PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law

Size: px
Start display at page:

Download "PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law"

Transcription

1 PHY61 Eniched Physics Lectue Notes Law Disclaime: These lectue notes ae not meant to eplace the couse textbook. The content may be incomplete. ome topics may be unclea. These notes ae only meant to be a study aid and a supplement to you own notes. Please epot any inaccuacies to the pofesso. Peamble In this lectue we lean a simple and poweful technique fo calculating the electic field fo situations involving a high degee of symmety. Flux Flux, Φ, is a measue of the amount of a vecto field, F, passing though a suface with aea A (diection defined pependicula to the plane of the suface): Φ= F A =FAcosθ whee θ is the angle between the field diection and the nomal to the aea suface. As one example, conside the flow of ai o wate though a suface. The voulume of a passing though the suface pe unit time is given by: Φ= v A =vacosθ Obviously this flow ate depends on the oientation of the suface. As anothe example, conside the light fom the un impinging onto the suface of the Eath. Obviously land nea the equato eceives a lage light flux than that at the poles. In this couse, we will conside the flux of electic and magnetic fields (essentially light!) passing though a suface. D. Acosta Page 1 9//5

2 PHY61 Eniched Physics Lectue Notes Flux Though a Closed uface Fig. fom HRW 7/e Conside the flux of electic field though a closed suface. Let s beak the suface into a lage numbe (N) of small elements of aea A that ae nealy flat. By convention, let s take the diection of the aea vecto to be pependicula to the suface and pointing out. The flux of electic field passing though this closed suface is then: N E i= 1 Φ= A If we let N and A, then the small elements become infinitesimal and we can wite: Φ= E d A This is a closed suface integal. It is a -dimensional integal ove a -dimensional suface. The cicle in the integal sign denotes an integal ove an entie closed suface (vesus just a single face). D. Acosta Page 9//5

3 PHY61 Eniched Physics Lectue Notes Example E y A bottom A top A ight x z Conside a squae cube immesed in a constant electic field: E= E x. Calculate the flux though each face. A i is the aea vecto pointing out fom cube face i, which has magnitude A i = s, whee s is the side length of the cube. Note that E Atop = since E Atop E Abottom = Also: E Afont = E A = back What is left is: E Aight = E Aight = Es since E Aight E A = E A = Es since E opposite A left left left ˆ Φ= E A = = sum ove all 6 faces 6 1 i Es i Es = Thus, the total flux into the cube is balanced by the flux going out. This will hold fo any abitay shape of the suface, povided the electic field is constant D. Acosta Page 9//5

4 PHY61 Eniched Physics Lectue Notes Flux of a Point Chage Conside a spheical shell suface of adius enclosing a point chage at the cente. da E q Note that da points out fom the closed suface, and that since E points adially as well, E da so that E da= E da q By Coulomb s Law, E = K o the flux though the spheical suface is: Φ= E da= E da = E da since E is constant at fixed adius d A = 4 π suface aea of sphee To see this explicitly, let s do the suface integal: π π da = sinθdθ dφ = 4π o o, the flux is: q 1 q 4π Φ= E 4π = K 4π = 4 1 q Φ= π Note that this is a constant, independent of the size of the sphee, and only dependent on the amount of chage enclosed. In fact, it tuns out that it does not even depend on the shape of the suface! D. Acosta Page 4 9//5

5 PHY61 Eniched Physics Lectue Notes Law Law genealizes the pevious example, and states that: q Φ= E d A = enc o the amount of flux passing though any closed suface depends only on the net amount of electic chage enclosed. Why is this geneal case tue? Well, and abitay suface can always be inscibed by a sphee within it. And the flux though that sphee, calculated in the pevious example, must be equal to the flux intecepted by the oute suface. q Law elates the electic flux though a closed suface to the net chage enclosed. It was deived as a consequence of Coulomb s Law, but in fact is completely equivalent to Coulomb s Law. It can fom an altenative stating point fo calculating electic fields. D. Acosta Page 5 9//5

6 PHY61 Eniched Physics Lectue Notes Applications of Law Law is a poweful technique to calculate the electic field fo situations exhibiting a high degee of symmety. Infinite heet of Chage Let s calculate the electic field fom an infinite sheet of chage, with a chage density of σ (measued in C/m ). E E A left A ight By symmety, we expect E to point pependicula to the suface fo a vey lage sheet (and fa fom the edges). We would not expect any othe angle, because why would any paticula diection be pefeed ove any othe fo such a symmetic situation? Now conside a closed suface (which we will call a ian suface) that extends though the sheet of chage. The sides, hee assumed cylindical, ae chosen to be pependicula to the sheet. o E A =. The caps ae paallel to the sheet, so E A = E A left ight though the suface is thus: Φ= E Aleft E A ight = EA By Law, σ A Φ= EA = side since both vectos always point in the same diection. The total flux q enc Φ=, whee qenc = σ A. o: σ E = This is exactly the same solution fo the magnitude of the electic field fom an infinite sheet that we obtained by painstaking integation of ings of chage! And as noted befoe, the electic field is a constant and does not depend on the distance fom the sheet. D. Acosta Page 6 9//5

7 PHY61 Eniched Physics Lectue Notes Infinite Line of Chage Let s calculate the electic field a distance fom a line of electic chage infinite in extent with chage density λ (measued in C/m). y E da x z By symmety, we expect that E points in the adial diection (no pefeed diection): E= E ( )ˆ Choose a ian suface with cylindical geomety, with top and bottom caps aligned such that thei aea vectos point in the same diection as the line of chage (and pependicula to the electic field): E Atop = E A bottom =. o the total flux leaves though the sides: ( ) ( ) Φ= E da= E da = E π h since E is constant at a fixed adius. Thus, qenc λh Φ= E( ) π h= = λ Kλ E( ) = = π ame as deived by integation in the last lectue. D. Acosta Page 7 9//5

8 PHY61 Eniched Physics Lectue Notes phees of Chage Let s calculate the electic field outside a spheically chaged shell. The adius of the sphee is R. A total chage Q is spead unifomly on the suface, so the Q chage density pe unit aea is σ = 4π By symmety we expect that the electic field points adially: E= E ( ) ˆ Fo ou ian suface choose anothe sphee with adius chaged sphee. > R, centeed on the ( ) Φ= E da= E da since E is constant at a fixed adius. The suface integal is just the integal of the suface aea of a sphee, so: Q Φ= = E ( ) 4π Q Q E( ) = = K 4π Exactly the same field stength as if all the chage on the sphee wee placed at the cente of the sphee as a point chage! This esult applies to a solid sphee of total chage Q as well. The situation changes fo the electic field inside a spheical shell. Fo < R, then thee is no net enclosed chage, and E( ) =. No foce acts on any point chage placed anywhee inside a chaged shell (foces fom all infinitesimal chages in the shell balances). Fo the electic field inside a solid sphee of total chage Q, then thee is a net enclosed chage. Fist assume that the total chage of a solid sphee is spead unifomly thoughout its volume. The volume chage density is theefoe: Q ρ = (measued in C/m ). 4 π R The chage enclosed fo < R is: D. Acosta Page 8 9//5

9 PHY61 Eniched Physics Lectue Notes 4 Q 4 q Q π R R enc = ρ π = π = 4 o Law tells us: E A ( ) Φ= d = E 4π = Q E( ) = 4π R Q R That is, the electic field ises linealy fom at the cente of the sphee to the magnitude obtained at the suface of the sphee (which is the same as that fom a point chage at a distance R). D. Acosta Page 9 9//5

10 PHY61 Eniched Physics Lectue Notes Electic Fields inside Conductos The pevious examples of continuous chage distibutions have implicitly assumed that the infinitesimal chages wee not fee to move locked in place within the medium. A conducto, on the othe hand, has some electical chages fee to move (the valence electons in the metal). o a conducto can cay an electic cuent (units: amps, C/s). In electostatic situations, which means that the chages have eached static equilibium inside the conducto, we must have: E =. If the field wee not zeo, that would imply a foce acting on the chage caies ( F= qe= ma), which would cause them to acceleate. Thus the situation would still be dynamically in motion and not have eached equilibium. But once equilibium has been achieved (vey quickly unless an electomotive foce maintains an electic potential diffeence acoss the conducto see next chapte), the field must be zeo. Now let s exploe the consequences of this obsevation. If E = inside the conducto, then the flux of electic field passing though any closed suface inside the conducto is also zeo: Φ= E d A = Chage Q on outside uface inside conducto whee E= and Φ=. o by Law, thee can be no net enclosed chage inside the suface. Theefoe, fo conductos, all deposited chage must be on the outside of the conducto. The same applies even if cavities exist inside the conducting volume. Now electic chage could exist inside a non-conducting cavity within the conducto, but in that case sceening chages (of opposite sign to the oiginal chage) must move to the inne suface of the conducto in ode to sceen the electic field aising fom this inne chage so that E= in the conducto. (Thus fo a ian suface containing this inne suface and the chage, the net chage would be zeo and by Law, the flux and field would be zeo as well). Now because the conducto was pesumably balanced in chage, the distibution of chage on the inne suface will esult in an excess of chage on the oute suface of the conducto equal in magnitude and sign to the enclosed chage. D. Acosta Page 1 9//5

11 PHY61 Eniched Physics Lectue Notes Enclosed chage Q Cavity with Q deposited along inne suface A ian suface Conducto with Q on oute suface A Van de Gaff acceleato exploits this phenomenon that the chage inside a conducto always moves to the outside suface, no matte how much chage is aleady thee. By scaping static chage fom a mateial by fiction, we can tansfe this tiny amount of chage via a belt to the inside of a conducting shell (which by the popety above must not have any chage on its suface). A faction of this chage will then be tansfeed to the shell, and then immediately it will move to the outside suface of the shell whee it can accumulate continuously to vey lage values. This phenomenon that E= inside a conducto also has implications fo electomagnetic waves. If a adio tansmitte (such as a cell phone) is placed inside a metal box, the electomagnetic fields it geneates cannot penetate though the metal. It is shielded. In fact, the metal need not be completely solid: a sceen o even chicken wie woks faily well at shielding electic fields. uch a box is known as a Faaday cage. You can make one youself by wapping you cell phone in aluminum foil and then tying to call its phone numbe. The phone will not ing even when the phone is on. You might also notice this effect if you happen to be talking on you cell phone while you ente an elevato that is completely suounded by metal. Once the doos close, call is ove! D. Acosta Page 11 9//5

12 PHY61 Eniched Physics Lectue Notes Electic Fields on the uface of Conductos Thee ae also constaints on the diection of the electic field at the suface of a conducto in electostatic equilibium. Outside the conducto, we must have that the electic field diection is pependicula to the suface of the conducto (paallel to the aea vecto). If it wee not, thee would be a component of the electic field paallel to the suface, and that component would cause the fee chages in the conducto to acceleate (thus not being in equilibium). Afte ashot amount of time, all chages will edistibute themselves and the electic field in this configuation will always be pependicula to the suface. E Conducto suface Chage acceleates Conducting sheet of Chage Let s now calculate the magnitude of the electic field aising fom electic chage applied to the suface of a conducto (we know the diection will be pependicula to the suface). E E A ight We solve this poblem in a manne simila to the static sheet of chage solved ealie, except that now we do not extend the ian suface though the sheet, but stop it inside the conducto (it will always have some thickness). The flux though the sides of the ian suface is zeo because the electic field and aea vectos ae pependicula. The flux though the inne left cap is also zeo because E= inside a conducto. Thus the total flux only aise though the ightmost cap: qenc σ A Φ= E Ai = E A ight = EA = = i o we have fo the magnitude of the electic field: E = σ D. Acosta Page 1 9//5

13 PHY61 Eniched Physics Lectue Notes Note that this is exactly two times lage than the same expession fo a non-conducting sheet of chage with chage density σ. To undestand why this is the case, note that if a chage Q is deposited on the suface of a conducto, it will spead and unifomly cove both sides of the conducting sheet. The chage density on each side will be: ( Q /) Q σ = = A A Now let s examine the contibution to the total electic field fom each side of the sheet sepaately, and then add the two togethe to get the total field. E R E L E R E L E L E R Hee you can conside each suface as a sheet of chage on a non-conducting suface (it is infinitesimally thin). The magnitude of the field fom these sufaces is: σ Q ER = EL = = 4 A If we assume that the sheets ae lage compaed to the thickness of the conducto, the fields fom each suface cancel inside the conducto (oppositely diected fields). Outside the conducto, the fields add in the same diection, so the magnitude is: Q Q σ ETOT = EL ER = = = 4 A A D. Acosta Page 1 9//5

14 PHY61 Eniched Physics Lectue Notes Method of Image Chages We agued that the electic field must always be pependicula to the suface of a conducto in equilibium. That means any chage placed nea the suface of a conducto must have field lines that stop at the suface of the conducto pependicula to the suface. conducto Thee is a poweful tick to solve fo the shape of the field lines fo such electostatic situations known as the method of image chages. The tick is to place an imaginay opposite sign chage of equal magnitude to the fist chage behind the suface of the conducto (obviously whee we cannot actually place a physically chage). Fo the example above, we have actually solved this befoe! It s an electic dipole. Fig. fom HRW 7/e This technique can be applied to othe chage and conducto distibutions. In fact, images of images may even be necessay if a chage is placed between two conductos. D. Acosta Page 14 9//5

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

Review. Electrostatic. Dr. Ray Kwok SJSU

Review. Electrostatic. Dr. Ray Kwok SJSU Review Electostatic D. Ray Kwok SJSU Paty Balloons Coulomb s Law F e q q k 1 Coulomb foce o electical foce. (vecto) Be caeful on detemining the sign & diection. k 9 10 9 (N m / C ) k 1 4πε o k is the Coulomb

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapte : Gauss s Law Gauss s law : intoduction The total electic flux though a closed suface is equal to the total (net) electic chage inside the suface divided by ε Gauss s law is equivalent to Coulomb

More information

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call Today s Plan lectic Dipoles Moe on Gauss Law Comment on PDF copies of Lectues Final iclicke oll-call lectic Dipoles A positive (q) and negative chage (-q) sepaated by a small distance d. lectic dipole

More information

Φ E = E A E A = p212c22: 1

Φ E = E A E A = p212c22: 1 Chapte : Gauss s Law Gauss s Law is an altenative fomulation of the elation between an electic field and the souces of that field in tems of electic flux. lectic Flux Φ though an aea A ~ Numbe of Field

More information

Chapter 23: GAUSS LAW 343

Chapter 23: GAUSS LAW 343 Chapte 23: GAUSS LAW 1 A total chage of 63 10 8 C is distibuted unifomly thoughout a 27-cm adius sphee The volume chage density is: A 37 10 7 C/m 3 B 69 10 6 C/m 3 C 69 10 6 C/m 2 D 25 10 4 C/m 3 76 10

More information

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me!

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me! You Comments Do we still get the 8% back on homewok? It doesn't seem to be showing that. Also, this is eally stating to make sense to me! I am a little confused about the diffeences in solid conductos,

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

Module 05: Gauss s s Law a

Module 05: Gauss s s Law a Module 05: Gauss s s Law a 1 Gauss s Law The fist Maxwell Equation! And a vey useful computational technique to find the electic field E when the souce has enough symmety. 2 Gauss s Law The Idea The total

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Welcome to Physics 272

Welcome to Physics 272 Welcome to Physics 7 Bob Mose mose@phys.hawaii.edu http://www.phys.hawaii.edu/~mose/physics7.html To do: Sign into Masteing Physics phys-7 webpage Registe i-clickes (you i-clicke ID to you name on class-list)

More information

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM.

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM. Exam 1 Exam 1 is on Tuesday, Febuay 14, fom 5:00-6:00 PM. Testing Cente povides accommodations fo students with special needs I must set up appointments one week befoe exam Deadline fo submitting accommodation

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything!

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything! You Comments I feel like I watch a pe-lectue, and agee with eveything said, but feel like it doesn't click until lectue. Conductos and Insulatos with Gauss's law please...so basically eveything! I don't

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Physics 1502: Lecture 4 Today s Agenda

Physics 1502: Lecture 4 Today s Agenda 1 Physics 1502: Today s genda nnouncements: Lectues posted on: www.phys.uconn.edu/~cote/ HW assignments, solutions etc. Homewok #1: On Mastephysics today: due next Fiday Go to masteingphysics.com and egiste

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

Gauss s Law Simulation Activities

Gauss s Law Simulation Activities Gauss s Law Simulation Activities Name: Backgound: The electic field aound a point chage is found by: = kq/ 2 If thee ae multiple chages, the net field at any point is the vecto sum of the fields. Fo a

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 2201 Electomagnetism Alexande A. Iskanda, Ph.D. Physics of Magnetism and Photonics Reseach Goup Electodynamics ELETROMOTIVE FORE AND FARADAY S LAW 1 Ohm s Law To make a cuent flow, we have to push the

More information

ELECTROMAGNETISM (CP2)

ELECTROMAGNETISM (CP2) Revision Lectue on ELECTROMAGNETISM (CP) Electostatics Magnetostatics Induction EM Waves based on pevious yeas Pelims questions State Coulomb s Law. Show how E field may be defined. What is meant by E

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I Febuay 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best o most nealy coect answe Fo questions 6-9, solutions must begin

More information

Today in Physics 122: getting V from E

Today in Physics 122: getting V from E Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions Capacitance Potential enegy

More information

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or ENERGETICS So fa we have been studying electic foces and fields acting on chages. This is the dynamics of electicity. But now we will tun to the enegetics of electicity, gaining new insights and new methods

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8.

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8. CHAPTR : Gauss s Law Solutions to Assigned Poblems Use -b fo the electic flux of a unifom field Note that the suface aea vecto points adially outwad, and the electic field vecto points adially inwad Thus

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

PY208 Matter & Interactions Final Exam S2005

PY208 Matter & Interactions Final Exam S2005 PY Matte & Inteactions Final Exam S2005 Name (pint) Please cicle you lectue section below: 003 (Ramakishnan 11:20 AM) 004 (Clake 1:30 PM) 005 (Chabay 2:35 PM) When you tun in the test, including the fomula

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

Physics 122, Fall September 2012

Physics 122, Fall September 2012 Physics 1, Fall 1 7 Septembe 1 Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

Gauss s Law: Circuits

Gauss s Law: Circuits Gauss s Law: Cicuits Can we have excess chage inside in steady state? E suface nˆ A q inside E nˆ A E nˆ A left _ suface ight _ suface q inside 1 Gauss s Law: Junction Between two Wies n 2

More information

Target Boards, JEE Main & Advanced (IIT), NEET Physics Gauss Law. H. O. D. Physics, Concept Bokaro Centre P. K. Bharti

Target Boards, JEE Main & Advanced (IIT), NEET Physics Gauss Law. H. O. D. Physics, Concept Bokaro Centre P. K. Bharti Page 1 CONCPT: JB-, Nea Jitenda Cinema, City Cente, Bokao www.vidyadishti.og Gauss Law Autho: Panjal K. Bhati (IIT Khaagpu) Mb: 74884484 Taget Boads, J Main & Advanced (IIT), NT 15 Physics Gauss Law Autho:

More information

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge.

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge. Magnetic fields (oigins) CHAPTER 27 SOURCES OF MAGNETC FELD Magnetic field due to a moving chage. Electic cuents Pemanent magnets Magnetic field due to electic cuents Staight wies Cicula coil Solenoid

More information

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B.

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B. PHY 249 Lectue Notes Chapte 32: Page 1 of 12 What we have leaned so fa a a F q a a in motion F q v a a d/ Ae thee othe "static" chages that can make -field? this lectue d/? next lectue da dl Cuve Cuve

More information

Faraday s Law (continued)

Faraday s Law (continued) Faaday s Law (continued) What causes cuent to flow in wie? Answe: an field in the wie. A changing magnetic flux not only causes an MF aound a loop but an induced electic field. Can wite Faaday s Law: ε

More information

Waves and Polarization in General

Waves and Polarization in General Waves and Polaization in Geneal Wave means a distubance in a medium that tavels. Fo light, the medium is the electomagnetic field, which can exist in vacuum. The tavel pat defines a diection. The distubance

More information

Physics 313 Practice Test Page 1. University Physics III Practice Test II

Physics 313 Practice Test Page 1. University Physics III Practice Test II Physics 313 Pactice Test Page 1 Univesity Physics III Pactice Test II This pactice test should give you a ough idea of the fomat and oveall level of the Physics 313 exams. The actual exams will have diffeent

More information

Review of Potential Energy. The Electric Potential. Plotting Fields and Potentials. Electric Potential of a Point Charge

Review of Potential Energy. The Electric Potential. Plotting Fields and Potentials. Electric Potential of a Point Charge eview of Potential negy Potential enegy U() can be used to descibe a consevative foce. efeence point (U) can be chosen fo convenience. Wok done by F : W F d s F d (1D) Change in P.. : U U f U i W Foce

More information

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e . A paallel-plate capacito has sepaation d. The potential diffeence between the plates is V. If an electon with chage e and mass m e is eleased fom est fom the negative plate, its speed when it eaches

More information

Page 1 of 6 Physics II Exam 1 155 points Name Discussion day/time Pat I. Questions 110. 8 points each. Multiple choice: Fo full cedit, cicle only the coect answe. Fo half cedit, cicle the coect answe and

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

Force between two parallel current wires and Newton s. third law

Force between two parallel current wires and Newton s. third law Foce between two paallel cuent wies and Newton s thid law Yannan Yang (Shanghai Jinjuan Infomation Science and Technology Co., Ltd.) Abstact: In this pape, the essence of the inteaction between two paallel

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 1 -

Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 1 - Pepaed by: M. S. KumaSwamy, TGT(Maths) Page - - ELECTROSTATICS MARKS WEIGHTAGE 8 maks QUICK REVISION (Impotant Concepts & Fomulas) Chage Quantization: Chage is always in the fom of an integal multiple

More information

Module 9: Electromagnetic Waves-I Lecture 9: Electromagnetic Waves-I

Module 9: Electromagnetic Waves-I Lecture 9: Electromagnetic Waves-I Module 9: Electomagnetic Waves-I Lectue 9: Electomagnetic Waves-I What is light, paticle o wave? Much of ou daily expeience with light, paticulaly the fact that light ays move in staight lines tells us

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.07: Electomagnetism II Septembe 5, 202 Pof. Alan Guth PROBLEM SET 2 DUE DATE: Monday, Septembe 24, 202. Eithe hand it in at the lectue,

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 Today in Physics 1: electostatics eview David Blaine takes the pactical potion of his electostatics midtem (Gawke). 11 Octobe 01 Physics 1, Fall 01 1 Electostatics As you have pobably noticed, electostatics

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 hsics 1, Fall 1 3 Octobe 1 Toda in hsics 1: finding Foce between paallel cuents Eample calculations of fom the iot- Savat field law Ampèe s Law Eample calculations of fom Ampèe s law Unifom cuents in conductos?

More information

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

Chapter Sixteen: Electric Charge and Electric Fields

Chapter Sixteen: Electric Charge and Electric Fields Chapte Sixteen: Electic Chage and Electic Fields Key Tems Chage Conducto The fundamental electical popety to which the mutual attactions o epulsions between electons and potons ae attibuted. Any mateial

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

Continuous Charge Distributions: Electric Field and Electric Flux

Continuous Charge Distributions: Electric Field and Electric Flux 8/30/16 Quiz 2 8/25/16 A positive test chage qo is eleased fom est at a distance away fom a chage of Q and a distance 2 away fom a chage of 2Q. How will the test chage move immediately afte being eleased?

More information

Course Updates. Reminders: 1) Assignment #8 will be able to do after today. 2) Finish Chapter 28 today. 3) Quiz next Friday

Course Updates. Reminders: 1) Assignment #8 will be able to do after today. 2) Finish Chapter 28 today. 3) Quiz next Friday Couse Updates http://www.phys.hawaii.edu/~vane/phys272-sp10/physics272.html Remindes: 1) Assignment #8 will be able to do afte today 2) Finish Chapte 28 today 3) Quiz next Fiday 4) Review of 3 ight-hand

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

Charges, Coulomb s Law, and Electric Fields

Charges, Coulomb s Law, and Electric Fields Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and (). An atom consists of a heavy (+) chaged nucleus suounded

More information

Magnetic Fields Due to Currents

Magnetic Fields Due to Currents PH -C Fall 1 Magnetic Fields Due to Cuents Lectue 14 Chapte 9 (Halliday/esnick/Walke, Fundamentals of Physics 8 th edition) 1 Chapte 9 Magnetic Fields Due to Cuents In this chapte we will exploe the elationship

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

7.2.1 Basic relations for Torsion of Circular Members

7.2.1 Basic relations for Torsion of Circular Members Section 7. 7. osion In this section, the geomety to be consideed is that of a long slende cicula ba and the load is one which twists the ba. Such poblems ae impotant in the analysis of twisting components,

More information

The physics of induction stoves

The physics of induction stoves The physics of uction stoves This is an aticle fom my home page: www.olewitthansen.dk Contents 1. What is an uction stove...1. Including self-uctance...4 3. The contibution fom the magnetic moments...6

More information

16.1 Permanent magnets

16.1 Permanent magnets Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuent-caying wie 165 Cuent loops and

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Chapter 4 Gauss s Law

Chapter 4 Gauss s Law Chapte 4 Gauss s Law 4.1 lectic Flux... 1 4. Gauss s Law... xample 4.1: Infinitely Long Rod of Unifom Chage Density... 7 xample 4.: Infinite Plane of Chage... 9 xample 4.3: Spheical Shell... 11 xample

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials Souces of the Magnetic Field Moving chages cuents Ampee s Law Gauss Law in magnetism Magnetic mateials Biot-Savat Law ˆ ˆ θ ds P db out I db db db db ds ˆ 1 I P db in db db ds sinθ db μ 4 π 0 Ids ˆ B μ0i

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

Module 5: Gauss s Law 1

Module 5: Gauss s Law 1 Module 5: Gauss s Law 1 4.1 lectic Flux... 4-4. Gauss s Law... 4-3 xample 4.1: Infinitely Long Rod of Unifom Chage Density... 4-8 xample 4.: Infinite Plane of Chage... 4-9 xample 4.3: Spheical Shell...

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

II. Electric Field. II. Electric Field. A. Faraday Lines of Force. B. Electric Field. C. Gauss Law. 1. Sir Isaac Newton ( ) A.

II. Electric Field. II. Electric Field. A. Faraday Lines of Force. B. Electric Field. C. Gauss Law. 1. Sir Isaac Newton ( ) A. II. Electic Field D. Bill Pezzaglia II. Electic Field. Faaday Lines of Foce B. Electic Field C. Gauss Law Updated 08Feb010. Lines of Foce 1) ction at a Distance ) Faaday s Lines of Foce ) Pinciple of Locality

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09 FARADAY'S LAW No. of lectues allocated Actual No. of lectues dates : 3 9/5/09-14 /5/09 31.1 Faaday's Law of Induction In the pevious chapte we leaned that electic cuent poduces agnetic field. Afte this

More information