( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

Size: px
Start display at page:

Download "( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is"

Transcription

1 Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/ Using Gauss s & nto to Ampee s Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) ,10 nto to Faaday s & Lenz s RE24 RE ,.7 Faaday & Emf & nductance RE27 Lab 9 Wite-up HW21:RQ.12, 15,17; P.20, 23, 26 RE26 Make-up Tests Fom Last Time Electic Field Flux o The Electic Field Flux though a bit of aea is Φ E A E o The Electic Field Flux out though a closed suface Φ E da E (whee A points out of the enclosed volume) Gauss s Law o Φ E = Q E da = ε enclosed o This Time Using Gauss s Law to find the Electic Field: Fo some distibutions of chage, Gauss s law to detemine the magnitude of the electic field. n paticula, distibutions with vey simple field geometies. 1. Use a symmety agument to detemine the diection of the electic field 2. Daw a Gaussian suface with each patch eithe pependicula o paallel to the electic field 3. Apply Gauss s law to find the magnitude of the electic field Example 1: Spheical shell with adius R and unifomly distibuted chage Q By symmety, the electic field must point adially and its magnitude can only depend on the distance fom the cente of the shell. A sphee of adius is a good Gaussian suface since it will be pependicula to the electic field eveywhee. The electic flux is: E n ˆ A = E 4π 2 ( )

2 ( ), so E = 0 ( q inside = Q), so < R: no chage inside q inside = 0 > R: all chage is inside E n ˆ A = E( 4π 2 )= E = Q 4πε 0 2 q inside ε 0 = Q ε 0 We ve been using these esults fo quite a while now (the second pat was just stated)! Note: Gauss s law only helps get the magnitude of the electic field, not the diection. Example 2: Lage unifomly chaged plate with chage pe aea of Q/A By symmety, the electic field nea the cente of the plate must point pependiculaly away fom the plate. ts magnitude could depend on the distance fom the plate. A box that extends on each side of the plate is a good Gaussian suface since the electic field will be paallel o pependicula to each side. A box f the sides pependicula to the plate each have an aea A box, the electic flux is: E n ˆ A = 2EA box The amount of chage inside the Gaussian suface is E n ˆ A = 2EA box = E = Q A 2ε 0 q inside ε 0 q inside = Q A A box, so = 1 ε 0 Q A A box Note: Need the Symmety. Gauss s law cannot be simply used to detemine the magnitude of the electic field fo chage distibutions that don t have the ight kind of symmety. Fo example, a cube with unifomly distibuted chage. Step 1 fails in this case. Monday, Mach. 23,

3 Chages on Metals: We can make some quick, qualitative obsevations about fields and chages in metals using Gauss s Law. Use what we know about the electic field to detemine popeties of chage. (1) Static equilibium : E = 0 inside metal The electic flux though any shape of closed suface is zeo, so thee is no net chage inside. E = 0 thus Q encl = 0 (2) Steady state: n a unifom, cuent-caying wie with constant aea, E has a constant magnitude and points along the wie. Daw a Gaussian suface just inside the wie (diagam below). The electic flux on the suface is zeo, because the electic field points in one end and out of the othe. Theefoe, thee can be no net chage inside the wie. E unifom thus Q encl = Tansition between two mateials, Suppose thee is a tansition between wies with the same aea A and mobile electon density n, but diffeent mobilities u 1 > u 2. The electon cuents must be the same (Node Rule), so E 1 < E 2. Daw a Gaussian suface just inside the wie that coss the tansition (diagam below). The electic flux on the suface is positive, so thee must be a net positive chage inside the suface. t is on the inteface (see Fig on p. 642). E not unifom thus Q encl not= E 1 E 2 Monday, Mach. 23,

4 Whiteboad Activity: Applying Gauss s Law A. Unifomly-Chaged Rod A thin od of length L has a positive chage Q distibuted unifomly along its length. Field Geomety. Use a symmety agument to detemine the diection of the electic field nea the cente of the od. Choosing the Gaussian bubble. What shape of Gaussian suface can you daw so that each pat is eithe pependicula o paallel to the electic field? Doing the Math. Use Gauss s law to find the magnitude of the electic field at a adial distance fom the od nea its cente. B. Solid Unifomly-Chaged Sphee A solid sphee of adius R has a positive chage Q distibuted unifomly thoughout its volume. Field Geomety. Use a symmety agument to detemine the diection of the electic field. Monday, Mach. 23,

5 Choosing a Gaussian Bubble. What shape of Gaussian suface can you daw so that each pat is eithe pependicula o paallel to the electic field? Doing the Math. Use Gauss s law to find the magnitude of the electic field at a distance fom the cente of the sphee fo: > R < R Monday, Mach. 23,

6 Gauss s Law fo Magnetism: Flux is a vey geneal mathematical idea. The flux of anything (wate fo example) though a closed suface depends on the souces / sinks of that something enclosed by the suface. f neithe (o equal souces and sinks) ae enclosed, then thee s no net flux. Applied to Magnetism. Anothe way to say that thee ae no magnetic dipoles is that thee is no (zeo) magnetic flux though any closed suface: B n ˆ da = 0. n othe wods, thee ae no points that the magnetic field adiates away fom. That s a boing, and not so useful elation. Howeve, thee is a elations, simila to Gauss s Law, that is similaly useful fo magnetism. Ampee s Law: You can detemine what is inside a loop by knowing the magnetic field aound the loop. Sketch some examples: B-field tangent to a loop & counteclockwise cuent out of page B-field tangent to a loop & clockwise cuent into page We want to show that the path integal of the magnetic field aound a closed loop is popotional to the amount of cuent piecing though the loop: B d l = µ 0 inside path. 1. Find the popotionality constant use a single, staight wie caying cuent in the cente of a cicle of adius. ntegate counteclockwise (diection of d l ). The magnetic field is the same size eveywhee on the cicle: B wie µ 0 2 4π, so the path integal is appoximately: B d l = B wie 2π = µ 0 Agument fo Geneality. Though not poven hee, it tuns out that this is bette than an appoximation, it s an equality. You may accept that the appoximation becomes an equality in the limit that goes to zeo; then, having established that it is tue fo the diffeentially thin loop aound a diffeentially small cuent, you can ague that it must scale up to be tue fo a big loop aound the same diffeentially small cuent, and then, the suppe position pinciple can be applied to add up the effects of not so diffeentially small. Monday, Mach. 23,

7 This is what we want. t is tue egadless of the adius of the loop (B vaies as 1/ and the cicumfeence vaies as ). 2. Loop Geomety doesn t matte. Show that the shape of the loop doesn t matte fo a single wie. Any shape of loop can be made with adial segments and acs centeed on the wie. d l 3. Only depends on en-looped cuent. The path integal of the magnetic field aound a closed loop is zeo if a wie is outside. Once again, any shape of loop can be made with adial segments and acs centeed on the wie. Howeve, fo evey segment with a positive path integal, thee will be one that is negative and the same size. Theefoe, the total path integal is zeo. d l 4. Multiple Cuents. Ampee s law holds fo multiple cuents Ex: thee cuents one into the loop, one out of the loop, and one outside of the loop 2 dl 1 Add these equations togethe: B 1 d l = µ 0 1 B 2 d l = µ 0 2 B 3 d l = 0 3 Monday, Mach. 23,

8 ( B 1 + B 2 + B 3 ) d l = µ B d l = µ 0 inside path ( ) The diection of the cuents inside the loop must be taken into account. f you cul the finges of you ight hand in the diection of the path aound the loop, you thumb will point in the diection that is positive fo cuent. Cuents pointing in the opposite diection ae negative. What Ampee s Law Does not say (applies fo whole loop, not segments) Note that Ampee s law says it is the complete loop integal that depends exclusively on the piecing cuent it does not say that the field o even B dl ove a given segment must depend only on the piecing cuent. f you imagine thee paallel wies and daw an Ampeian loop aound just one of them, cetainly the field at evey point on the loop is influenced by all thee cuents; howeve, Ampee s law does say that, when you integate ove the whole loop the contibutions of extenal cuents cancel out of the sum. We noted something simila fo Gauss s Law last time you get the simple esult only when you sum flux though the whole suface. Also, in this fom, it only speaks fo continuous cuents that is, it cannot handle a single moving point chage. Using Ampee s Law to find the Magnetic Field: Like Gauss s Law, Ampee s Law is of paticula use when the field geometies ae simple. Fo some distibutions of chage, Ampee s law to detemine the magnitude of the magnetic field. 1. Field Geomety. Use a symmety agument to detemine the diection of the magnetic field 2. Ampeian Loop. Daw a Ampeean loop that is eithe pependicula o paallel to the magnetic field 3. Math. Apply Ampee s law to find the magnitude of the magnetic field Monday, Mach. 23,

9 C. Thick Cuent-Caying Wie A long, thick wie of adius R caies a cuent. Field Geomety. Use a symmety agument to detemine the diection of the magnetic field nea the cente of the wie s length. o We have cylindical symmety in the cuent flow, so we must have cylindical symmety in the magnetic field. That necessitates that, at any point a distance fom the cente of the wie, the field must have the same stength and the same diection (in tems of and θ), so that if the wie is otated, the field, just like the cuent, looks unchanged. Geneally, this says the field looks like: θ nˆ No Radial Component by Gauss s Law o Note: as illustated, symmety aguments alone don t foce the field to be tangential to the suface. That comes fom Gauss s Law fo Magnetism: B n ˆ da = 0 o magine fo a moment that we enwap the wie in a Gaussian shell, ou Ampeian ing is just a coss-section of that. Applying symmety, we still have that B is constant and of constant oientation elative to the aea eveywhee on the suface, so Bsin θ da = Bsin θlπ = 0. The only way to make this equal zeo as we know it must is fo sinθ =0, o θ = 90. Ampeian Loop. What shape of Ampeean loop can you daw so that the magnetic field is tangent o pependicula to each segment? Math. Use Ampee s law to find the magnitude of the magnetic field at a adial distance fom the cente of the wie fo: > R Now, applying Ampee s Law gives Monday, Mach. 23,

10 B d l = µ B2π = µ µ B = π insidepath insidepath insidepath Exactly what we have fo an infinitesimally thin wie. n fact, notice that the only assumption that we made about the cuent density was that it was cylindically symmetic: that coves a line cuent (no width), a hollow shell of cuent, and eveything in between say, a cuent that dops of acoss the adius of the wie. As long as it s adially symmetic, the field looks the same. < R if we assume unifom cuent density, /A, then Hollow wie. Look at the case of a hollow shell of cuent: R The math woks out just the same: B d l = µ B2π = µ µ B = insidepath 2π insidepath insidepath What about inside this hollow tube of cuent? fo >R Coaxial Cable The symmety and Gaussian aguments ae the same, but inside is 0, so inside B = 0. Now, what about a Coaxial cable? That s got a thin wie in the middle, caying cuent one way, and a hollow tube encicling it and caying equal and opposite cuent. R Monday, Mach. 23,

11 µ 0 wie The field inside the tube is puely due to the inne wie, B =, <R 2π While the field outside is due to both of the wie and tube of cuent, µ 0 wie µ 0tube B = +, >R, 2π 2π but if they have equal and opposite cuents, then the two tems cancel so B = 0, >R. That, in fact, is one of the appeals of coaxial wies. \ Solenoid. Now fo something a little moe complicated: the solenoid. Symmety: demands that the field is cylindically symmetic. f we appoximate the solenoid as infinitely long, i.e., we want an appoximate answe good nea the middle of its length, we can ague fo linea symmety too that is, anywhee we look along the solenoid s length, the field must be pointing in the same diection. Consideing the fields due two o thee consecutive ings, we can also ague that they cancel each othe s adial components of the field (o a Gaussian suface could be employed to ule this out.) So we e left with only axial components. Monday, Mach. 23,

12 Example 3: solenoid with N/L waps pe length caying cuent The magnetic field inside the solenoid points in the diection shown below (RHR). Daw a ectangula loop that has a side paallel to the magnetic field. The loop can extend vey fa away fom the solenoid so that the contibution of the top end must be zeo. d The path integal is Bd and the amount of cuent in the loop is d( N L), so: B Bd = µ 0 [ d( N L) ] B = µ 0 N L This is much moe difficult to do using the Biot-Savat Law (see Ch. 17). Note: it is not tivial to eason that the field is puely axial. Applying Ampee s Law in the plane of a cuent loop gives 0 (the cuent loop doesn t piece the Ampeian loop) so thee s no angula component; applying Gauss s law tells us thee s no adial component. Apply to a Tous. Applying Ampee s Law Fiday: Pactice with Gauss s law and Ampee s law Monday, Mach. 23,

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge.

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge. Magnetic fields (oigins) CHAPTER 27 SOURCES OF MAGNETC FELD Magnetic field due to a moving chage. Electic cuents Pemanent magnets Magnetic field due to electic cuents Staight wies Cicula coil Solenoid

More information

Faraday s Law (continued)

Faraday s Law (continued) Faaday s Law (continued) What causes cuent to flow in wie? Answe: an field in the wie. A changing magnetic flux not only causes an MF aound a loop but an induced electic field. Can wite Faaday s Law: ε

More information

Module 05: Gauss s s Law a

Module 05: Gauss s s Law a Module 05: Gauss s s Law a 1 Gauss s Law The fist Maxwell Equation! And a vey useful computational technique to find the electic field E when the souce has enough symmety. 2 Gauss s Law The Idea The total

More information

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call Today s Plan lectic Dipoles Moe on Gauss Law Comment on PDF copies of Lectues Final iclicke oll-call lectic Dipoles A positive (q) and negative chage (-q) sepaated by a small distance d. lectic dipole

More information

Welcome to Physics 272

Welcome to Physics 272 Welcome to Physics 7 Bob Mose mose@phys.hawaii.edu http://www.phys.hawaii.edu/~mose/physics7.html To do: Sign into Masteing Physics phys-7 webpage Registe i-clickes (you i-clicke ID to you name on class-list)

More information

The Law of Biot-Savart & RHR P θ

The Law of Biot-Savart & RHR P θ The Law of iot-savat & RHR P R dx x Jean-aptiste iot élix Savat Phys 122 Lectue 19 G. Rybka Recall: Potential Enegy of Dipole Wok equied to otate a cuentcaying loop in a magnetic field Potential enegy

More information

Magnetic Fields Due to Currents

Magnetic Fields Due to Currents PH -C Fall 1 Magnetic Fields Due to Cuents Lectue 14 Chapte 9 (Halliday/esnick/Walke, Fundamentals of Physics 8 th edition) 1 Chapte 9 Magnetic Fields Due to Cuents In this chapte we will exploe the elationship

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

16.1 Permanent magnets

16.1 Permanent magnets Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuent-caying wie 165 Cuent loops and

More information

A moving charged particle creates a magnetic field vector at every point in space except at its position.

A moving charged particle creates a magnetic field vector at every point in space except at its position. 1 Pat 3: Magnetic Foce 3.1: Magnetic Foce & Field A. Chaged Paticles A moving chaged paticle ceates a magnetic field vecto at evey point in space ecept at its position. Symbol fo Magnetic Field mks units

More information

Gauss s Law: Circuits

Gauss s Law: Circuits Gauss s Law: Cicuits Can we have excess chage inside in steady state? E suface nˆ A q inside E nˆ A E nˆ A left _ suface ight _ suface q inside 1 Gauss s Law: Junction Between two Wies n 2

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 hsics 1, Fall 1 3 Octobe 1 Toda in hsics 1: finding Foce between paallel cuents Eample calculations of fom the iot- Savat field law Ampèe s Law Eample calculations of fom Ampèe s law Unifom cuents in conductos?

More information

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law PHY61 Eniched Physics Lectue Notes Law Disclaime: These lectue notes ae not meant to eplace the couse textbook. The content may be incomplete. ome topics may be unclea. These notes ae only meant to be

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

Course Updates. Reminders: 1) Assignment #8 will be able to do after today. 2) Finish Chapter 28 today. 3) Quiz next Friday

Course Updates. Reminders: 1) Assignment #8 will be able to do after today. 2) Finish Chapter 28 today. 3) Quiz next Friday Couse Updates http://www.phys.hawaii.edu/~vane/phys272-sp10/physics272.html Remindes: 1) Assignment #8 will be able to do afte today 2) Finish Chapte 28 today 3) Quiz next Fiday 4) Review of 3 ight-hand

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

Magnetic Field of a Wire

Magnetic Field of a Wire Magnetic Field of a Wie Fundamental Laws fo Calculating B-field Biot-Savat Law (long method, but woks always) Ampee s Law (high symmety) B-Field of a Staight Wie Fo a thin staight conducto caying cuent

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Physics 2112 Unit 14

Physics 2112 Unit 14 Physics 2112 Unit 14 Today s Concept: What Causes Magnetic Fields d 0I ds ˆ 2 4 Unit 14, Slide 1 You Comments Can you give a summay fo eveything we use the ight hand ule fo? Wasn't too clea on this topic.

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

PY208 Matter & Interactions Final Exam S2005

PY208 Matter & Interactions Final Exam S2005 PY Matte & Inteactions Final Exam S2005 Name (pint) Please cicle you lectue section below: 003 (Ramakishnan 11:20 AM) 004 (Clake 1:30 PM) 005 (Chabay 2:35 PM) When you tun in the test, including the fomula

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

Φ E = E A E A = p212c22: 1

Φ E = E A E A = p212c22: 1 Chapte : Gauss s Law Gauss s Law is an altenative fomulation of the elation between an electic field and the souces of that field in tems of electic flux. lectic Flux Φ though an aea A ~ Numbe of Field

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me!

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me! You Comments Do we still get the 8% back on homewok? It doesn't seem to be showing that. Also, this is eally stating to make sense to me! I am a little confused about the diffeences in solid conductos,

More information

Review. Electrostatic. Dr. Ray Kwok SJSU

Review. Electrostatic. Dr. Ray Kwok SJSU Review Electostatic D. Ray Kwok SJSU Paty Balloons Coulomb s Law F e q q k 1 Coulomb foce o electical foce. (vecto) Be caeful on detemining the sign & diection. k 9 10 9 (N m / C ) k 1 4πε o k is the Coulomb

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapte : Gauss s Law Gauss s law : intoduction The total electic flux though a closed suface is equal to the total (net) electic chage inside the suface divided by ε Gauss s law is equivalent to Coulomb

More information

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B.

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B. PHY 249 Lectue Notes Chapte 32: Page 1 of 12 What we have leaned so fa a a F q a a in motion F q v a a d/ Ae thee othe "static" chages that can make -field? this lectue d/? next lectue da dl Cuve Cuve

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

Chapter 23: GAUSS LAW 343

Chapter 23: GAUSS LAW 343 Chapte 23: GAUSS LAW 1 A total chage of 63 10 8 C is distibuted unifomly thoughout a 27-cm adius sphee The volume chage density is: A 37 10 7 C/m 3 B 69 10 6 C/m 3 C 69 10 6 C/m 2 D 25 10 4 C/m 3 76 10

More information

( )( )( ) ( ) + ( ) ( ) ( )

( )( )( ) ( ) + ( ) ( ) ( ) 3.7. Moel: The magnetic fiel is that of a moving chage paticle. Please efe to Figue Ex3.7. Solve: Using the iot-savat law, 7 19 7 ( ) + ( ) qvsinθ 1 T m/a 1.6 1 C. 1 m/s sin135 1. 1 m 1. 1 m 15 = = = 1.13

More information

Unit 7: Sources of magnetic field

Unit 7: Sources of magnetic field Unit 7: Souces of magnetic field Oested s expeiment. iot and Savat s law. Magnetic field ceated by a cicula loop Ampèe s law (A.L.). Applications of A.L. Magnetic field ceated by a: Staight cuent-caying

More information

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM.

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM. Exam 1 Exam 1 is on Tuesday, Febuay 14, fom 5:00-6:00 PM. Testing Cente povides accommodations fo students with special needs I must set up appointments one week befoe exam Deadline fo submitting accommodation

More information

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8.

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8. CHAPTR : Gauss s Law Solutions to Assigned Poblems Use -b fo the electic flux of a unifom field Note that the suface aea vecto points adially outwad, and the electic field vecto points adially inwad Thus

More information

Page 1 of 6 Physics II Exam 1 155 points Name Discussion day/time Pat I. Questions 110. 8 points each. Multiple choice: Fo full cedit, cicle only the coect answe. Fo half cedit, cicle the coect answe and

More information

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials Souces of the Magnetic Field Moving chages cuents Ampee s Law Gauss Law in magnetism Magnetic mateials Biot-Savat Law ˆ ˆ θ ds P db out I db db db db ds ˆ 1 I P db in db db ds sinθ db μ 4 π 0 Ids ˆ B μ0i

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

Conventional Current B = In some materials current moving charges are positive: Ionic solution Holes in some materials (same charge as electron but +)

Conventional Current B = In some materials current moving charges are positive: Ionic solution Holes in some materials (same charge as electron but +) Conventional Cuent In some mateials cuent moving chages ae positive: Ionic solution Holes in some mateials (same chage as electon but +) Obseving magnetic field aound coppe wie: Can we tell whethe the

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

Magnetostatics. Magnetic Forces. = qu. Biot-Savart Law H = Gauss s Law for Magnetism. Ampere s Law. Magnetic Properties of Materials. Inductance M.

Magnetostatics. Magnetic Forces. = qu. Biot-Savart Law H = Gauss s Law for Magnetism. Ampere s Law. Magnetic Properties of Materials. Inductance M. Magnetic Foces Biot-Savat Law Gauss s Law fo Magnetism Ampee s Law Magnetic Popeties of Mateials nductance F m qu d B d R 4 R B B µ 0 J Magnetostatics M. Magnetic Foces The electic field E at a point in

More information

Gauss s Law Simulation Activities

Gauss s Law Simulation Activities Gauss s Law Simulation Activities Name: Backgound: The electic field aound a point chage is found by: = kq/ 2 If thee ae multiple chages, the net field at any point is the vecto sum of the fields. Fo a

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

Review for 2 nd Midterm

Review for 2 nd Midterm Review fo 2 nd Midtem Midtem-2! Wednesday Octobe 29 at 6pm Section 1 N100 BCC (Business College) Section 2 158 NR (Natual Resouces) Allowed one sheet of notes (both sides) and calculato Coves Chaptes 27-31

More information

Today in Physics 122: getting V from E

Today in Physics 122: getting V from E Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions Capacitance Potential enegy

More information

Physics 122, Fall December 2012

Physics 122, Fall December 2012 Physics 1, Fall 01 6 Decembe 01 Toay in Physics 1: Examples in eview By class vote: Poblem -40: offcente chage cylines Poblem 8-39: B along axis of spinning, chage isk Poblem 30-74: selfinuctance of a

More information

Physics 1502: Lecture 4 Today s Agenda

Physics 1502: Lecture 4 Today s Agenda 1 Physics 1502: Today s genda nnouncements: Lectues posted on: www.phys.uconn.edu/~cote/ HW assignments, solutions etc. Homewok #1: On Mastephysics today: due next Fiday Go to masteingphysics.com and egiste

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 2201 Electomagnetism Alexande A. Iskanda, Ph.D. Physics of Magnetism and Photonics Reseach Goup Electodynamics ELETROMOTIVE FORE AND FARADAY S LAW 1 Ohm s Law To make a cuent flow, we have to push the

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

An o5en- confusing point:

An o5en- confusing point: An o5en- confusing point: Recall this example fom last lectue: E due to a unifom spheical suface chage, density = σ. Let s calculate the pessue on the suface. Due to the epulsive foces, thee is an outwad

More information

Physics 122, Fall September 2012

Physics 122, Fall September 2012 Physics 1, Fall 1 7 Septembe 1 Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions

More information

How Electric Currents Interact with Magnetic Fields

How Electric Currents Interact with Magnetic Fields How Electic Cuents nteact with Magnetic Fields 1 Oested and Long Wies wote these notes to help ou with vaious diectional ules, and the equivalence between the magnetism of magnets and the magnets of electic

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I Febuay 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best o most nealy coect answe Fo questions 6-9, solutions must begin

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

Sources of Magnetic Fields (chap 28)

Sources of Magnetic Fields (chap 28) Souces of Magnetic Fields (chap 8) In chapte 7, we consideed the magnetic field effects on a moving chage, a line cuent and a cuent loop. Now in Chap 8, we conside the magnetic fields that ae ceated by

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

Exam 3, vers Physics Spring, 2003

Exam 3, vers Physics Spring, 2003 1 of 9 Exam 3, ves. 0001 - Physics 1120 - Sping, 2003 NAME Signatue Student ID # TA s Name(Cicle one): Michael Scheffestein, Chis Kelle, Paisa Seelungsawat Stating time of you Tues ecitation (wite time

More information

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II.

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II. Homewok #8. hapte 7 Magnetic ields. 6 Eplain how ou would modif Gauss s law if scientists discoveed that single, isolated magnetic poles actuall eisted. Detemine the oncept Gauss law fo magnetism now eads

More information

Electric field generated by an electric dipole

Electric field generated by an electric dipole Electic field geneated by an electic dipole ( x) 2 (22-7) We will detemine the electic field E geneated by the electic dipole shown in the figue using the pinciple of supeposition. The positive chage geneates

More information

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything!

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything! You Comments I feel like I watch a pe-lectue, and agee with eveything said, but feel like it doesn't click until lectue. Conductos and Insulatos with Gauss's law please...so basically eveything! I don't

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

Collaborative ASSIGNMENT Assignment 3: Sources of magnetic fields Solution

Collaborative ASSIGNMENT Assignment 3: Sources of magnetic fields Solution Electicity and Magnetism: PHY-04. 11 Novembe, 014 Collaboative ASSIGNMENT Assignment 3: Souces of magnetic fields Solution 1. a A conducto in the shape of a squae loop of edge length l m caies a cuent

More information

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Chapter 26: Magnetism: Force and Field

Chapter 26: Magnetism: Force and Field Chapte 6: Magnetism: Foce and Field Magnets Magnetism Magnetic foces Magnetism Magnetic field of Eath Magnetism Magnetism Magnetic monopoles? Pehaps thee exist magnetic chages, just like electic chages.

More information

TUTORIAL 9. Static magnetic field

TUTORIAL 9. Static magnetic field TUTOIAL 9 Static magnetic field Vecto magnetic potential Null Identity % & %$ A # Fist postulation # " B such that: Vecto magnetic potential Vecto Poisson s equation The solution is: " Substitute it into

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 338 Applied Electicity and Magnetism ping 07 Pof. David R. Jackson ECE Dept. Notes 3 Divegence The Physical Concept Find the flux going outwad though a sphee of adius. x ρ v0 z a y ψ = D nˆ d = D ˆ

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

3. Magnetostatic fields

3. Magnetostatic fields 3. Magnetostatic fields D. Rakhesh Singh Kshetimayum 1 Electomagnetic Field Theoy by R. S. Kshetimayum 3.1 Intoduction to electic cuents Electic cuents Ohm s law Kichoff s law Joule s law Bounday conditions

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines EM 005 Handout 7: The Magnetic ield 1 This handout coes: THE MAGNETIC IELD The magnetic foce between two moing chages The magnetic field,, and magnetic field lines Magnetic flux and Gauss s Law fo Motion

More information

II. Electric Field. II. Electric Field. A. Faraday Lines of Force. B. Electric Field. C. Gauss Law. 1. Sir Isaac Newton ( ) A.

II. Electric Field. II. Electric Field. A. Faraday Lines of Force. B. Electric Field. C. Gauss Law. 1. Sir Isaac Newton ( ) A. II. Electic Field D. Bill Pezzaglia II. Electic Field. Faaday Lines of Foce B. Electic Field C. Gauss Law Updated 08Feb010. Lines of Foce 1) ction at a Distance ) Faaday s Lines of Foce ) Pinciple of Locality

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

Chapter 31 Faraday s Law

Chapter 31 Faraday s Law Chapte 31 Faaday s Law Change oving --> cuent --> agnetic field (static cuent --> static agnetic field) The souce of agnetic fields is cuent. The souce of electic fields is chage (electic onopole). Altenating

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

Physics Spring 2012 Announcements: Mar 07, 2012

Physics Spring 2012 Announcements: Mar 07, 2012 Physics 00 - Sping 01 Announcements: Ma 07, 01 HW#6 due date has been extended to the moning of Wed. Ma 1. Test # (i. Ma ) will cove only chaptes 0 and 1 All of chapte will be coveed in Test #4!!! Test

More information

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101 PHY 114 A Geneal Physics II 11 AM-1:15 PM TR Olin 11 Plan fo Lectue 1 Chaptes 3): Souces of Magnetic fields 1. Pemanent magnets.biot-savat Law; magnetic fields fom a cuent-caying wie 3.Ampee Law 4.Magnetic

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212 PHYS 1 Look ove Chapte sections 1-8 xamples, 4, 5, PHYS 111 Look ove Chapte 16 sections 7-9 examples 6, 7, 8, 9 Things To Know 1) What is an lectic field. ) How to calculate the electic field fo a point

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 Today in Physics 1: electostatics eview David Blaine takes the pactical potion of his electostatics midtem (Gawke). 11 Octobe 01 Physics 1, Fall 01 1 Electostatics As you have pobably noticed, electostatics

More information