst, a foe that pushes the gas pedal. Fig. а. Fig. в Below we pesent a mathematial model of the dust whil, whih uses a system of Maxwell-like gavitational equations. It is shown that the enegy soue fo the sand votex is the enegy of the gavitational field - see Appendix. In any ase, it is had to find any othe soue of enegy on the planet Mas.

3 The model is based on the following assumptions. Sandy dust whil is omposed of mateial patiles sand gains. The movement of these patiles is likened to mass uents. Mass uents in the gavitational field ae desibed by Maxwell-like gavitational equations [] (heeinafte - MLG-equations). The inteation between the moving masses is desibed by the Loent gavity-magneti (the GL-foe) simila to the Loent foes in eletodynamis ating between moving eletial hages. Cuents aising in the dust whil ae iulating (as shown) in the oss setion of the votex and along the vetial (up and down). The kineti enegy of suh iulation is spent on the losses fom ollisions of sand gains. It omes fom a gavitating body. Potential enegy of the dust whil is not hanged, and theefoe is not onsumed. I.e. in this ase thee is no onvesion of potential enegy into kineti enegy and vie vesa. Howeve, gavitating body expends its enegy on eating and maintaining a mass uent - see Appendix. Suppoting dust whil upight is explained as follows. Fom the analogy between the Maxwell equations and MLG it follows that thee may be a flow S of gavitational enegy. Suh flow an exist and hange ove time. Togethe with the flow thee is a gavitational momentum. If the body is in the flow of gavitational enegy (and this flow does not hange ove time), then on the body ats the foe S F=S\ (whee is the speed of light), dieted opposite to the flow dietion. It follows fom the law of onsevation of momentum. We emphasie one again that it is - a omplete analogy between gavitational and eletomagneti field. Fo the eletomagneti field, these elationships ae disussed in [3, 4]. In the body of the dust whil togethe with onstant mass uents exists (as shown below) a flow of gavitational enegy, onstant ove time. It is dieted downwad. In aodane with the above, an upwad foe ats on the body of the dust whil, thus holding it in an upight position. not. Mathematial Model MLG-equations fo gavity-magneti intensity H and density of mass uents J in stationay gavity-magneti field ae as follows: divh 0, (1) ot(h) J, () 3

4 In the simulation of dust whil we shall use ylindial oodinates,,. Then the MLG equations will be: H 1 H H H 0, (3) 1 H H J, (4) H H J, (5) H H 1 H J, (6) The model is based on the following fats: 1. The intensity of the gavitational field is dieted along the axis of dust whil,. It eates a vetial flow of sand gains - a mass uent J. 3. Vetial mass uent J geneates annula gavity-magneti field H and adial gavity-magneti field H - see (6). 4. Gavity-magneti field H deflets by GL-foes sand gains of vetial flow in the adial dietion, eating a adial flow of sand gains - adial mass uent J. 5. Gavity-magneti field H deflets by GL-foes sand gains of adial flow pependiula to the adius, eating a vetial mass uent J. 6. Gavity-magneti field H deflets by GL-foes sand gains of vetial flow pependiula to the adius, eating a annula mass uent J. 7. Gavity-magneti field H deflets the GL-foes sand gains of annula flow is pependiula to the adius, eating a vetial mass uent J. 8. The mass uent J geneates a vetial gavity-magneti field H and annula gavity-magneti field H - see (4). 9. The mass uent J geneates a vetial gavity-magneti field H and adial gavity-magneti field H - see (5) 10. The mass uent J geneates a annula gavity-magneti field H and adial gavity-magneti field H - see (6). 4

5 Thus, the main mass uent J eates additional mass uents o J, J, J and gavity-magneti fields H, H, H. They must satisfy Maxwell equations (3-6). The uents must also satisfy the ontinuity ondition div( J ) 0, (8) o, in ylindial oodinates, J 1 J J 0. (9) Mass uents ae J nmv, (10) and thei kineti enegy - W nmv, (11) whee n - the numbe of sand gains in the flow, m - the mass of one sand gain, v - the speed of sand gains flow. Thus, equal mass uents may have diffeent kineti enegy. Fig. 4. The solution of system (3-6, 9) has been found in [5] and has the following fom: H. sin( ) h, (14) H. h os( ), (15) 5

6 whee H 1 sin( ), (16) J. os( ), (17) J. j sin( ), (18) 1 os sin J h. (19) j, h - some onstants, - an intege onstant. Fig. 4 shows the value of J on the setion plane fo 10, h 1, R 50, whee R is the dust whil adius. Hee it is impotant to note that the vetial uents iulate so that the sum of the uents on eah setion is equal to eo - see. (19). Thus, the dust patiles move along a losed path and gavity does not pefom wok on this tajetoy. Nevetheless, some wok is done to oveome the fitional foes between dust patiles when they ae moved by GLfoes. This wok is pefomed by the enegy of the gavitational field - see Appendix. We shall assume that the wok of fition foe between the sand gains P J, (0) whee - the esistivity of the mass uent, independent of its magnitude and dietion (simila to eletial esistane). Then, the entie wok an be defined in the same manne as in [5]. It is equal to 4 P R L j R 1/ 4 16 h 1 4, (1) whee R, L - adius and height of the dust whil aodingly. These fomulas ae simila to the fomulas fo a length of wie with a onstant uent. Assuming that fo mass uents (as well as fo eleti uents), the piniple of minimum themal losses is obseved, it is possible to find the atio of [5] j h R. () whee , (3) Then 4 P R Lh 1/ (4) That is thee powe that must ome fom the gavitational field fo the existene of dust whil. 6

7 3. The Enegy Flows By analogy with eletodynamis let us wite the onnetion between the mass uent and the gavity-eletial intensity in the fom of E J. (5) Also by analogy with eletodynamis let us detemine the density of gavitation enegy flows in the fom S E H. (6) Then we an find S J H. (7) The veto podut J H in ylindial oodinates looks as follows: S J H J H S J H S J H J H (8) S J H J H Enegy flows and fom stability wee used in simila mathematial models [6, 7]. By analogy, one ould ague that thee is no powe flow out of the body of the dust whil. Inside the body it is dieted along the adius fom peiphey to ente - S ; iumfeentially - S f ; vetial down - S. These enegy flows povide pesevation of the dust whil fom, fo the hange of its fom equies extenal enegy inflow [7], vetial stability, the dust whil motion. 4. Vetial Stability The body of the dust whil is pemeated by flows of gavitational enegy that ae eated by mass uents. A fomulai elationship between the uents and enegy flows is disussed in [5] fo diet uent. The same dependenies an be used in this ase. In patiula, in the body of a votex thee is a flow of enegy dieted vetially, with a density S j. (30) h 7

8 In the Intodution it was shown that a flow with a given density pemeating a body eates a pessue foe ating on the body with a density (pessue) S F, (31) In a dietion opposite to the flow. Let us find the full foe of the pessue exeted in eah setion of the body of the dust whil of adius R, R R j hr Fo S d j h d. (3) As the flow of enegy (30) is dieted downwads, the foe of opposite (3) is dieted upwads and suppots the dust whil in an upight position. The gavity ounteats to the above foe and balanes it. 5. The Motion of the Dust whil The tajetoy of the dust whil is pooly peditable. We an say that the dust whil makes haoti movement. In ode to show that the motion of the dust whil is aomplished by the intenal enegy (and not by the foe of the wind) let us again tun to the onsideation of the intenal flow of eletomagneti enegy. In [5] it is shown that in the body of the dust whil thee is a flow of enegy dieted adially with density 1 3 S h j. (33) As fo the vetial enegy flow, a foe with the density S F. (34) also oesponds to this flow. Let us find the total foe ating in the dust whil's body along the adius: R 1 Fo S d. (35) 0 Fo a symmetial distibution of the adial flow total foe (35) is eo. If the axial symmety of the votex is boken, then thee appeas an unompensated foe. Let 1 - be a oeffiient haateiing the symmety beaking. Then unompensated foe an be found fom the fomula 8

9 o 1 R / R F o S d S d. (36) 0 R / F o o, in view of (33), F o R 1 S R / d R 1 h R / R R h j 3 5. (37) j 4 d. (38) This foe esults of the motion of the dust whil as a whole. It an be shown that the eason fo this distotion is ai esistane and sand gains inetia (but that is anothe topi). Appendix Consevative foes (by definition) do not pefom wok on a losed tajetoy. The foe of gavity is a onsevative foe (whih is poved mathematially). Hene the onlusion is eahed that 1) thee does not exist a moto using only onsevative foes (speifially, the foe of gavity) to pefom wok. Next an unpoven onlusion is made that ) thee does not exist a moto using the enegy of onsevative foes soue (inluding the gavity foes), fo pefoming the wok. Coulomb foes ae also onsevative. Fom this by analogy one an make the onlusion 1). Howeve, the onlusion ) is easily efuted: thee exists, fo example, a DC moto with self-exitation. Its enegy soue is a onstant voltage soue, i.e., a soue of Coulomb foes. Theefoe, in the geneal ase, the assetion ) is inoet, and the tue statement is as follows: 3) Thee an exist a moto using the enegy of onsevative foes soue fo pefoming wok. Nevetheless, the existene of the moto that uses enegy of the eletial onsevative foes soue (SECF) does not mean that thee is a moto that uses the enegy soue of the gavitational onsevative foes (SGCF). 9

10 Eletial foes eate the hages motion along a losed tajetoy eleti uent whih foms a magneti field. Due to this the enegy of SECF tuns into magneti enegy. It ous even if the enegy is not expended fo the motion of the hages on the losed path. Thus, the enegy of SECF exeeds the enegy of the mehanial motion of the hages. This is the eason fo the existene of a moto using the enegy SECF. Gavity foes also an eate a mass motion on a losed tajetoy mass uent. Let us assume that mass uent also foms a gavity magneti field (it is shown in []). Then by analogy with the pevious we may assume that 4) thee an exist a moto using the enegy of the soue of gavity onsevative foes fo pefoming wok. This does not ontadit the law of onsevation of enegy: it is the enegy of SGCF that is onveted into wok, and SGCF powe soue loses some of its enegy (it annot be said that the enegy of SGCF may be used only fo the movement of the masses). 10 Refeenes 1. Dust_devil, Khmelnik S.I. Expeimental Claifiation of Maxwell-Simila Gavitation Equations, "Papes of Independent Authos", publ. «DNA», pinted in USA, ISSN , Lulu In., ID , Isael-Russia, 014, iss. 5, ISBN , in Russian, R.P. Feynman, R.B. Leighton, M. Sands. The Feynman Letues on Physis, volume, Khmelnik S.I. Loent Foe, Ampee Foe and Momentum Consevation Law Quantitative. Analysis and Coollaies. "Papes of Independent Authos", publ. «DNA», ISSN , pinted in USA, Lulu In , Isael-Russia, 014, iss. 30, ISBN , in Russian, Khmelnik S.I. Stutue of Constant Cuent, 6. Khmelnik S.I. Математическая модель электрического торнадо, in Russian,

11 7. Khmelnik S.I. Mathematial Model of Ball Lightning 8. Khmelnik S.I. The Flow Stutue of the Eletomagneti Enegy in the Wie with Constant Cuent, in Rusian, 11

Extra Examples for Chapter 1

Extra Examples for Chapter 1 Exta Examples fo Chapte 1 Example 1: Conenti ylinde visomete is a devie used to measue the visosity of liquids. A liquid of unknown visosity is filling the small gap between two onenti ylindes, one is

More information

8.022 (E&M) Lecture 13. What we learned about magnetism so far

8.022 (E&M) Lecture 13. What we learned about magnetism so far 8.0 (E&M) Letue 13 Topis: B s ole in Mawell s equations Veto potential Biot-Savat law and its appliations What we leaned about magnetism so fa Magneti Field B Epeiments: uents in s geneate foes on hages

More information

Experiment 1 Electric field and electric potential

Experiment 1 Electric field and electric potential Expeiment 1 Eleti field and eleti potential Pupose Map eleti equipotential lines and eleti field lines fo two-dimensional hage onfiguations. Equipment Thee sheets of ondutive papes with ondutive-ink eletodes,

More information

Physics 218, Spring March 2004

Physics 218, Spring March 2004 Today in Physis 8: eleti dipole adiation II The fa field Veto potential fo an osillating eleti dipole Radiated fields and intensity fo an osillating eleti dipole Total satteing oss setion of a dieleti

More information

(conservation of momentum)

(conservation of momentum) Dynamis of Binay Collisions Assumptions fo elasti ollisions: a) Eletially neutal moleules fo whih the foe between moleules depends only on the distane between thei entes. b) No intehange between tanslational

More information

In electrostatics, the electric field E and its sources (charges) are related by Gauss s law: Surface

In electrostatics, the electric field E and its sources (charges) are related by Gauss s law: Surface Ampee s law n eletostatis, the eleti field E and its soues (hages) ae elated by Gauss s law: EdA i 4πQenl Sufae Why useful? When symmety applies, E an be easily omputed Similaly, in magnetism the magneti

More information

Khmelnik S.I. Unusual fountain and gravitomagnetism

Khmelnik S.I. Unusual fountain and gravitomagnetism Khmelnik.I. Unusual ountain and gavitomagnetism Contents. Intoduction. Main mathematical model 3. Computational algoithm 4. Enegy lows in the unusual ountain 5. et shape calculation 6. Conclusion eeences

More information

DARK MATTER AND THE DYNAMICS OF GALAXIES: A NEWTONIAN APPROACH 1. INTRODUCTION

DARK MATTER AND THE DYNAMICS OF GALAXIES: A NEWTONIAN APPROACH 1. INTRODUCTION DARK MATTER AND THE DYNAMICS OF GALAXIES: A NEWTONIAN APPROACH Mugu B. RĂUŢ Coesponding autho: Mugu RĂUŢ, E-mail: m_b_aut@yahoo.om Abstat In this pape I popose a oetion to the well-known Newtonian gavitational

More information

Recitation PHYS 131. must be one-half of T 2

Recitation PHYS 131. must be one-half of T 2 Reitation PHYS 131 Ch. 5: FOC 1, 3, 7, 10, 15. Pobles 4, 17, 3, 5, 36, 47 & 59. Ch 5: FOC Questions 1, 3, 7, 10 & 15. 1. () The eloity of a has a onstant agnitude (speed) and dietion. Sine its eloity is

More information

From E.G. Haug Escape Velocity To the Golden Ratio at the Black Hole. Branko Zivlak, Novi Sad, May 2018

From E.G. Haug Escape Velocity To the Golden Ratio at the Black Hole. Branko Zivlak, Novi Sad, May 2018 Fom E.G. Haug Esape eloity To the Golden Ratio at the Blak Hole Banko Zivlak, bzivlak@gmail.om Novi Sad, May 018 Abstat Esape veloity fom the E.G. Haug has been heked. It is ompaed with obital veloity

More information

2. Equation of generalized Dynamics. Let rectangular right hand coordinate triple is fixed in three-dimensional Euclidian space.

2. Equation of generalized Dynamics. Let rectangular right hand coordinate triple is fixed in three-dimensional Euclidian space. Genealized Dynamis about Foes Ating on Chage Moving in Capaito and Solenoid. J.G. Klyushin, Ph. D. Aademy of Civil Aviation, hai of applied mathematis; e-mail: klyushin@shaping.og; mail: Intenational Club

More information

SAMPLE LABORATORY SESSION FOR JAVA MODULE B. Calculations for Sample Cross-Section 2

SAMPLE LABORATORY SESSION FOR JAVA MODULE B. Calculations for Sample Cross-Section 2 SAMPLE LABORATORY SESSION FOR JAVA MODULE B Calulations fo Sample Coss-Setion. Use Input. Setion Popeties The popeties of Sample Coss-Setion ae shown in Figue and ae summaized below. Figue : Popeties of

More information

AVS fiziks. Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

AVS fiziks. Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES ELECTROMAGNETIC THEORY SOLUTIONS GATE- Q. An insulating sphee of adius a aies a hage density a os ; a. The leading ode tem fo the eleti field at a distane d, fa away fom the hage distibution, is popotional

More information

PHYS 110B - HW #7 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased PHYS B - HW #7 Fall 5, Solutions by David Pae Equations efeened as Eq. # ae fom Giffiths Poblem statements ae paaphased [.] Poblem.4 fom Giffiths Show that Eq..4, V, t an be witten as Eq..44, V, t q t

More information

Mass Transfer (Stoffaustausch)

Mass Transfer (Stoffaustausch) Mass Tansfe (Stoffaustaush) Examination 3. August 3 Name: Legi-N.: Edition Diffusion by E. L. Cussle: none nd 3 d Test Duation: minutes The following mateials ae not pemitted at you table and have to be

More information

Red Shift and Blue Shift: A realistic approach

Red Shift and Blue Shift: A realistic approach Red Shift and Blue Shift: A ealisti appoah Benhad Rothenstein Politehnia Uniesity of Timisoaa, Physis Dept., Timisoaa, Romania E-mail: benhad_othenstein@yahoo.om Coina Nafonita Politehnia Uniesity of Timisoaa,

More information

Classical Approach to the Theory of Elementary Particles

Classical Approach to the Theory of Elementary Particles Classial Appoah to the Theoy of Elementay Patiles By Yui N. Keilman Abstat: Pesented hee is an attempt to modify /extend lassial eletodynamis (CED) in ode to enable the lassial appoah (the appoah based

More information

Time Dilation in Gravity Wells

Time Dilation in Gravity Wells Time Dilation in Gavity Wells By Rihad R. Shiffman Digital Gaphis Asso. 038 Dunkik Ave. L.A., Ca. 9005 s@isi.edu This doument disusses the geneal elativisti effet of time dilation aused by a spheially

More information

PROPAGATION OF PHOTON IN RESTING AND MOVING MEDIUM. J. Zaleśny. Institute of Physics, Technical University of Szczecin, A b s t r a c t

PROPAGATION OF PHOTON IN RESTING AND MOVING MEDIUM. J. Zaleśny. Institute of Physics, Technical University of Szczecin, A b s t r a c t PROPGTION OF PHOTON IN RESTING ND MOVING MEDIUM J Zaleśny Institute of Physis, Tehnial Univesity of Szzein, l 30 70 Piastów 48, Szzein, Poland b s t a t The popagation of photon in a dieleti may be desibed

More information

Determine the Stress Calculating Mode of Sliding Failure of Soil Mass under the Push-Extend Multi-under-Reamed Pile

Determine the Stress Calculating Mode of Sliding Failure of Soil Mass under the Push-Extend Multi-under-Reamed Pile Engineeing, 014, 6, 54-59 Published Online Apil 014 in SiRes. http://www.sip.og/jounal/eng http://dx.doi.og/10.436/eng.014.6509 Deteine the Stess Calulating Mode of Sliding Failue of Soil Mass unde the

More information

Annotation The presented experiment is a proof of the fact that a stationary flow of electromagnetic energy creates electromagnetic induction.

Annotation The presented experiment is a proof of the fact that a stationary flow of electromagnetic energy creates electromagnetic induction. Khmelnik S.I. The Expeiment Confiming the Existence of the Fouth Electomagnetic Induction Annotation The pesented expeiment is a poof of the fact that a stationay flow of electomagnetic enegy ceates electomagnetic

More information

Revised Newtonian Formula of Gravity and Equation of Cosmology in Flat Space-Time Transformed from Schwarzschild Solution

Revised Newtonian Formula of Gravity and Equation of Cosmology in Flat Space-Time Transformed from Schwarzschild Solution Intenational Jounal of Astonomy and Astophysis,,, 6-8 http://dx.doi.og/.46/ijaa.. Published Online Mah (http://www.sip.og/jounal/ijaa) evised Newtonian Fomula of Gavity and Equation of Cosmology in Flat

More information

Electric Anisotropy, Magnetic Anisotropy, Uniaxial and Biaxial Materials, Bianisotropic Media (Definitions)

Electric Anisotropy, Magnetic Anisotropy, Uniaxial and Biaxial Materials, Bianisotropic Media (Definitions) leti nisotop agneti nisotop Uniaial and iaial ateials ianisotopi edia efinitions medium is alled eletiall anisotopi if tenso Note that and ae no longe paallel medium is magnetiall anisotopi if tenso Note

More information

Non-Ideal Gas Behavior P.V.T Relationships for Liquid and Solid:

Non-Ideal Gas Behavior P.V.T Relationships for Liquid and Solid: hemodynamis Non-Ideal Gas Behavio.. Relationships fo Liquid and Solid: An equation of state may be solved fo any one of the thee quantities, o as a funtion of the othe two. If is onsideed a funtion of

More information

Photographing a time interval

Photographing a time interval Potogaping a time inteval Benad Rotenstein and Ioan Damian Politennia Univesity of imisoaa Depatment of Pysis imisoaa Romania benad_otenstein@yaoo.om ijdamian@yaoo.om Abstat A metod of measuing time intevals

More information

Generalized Vapor Pressure Prediction Consistent with Cubic Equations of State

Generalized Vapor Pressure Prediction Consistent with Cubic Equations of State Genealized Vapo Pessue Pedition Consistent with Cubi Equations of State Laua L. Petasky and Mihael J. Misovih, Hope College, Holland, MI Intodution Equations of state may be used to alulate pue omponent

More information

not to be republished NCERT ELECTROMAGNETIC WAVES Chapter Eight MCQ I

not to be republished NCERT ELECTROMAGNETIC WAVES Chapter Eight MCQ I Chapte Eight ELECTROMAGNETIC WAVES MCQ I 8 One equies ev of enegy to dissoiate a abon monoxide moleule into abon and oxygen atoms The minimum fequeny of the appopiate eletomagneti adiation to ahieve the

More information

Journal of Theoretics

Journal of Theoretics Jounal of Theoetis Volume 6-1, Feb-Mah 4 An Altenative Exlanation of the Cosmologial Redshift by the Tahyon Plasma Field in Integalati Sae Takaaki Musha musha@jda-tdi.go.j, musha@jg.ejnet.ne.j MRI, -11-7-61,

More information

THE A-TEMPORAL COSMIC SPACE AND A GENERALIZATION OF THE DIRAC EQUATION

THE A-TEMPORAL COSMIC SPACE AND A GENERALIZATION OF THE DIRAC EQUATION THE -TEMPORL COMC PCE N GENERLZTON OF THE RC EQUTON avide Fisaletti aelife nstitute an Loenzo in Camo PU taly fisalettidavide@libeo.it bstat model desibing an a-temoal sae-gavity endowed with a quantum

More information

Eddy Currents and Magnetic Calibrations in LDX using a Copper Plasma. D.P. Boyle, PPPL M.E. Mauel, D.T. Garnier, Columbia J.

Eddy Currents and Magnetic Calibrations in LDX using a Copper Plasma. D.P. Boyle, PPPL M.E. Mauel, D.T. Garnier, Columbia J. Eddy Cuents and Magneti Calibations in LDX using a Coppe Plasma D.P. Boyle PPPL M.E. Mauel D.T. Ganie Columbia J. Kesne MIT PSFC Coppe Plasma Oveview LDX Magnetis Goals Calibate magneti diagnostis positions

More information

Circular Motion Problem Solving

Circular Motion Problem Solving iula Motion Poblem Soling Aeleation o a hange in eloity i aued by a net foe: Newton nd Law An objet aeleate when eithe the magnitude o the dietion of the eloity hange We aw in the lat unit that an objet

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

Lorentz-invariant theory of gravitation

Lorentz-invariant theory of gravitation oentz-invaiant theoy of gavitation (summay) Alexande G. Kyiakos * Annotation This atile is a summay of the non-geometial oentz-invaiant theoy of gavitation (IGT) (efeenes and itations hee allow to familiaize

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Mass Transfer. Dispersion. Lecture 13, , Dr. K. Wegner

Mass Transfer. Dispersion. Lecture 13, , Dr. K. Wegner Mass Tansfe Dispesion Letue 3, 3..7, D. K. Wegne Dispesion to dispese to spead widely. Dispesion is the at o poess of dispesing, of distibuting one substane (small volume fation) in anothe (lage volume

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physial insight in the sound geneation mehanism an be gained by onsideing simple analytial solutions to the wave equation One example is to onside aousti adiation

More information

AN ELECTROMAGNETIC LAUNCH SYSTEM FOR UAVs

AN ELECTROMAGNETIC LAUNCH SYSTEM FOR UAVs Tehnial Sienes and Applied athematis AN ELECTROAGNETIC LAUNCH SYSTE FOR UAVs Lauian GHERAN Depatment of Eletonis and Infomatis, Faulty of Aeonautial anagement, Heni Coandă Ai Foe Aademy, Basov, Romania

More information

dp p v= = ON SHOCK WAVES AT LARGE DISTANCES FROM THE PLACE OF THEIR ORIGIN By Lev D. Landau J. Phys. U.S.S.R. 9, 496 (1945).

dp p v= = ON SHOCK WAVES AT LARGE DISTANCES FROM THE PLACE OF THEIR ORIGIN By Lev D. Landau J. Phys. U.S.S.R. 9, 496 (1945). ON SHOCK WAVES AT LARGE DISTANCES FROM THE PLACE OF THEIR ORIGIN By Lev D. Landau J. Phys. U.S.S.R. 9, 496 (1945). It is shown that at lage distanes fom the body, moving with a. veloity exeeding that of

More information

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field Lectue 3.7 ELECTRICITY Electic chage Coulomb s law Electic field ELECTRICITY Inteaction between electically chages objects Many impotant uses Light Heat Rail tavel Computes Cental nevous system Human body

More information

4) Magnetic confinement of plasma

4) Magnetic confinement of plasma 4) Magneti onfineent of plasa Due to the shielding in the plasa, thee is alost no ontol with eleti fields. A ontol is possible with agneti fields, as patiles ae bound to the field lines. This is alled

More information

Projection Gravitation, a Projection Force from 5-dimensional Space-time into 4-dimensional Space-time

Projection Gravitation, a Projection Force from 5-dimensional Space-time into 4-dimensional Space-time Intenational Jounal of Physics, 17, Vol. 5, No. 5, 181-196 Available online at http://pubs.sciepub.com/ijp/5/5/6 Science and ducation Publishing DOI:1.1691/ijp-5-5-6 Pojection Gavitation, a Pojection Foce

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Mass- and light-horizons, black holes' radii, the Schwartzschild metric and the Kerr metric

Mass- and light-horizons, black holes' radii, the Schwartzschild metric and the Kerr metric 006-010 Thiey De Mees Mass- and light-hoizons, blak holes' adii, the Shwatzshild meti and the Ke meti mpoved alulus. (using gavitomagnetism) T. De Mees - thieydm@pandoa.be Abstat Blak holes geneally ae

More information

A Theory of the Podkletnov Effect based on General Relativity: Anti-Gravity Force due to the Perturbed Non-Holonomic Background of Space

A Theory of the Podkletnov Effect based on General Relativity: Anti-Gravity Force due to the Perturbed Non-Holonomic Background of Space July, 007 PROGRESS IN PHYSICS Volume 3 SPECIAL REPORT A Theoy of the Podkletnov Effet based on Geneal Relativity: Anti-Gavity Foe due to the Petubed Non-Holonomi Bakgound of Spae Dmiti Rabounski and Laissa

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

The Radii of Baryons

The Radii of Baryons Jounal Heading Yea; Vol. (No.): page ange DOI: 0.592/j.xxx.xxxxxxxx.xx The Radii of Bayons Maio Evealdo de Souza Depatmento de Físia, Univesidade Fedeal de Segipe, São Cistovão, 4900-000, Bazil Astat Consideing

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors.

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors. Chapte 0. Gases Chaacteistics of Gases All substances have thee phases: solid, liquid, and gas. Substances that ae liquids o solids unde odinay conditions may also exist as gases. These ae often efeed

More information

Molecular Energy Changes During a Reaction

Molecular Energy Changes During a Reaction Reation Kinetis Moleula Enegy Changes Duing a Reation Chemial Enegy of Speies E xn E* +BP E* P+B Moleules above this enegy level (defined somewhat abitaily) ae alled ativated omplexes Poduts Reatants Pogession

More information

Radial Inflow Experiment:GFD III

Radial Inflow Experiment:GFD III Radial Inflow Expeiment:GFD III John Mashall Febuay 6, 003 Abstact We otate a cylinde about its vetical axis: the cylinde has a cicula dain hole in the cente of its bottom. Wate entes at a constant ate

More information

An analytic calculation method on air gap flux in permanent magnet. brushless DC motor with ironless rotor

An analytic calculation method on air gap flux in permanent magnet. brushless DC motor with ironless rotor Intenational Confeene on Enegy and Envionmental Potetion ICEEP 6 An analyti alulation method on ai gap flux in pemanent magnet bushless DC moto with ionless oto Xinghua Wang,Yaolong Sheng andshugang Zhao,,

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

Chapter 4. Sampling of Continuous-Time Signals

Chapter 4. Sampling of Continuous-Time Signals Chapte 4 Sampling of Continuous-Time Signals 1 Intodution Disete-time signals most ommonly ou as epesentations of sampled ontinuous-time signals. Unde easonable onstaints, a ontinuous-time signal an be

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

arxiv: v4 [physics.class-ph] 14 Jul 2018

arxiv: v4 [physics.class-ph] 14 Jul 2018 Noname manusipt No. will be inseted by the edito Long-Range Longitudinal Eleti Wave in Vauum Radiated by Eleti Dipole: Pat I Altay Zhakatayev, Leila Tlebaldiyeva axiv:7.v4 [physis.lass-ph] 4 Jul 8 Reeived:

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

Answers to Coursebook questions Chapter 2.11

Answers to Coursebook questions Chapter 2.11 Answes to Couseook questions Chapte 11 1 he net foe on the satellite is F = G Mm and this plays the ole of the entipetal foe on the satellite, ie mv mv Equating the two gives π Fo iula motion we have that

More information

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law PHY61 Eniched Physics Lectue Notes Law Disclaime: These lectue notes ae not meant to eplace the couse textbook. The content may be incomplete. ome topics may be unclea. These notes ae only meant to be

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1 PROBLEM SET #3A AST242 Figue 1. Two concentic co-axial cylindes each otating at a diffeent angula otation ate. A viscous fluid lies between the two cylindes. 1. Couette Flow A viscous fluid lies in the

More information

Transmission Line Analysis of Beam Deflection in a BPM Stripline Kicker

Transmission Line Analysis of Beam Deflection in a BPM Stripline Kicker UCR-JC-126073 PREPRINT Tansmission ine Analysis of Beam Defletion in a BPM Stipline Kike Geoge J. Capoaso Yu Ju Chen Bian Poole This pape was pepaed fo submittal to the 1997 Patile Aeleato Confeene Vanouve,

More information

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

Chapter 4. Newton s Laws of Motion. Newton s Law of Motion. Sir Isaac Newton ( ) published in 1687

Chapter 4. Newton s Laws of Motion. Newton s Law of Motion. Sir Isaac Newton ( ) published in 1687 Chapte 4 Newton s Laws of Motion 1 Newton s Law of Motion Si Isaac Newton (1642 1727) published in 1687 2 1 Kinematics vs. Dynamics So fa, we discussed kinematics (chaptes 2 and 3) The discussion, was

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

The Millikan Experiment: Determining the Elementary Charge

The Millikan Experiment: Determining the Elementary Charge LAB EXERCISE 7.5.1 7.5 The Elementay Chage (p. 374) Can you think of a method that could be used to suggest that an elementay chage exists? Figue 1 Robet Millikan (1868 1953) m + q V b The Millikan Expeiment:

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory letomagnetism Chistophe R Pio Fellow and Tuto in Mathematis Tinity College Oxfod ASTeC Intense Beams Goup Ruthefod Appleton Laboatoy Contents Maxwell s equations and Loentz Foe Law Motion of a haged patile

More information

Gravitoelectromagnetism. II. Speed of Light in Gravitational Field

Gravitoelectromagnetism. II. Speed of Light in Gravitational Field Zbigniew Osiak aitoeletomagnetism. II. May 9, 8 aitoeletomagnetism. II. peed of Light in aitational Field Zbigniew Osiak E-mail: zbigniew.osiak@gmail.om http://oid.og/--57-36x http://ixa.og/autho/zbigniew_osiak

More information

For circular motion with tangential acceleration we get:

For circular motion with tangential acceleration we get: FW Phys 13 E:\Exel files\h1-18 Fomulas eiew fo final4.do page 1 of 1 Last pinted 5/19/4 :4: PM Kinemati fomulas: x = a = onstant (1.1) = α = onstant Pojetile Motion: 1 The inemati equation eto t () = at

More information

Astrophysical Cyclotron-Exact solution of Fly by Anomaly Energy from Solar System

Astrophysical Cyclotron-Exact solution of Fly by Anomaly Energy from Solar System Astophysial Cyloton-Exat solution of Fly by Anomaly Enegy fom Sola System Rawash Hamza Communiations Depatment, Caio Univesity Egyptian Relativity Goup (ERG omaoash5@hotmail.om Abstat: The well physial

More information

Black Body Radiation and Radiometric Parameters:

Black Body Radiation and Radiometric Parameters: Black Body Radiation and Radiometic Paametes: All mateials absob and emit adiation to some extent. A blackbody is an idealization of how mateials emit and absob adiation. It can be used as a efeence fo

More information

Current Balance Warm Up

Current Balance Warm Up PHYSICS EXPERIMENTS 133 Cuent Balance-1 Cuent Balance Wam Up 1. Foce between cuent-caying wies Wie 1 has a length L (whee L is "long") and caies a cuent I 0. What is the magnitude of the magnetic field

More information

7.2.1 Basic relations for Torsion of Circular Members

7.2.1 Basic relations for Torsion of Circular Members Section 7. 7. osion In this section, the geomety to be consideed is that of a long slende cicula ba and the load is one which twists the ba. Such poblems ae impotant in the analysis of twisting components,

More information

Circular Orbits. and g =

Circular Orbits. and g = using analyse planetay and satellite motion modelled as unifom cicula motion in a univesal gavitation field, a = v = 4π and g = T GM1 GM and F = 1M SATELLITES IN OBIT A satellite is any object that is

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

The Kerr-metric, mass- and light-horizons, and black holes' radii.

The Kerr-metric, mass- and light-horizons, and black holes' radii. 006 Thiey De Mees The Ke-meti, mass- and light-hoizons, and blak holes' adii. (using the Analogue Maxwell theoy) T. De Mees - thieydm @ pandoa.be Abstat Blak holes an geneally be defined as stella objets

More information

On the integration of the equations of hydrodynamics

On the integration of the equations of hydrodynamics Uebe die Integation de hydodynamischen Gleichungen J f eine u angew Math 56 (859) -0 On the integation of the equations of hydodynamics (By A Clebsch at Calsuhe) Tanslated by D H Delphenich In a pevious

More information

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G-type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this investigation

More information

Suppose you have a bank account that earns interest at rate r, and you have made an initial deposit of X 0

Suppose you have a bank account that earns interest at rate r, and you have made an initial deposit of X 0 IOECONOMIC MODEL OF A FISHERY (ontinued) Dynami Maximum Eonomi Yield In ou deivation of maximum eonomi yield (MEY) we examined a system at equilibium and ou analysis made no distintion between pofits in

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

New problems in universal algebraic geometry illustrated by boolean equations

New problems in universal algebraic geometry illustrated by boolean equations New poblems in univesal algebaic geomety illustated by boolean equations axiv:1611.00152v2 [math.ra] 25 Nov 2016 Atem N. Shevlyakov Novembe 28, 2016 Abstact We discuss new poblems in univesal algebaic

More information

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G =

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G = ics Announcements day, embe 9, 004 Ch 1: Gavity Univesal Law Potential Enegy Keple s Laws Ch 15: Fluids density hydostatic equilibium Pascal s Pinciple This week s lab will be anothe physics wokshop -

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

THEORETICAL AND EXPERIMENTAL STUDY ON DROPWISE CONDENSATION IN PLATE HEAT EXCHANGERS

THEORETICAL AND EXPERIMENTAL STUDY ON DROPWISE CONDENSATION IN PLATE HEAT EXCHANGERS Abstat THEORETICAL AND EXPERIMENTAL STUDY ON DROPWISE CONDENSATION IN PLATE HEAT EXCHANGERS V. Bendt, S. Zunft and H. Mülle-Steinhagen Geman Aeospae Cente (DLR), Stuttgat, Gemany This pape desibes the

More information

Reasons to Build a Hydraulic Model

Reasons to Build a Hydraulic Model Reasons to Build a Hydaulic Model Detemine dischage coefficient fo lage flow measuement stuctue (spillway o wei) Develop effective method fo enegy dissipation at outlet of hydaulic stuctue Development

More information

Analysis of high speed machining center spindle dynamic unit structure performance Yuan guowei

Analysis of high speed machining center spindle dynamic unit structure performance Yuan guowei Intenational Confeence on Intelligent Systems Reseach and Mechatonics Engineeing (ISRME 0) Analysis of high speed machining cente spindle dynamic unit stuctue pefomance Yuan guowei Liaoning jidian polytechnic,dan

More information

QUALITATIVE AND QUANTITATIVE ANALYSIS OF MUSCLE POWER

QUALITATIVE AND QUANTITATIVE ANALYSIS OF MUSCLE POWER QUALITATIVE AND QUANTITATIVE ANALYSIS OF MUSCLE POWER Jey N. Baham Anand B. Shetty Mechanical Kinesiology Laboatoy Depatment of Kinesiology Univesity of Nothen Coloado Geeley, Coloado Muscle powe is one

More information

OBSTACLE DETECTION USING RING BEAM SYSTEM

OBSTACLE DETECTION USING RING BEAM SYSTEM OBSTACLE DETECTION USING RING BEAM SYSTEM M. Hiaki, K. Takamasu and S. Ozono Depatment of Peision Engineeing, The Univesity of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan Abstat: In this pape, we popose

More information

Chapter 2 ONE DIMENSIONAL STEADY STATE CONDUCTION. Chapter 2 Chee 318 1

Chapter 2 ONE DIMENSIONAL STEADY STATE CONDUCTION. Chapter 2 Chee 318 1 hapte ONE DIMENSIONAL SEADY SAE ONDUION hapte hee 38 HEA ONDUION HOUGH OMPOSIE EANGULA WALLS empeatue pofile A B X X 3 X 3 4 X 4 Χ A Χ B Χ hapte hee 38 hemal conductivity Fouie s law ( is constant) A A

More information

E(r,t) = e 3. r 3. (b) Show that the transverse current, J t,is 3n(n e 3 ) e 3

E(r,t) = e 3. r 3. (b) Show that the transverse current, J t,is 3n(n e 3 ) e 3 Polem Set 3 (Jakson 6.20).. An example of the pesevation of ausality and finite speed of popagation in spite of the use of the Coulomg gauge is affoded y a unit stength dipole soue that is flashed on and

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 5

PHYS Summer Professor Caillault Homework Solutions. Chapter 5 PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 5 7. Pictue the Poblem: The ball is acceleated hoizontally fom est to 98 mi/h ove a distance of 1.7 m. Stategy: Use equation 2-12 to

More information