7.2.1 Basic relations for Torsion of Circular Members

Size: px
Start display at page:

Download "7.2.1 Basic relations for Torsion of Circular Members"

Transcription

1 Section osion In this section, the geomety to be consideed is that of a long slende cicula ba and the load is one which twists the ba. Such poblems ae impotant in the analysis of twisting components, fo eample lug wenches and tansmission shafts. 7.. asic elations fo osion of icula Membes he theoy of tosion pesented hee concens toques which twist the membes but which do not induce any waping, that is, coss sections which ae pependicula to the ais of the membe emain so afte twisting. Futhe, adial lines emain staight and adial as the coss-section otates they meely otate with the section. Fo eample, conside the membe shown in Fig. 7.., built-in at one end and subject to a toque at the othe. he ais is dawn along its ais. he toque shown is positive, following the ight-hand ule (see 7..4). he membe twists unde the action of the toque and the adial plane D moves to D. D L Figue 7..: cylindical membe unde the action of a toque Wheeas in the last section the measue of defomation was elongation of the aial membes, hee an appopiate measue is the amount by which the membe twists, the otation angle. he otation angle will vay along the membe the sign convention is that is positive in the same diection as positive as indicated by the aow in Fig Futhe, wheeas the measue of stain used in the pevious section was the nomal stain, hee it will be the engineeing shea stain y (twice the tensoial shea stain y ). elationship between (dopping the subscipts) and will net be established. s the line defoms into, Fig. 7.., it undegoes an angle change. s defined in 4.., the shea stain is the change in the oiginal ight angle fomed by and a tangent at (indicated by the dotted line this is the y ais to be used in y ). If is small, then R ( L) tan (7..) L the tem toque is usually used instead of moment in the contet of twisting shafts such as those consideed in this section 79

2 Section 7. whee L is the length, R the adius of the membe and (L) means the magnitude of at L. Note that the stain is constant along the length of the membe although is not. onsideing a geneal coss-section within the membe, as in Fig. 7.., one has R ( ) (7..) E E F Figue 7..: section of a twisting cylindical membe he shea stain at an abitay adial location, 0 R, is ( ) ( ) (7..3) showing that the shea stain vaies fom zeo at the cente of the shaft to a R ( L) / L R( ) / on the oute suface of the shaft. maimum he only stain is this shea stain and so the only stess which will aise is a shea stess. Fom Hooke s Law G (7..4) whee G is the shea modulus (the of Eqn. 6..5). Following the shea stain, the shea stess is zeo at the cente of the shaft and a maimum on the oute suface. onsideing a fee-body diagam of any potion of the shaft of Fig. 7.., a toque acts on all coss-sections. his toque must equal the esultant of the shea stesses acting ove the section, as schematically illustated in Fig. 7..3a. he elemental foce acting ove an element of aea d is d and so the esultant moment about 0 is () d (7..5) d ut / is a constant and so theefoe also is / (povided G is) and Eqn can be e-witten as 80

3 Section 7. () () d (7..6) he quantity in squae backets is called the pola moment of inetia of the cosssection (also called the pola second moment of aea) and is denoted by : d Pola Moment of ea (7..7) whee d is an element of aea and the integation is ove the complete cosssection. Fo the cicula coss-section unde consideation, the aea element has sides d and d, Fig. 7..3c, so R R R D (7..8) dd d whee D is the diamete. () () d dd d d (a) (b) (c) Figue 7..3: Shea stesses acting ove a coss-section; (a) shea stess, (b,c) moment fo an elemental aea Fom Eqn. 7..6, the shea stess at any adial location is given by ( ) (7..9) Fom Eqn. 7.., 7..4, 7.6 and 7..9, the angle of twist at the end of the membe o the twist at one end elative to that at the othe end is L (7..0) G 8

4 Section 7. Eample onside the poblem shown in Fig.7..4, two tosion membes of lengths L, L, diametes d, d and shea moduli G,G, built-in at and subjected to toques and. Equilibium of moments can be used to detemine the unknown toques acting in each membe:, 0 (7..) 0 so that and. (a) D L L (b) (c) Figue 7..4: stuctue consisting of two tosion membes; (a) subjected to toques and, (b,c) fee-body diagams he shea stesses in each membe ae theefoe 4 4 whee / 3 and / 3. d d, (7..) Fom Eqn. 7..0, the angle of twist at is given by L / G. he angle of twist at is then L G (7..3) Statically indeteminate poblems can be solved using methods analogous to those used in the section 7. fo uniaial membes. 8

5 Section 7. Eample onside the stuctue in Fig. 7..5, simila to that in Fig only now both ends ae built-in and thee is only a single applied toque,. (a) D L L (b) (c) Figue 7..5: stuctue consisting of two tosion membes; (a) subjected to a oque, (b) fee-body diagam, (c) sepaate elements Refeing to the fee-body diagam of Fig. 7..5b, thee is only one equation of equilibium with which to detemine the two unknown membe toques: 0 (7..4) and so the defomation of the stuctue needs to be consideed. systematic way of dealing with this situation is to conside each element sepaately, as in Fig. 7..5c. he twist in each element is L L, (7..5) G G he total twist is zeo and so 0 which, with Eqn. 7..4, can be solved to obtain L G L G (7..6), LG LG LG LG he otation at can now be detemined,. 83

6 Section Stess Distibution in osion Membes he shea stess in Eqn is acting ove a coss-section of a tosion membe. Fom the symmety of the stess, it follows that shea stesses act also along the length of the membe, as illustated to the left of Fig Shea stesses do not act on the suface of the element shown, as it is a fee suface. ny element of mateial not aligned with the ais of the cylinde will undego a comple stess state, as shown to the ight of Fig he stesses acting on an element ae given by the stess tansfomation equations, Eqns : sin, sin, yy y cos (7..7) 0 y y y yy Figue 7..6: Stess distibution in a tosion membe o Fom Eqns , the maimum nomal (pincipal) stesses aise on planes at 45 and ae and. hus the maimum tensile stess in the membe occus at o 45 to the ais and aises at the suface. he maimum shea stess is simply, with Poblems. shaft of length L and built-in at both ends is subjected to two etenal toques, at and at, as shown below. he shaft is of diamete d and shea modulus G. Detemine the maimum (absolute value of) shea stess in the shaft and detemine the angle of twist at. L / 4 L / 4 L / 84

Static equilibrium requires a balance of forces and a balance of moments.

Static equilibrium requires a balance of forces and a balance of moments. Static Equilibium Static equilibium equies a balance of foces and a balance of moments. ΣF 0 ΣF 0 ΣF 0 ΣM 0 ΣM 0 ΣM 0 Eample 1: painte stands on a ladde that leans against the wall of a house at an angle

More information

Lecture 5. Torsion. Module 1. Deformation Pattern in Pure Torsion In Circular Cylinder. IDeALab. Prof. Y.Y.KIM. Solid Mechanics

Lecture 5. Torsion. Module 1. Deformation Pattern in Pure Torsion In Circular Cylinder. IDeALab. Prof. Y.Y.KIM. Solid Mechanics Lectue 5. Tosion Module 1. Defomation Patten in Pue Tosion In Cicula Cylinde Defomation Patten Shafts unde tosion ae eveywhee. Candall, An Intoduction to the Mechanics of solid, Mc Gaw-Hill, 1999 1 Defomation

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

BENDING OF BEAM. Compressed layer. Elongated. layer. Un-strained. layer. NA= Neutral Axis. Compression. Unchanged. Elongation. Two Dimensional View

BENDING OF BEAM. Compressed layer. Elongated. layer. Un-strained. layer. NA= Neutral Axis. Compression. Unchanged. Elongation. Two Dimensional View BNDING OF BA Compessed laye N Compession longation Un-stained laye Unchanged longated laye NA Neutal Axis Two Dimensional View A When a beam is loaded unde pue moment, it can be shown that the beam will

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

Right-handed screw dislocation in an isotropic solid

Right-handed screw dislocation in an isotropic solid Dislocation Mechanics Elastic Popeties of Isolated Dislocations Ou study of dislocations to this point has focused on thei geomety and thei ole in accommodating plastic defomation though thei motion. We

More information

LINEAR PLATE BENDING

LINEAR PLATE BENDING LINEAR PLATE BENDING 1 Linea plate bending A plate is a body of which the mateial is located in a small egion aound a suface in the thee-dimensional space. A special suface is the mid-plane. Measued fom

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

2. Plane Elasticity Problems

2. Plane Elasticity Problems S0 Solid Mechanics Fall 009. Plane lasticity Poblems Main Refeence: Theoy of lasticity by S.P. Timoshenko and J.N. Goodie McGaw-Hill New Yok. Chaptes 3..1 The plane-stess poblem A thin sheet of an isotopic

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

TRANSILVANIA UNIVERSITY OF BRASOV MECHANICAL ENGINEERING FACULTY DEPARTMENT OF MECHANICAL ENGINEERING ONLY FOR STUDENTS

TRANSILVANIA UNIVERSITY OF BRASOV MECHANICAL ENGINEERING FACULTY DEPARTMENT OF MECHANICAL ENGINEERING ONLY FOR STUDENTS TNSILVNI UNIVSITY OF BSOV CHNICL NGINING FCULTY DPTNT OF CHNICL NGINING Couse 9 Cuved as 9.. Intoduction The eams with plane o spatial cuved longitudinal axes ae called cuved as. Thee ae consideed two

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

5. Pressure Vessels and

5. Pressure Vessels and 5. Pessue Vessels and Axial Loading Applications 5.1 Intoduction Mechanics of mateials appoach (analysis) - analyze eal stuctual elements as idealized models subjected simplified loadings and estaints.

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

Liquid gas interface under hydrostatic pressure

Liquid gas interface under hydrostatic pressure Advances in Fluid Mechanics IX 5 Liquid gas inteface unde hydostatic pessue A. Gajewski Bialystok Univesity of Technology, Faculty of Civil Engineeing and Envionmental Engineeing, Depatment of Heat Engineeing,

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

See the solution to Prob Ans. Since. (2E t + 2E c )ch - a. (s max ) t. (s max ) c = 2E c. 2E c. (s max ) c = 3M bh 2E t + 2E c. 2E t. h c.

See the solution to Prob Ans. Since. (2E t + 2E c )ch - a. (s max ) t. (s max ) c = 2E c. 2E c. (s max ) c = 3M bh 2E t + 2E c. 2E t. h c. *6 108. The beam has a ectangula coss section and is subjected to a bending moment. f the mateial fom which it is made has a diffeent modulus of elasticity fo tension and compession as shown, detemine

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II.

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II. Homewok #8. hapte 7 Magnetic ields. 6 Eplain how ou would modif Gauss s law if scientists discoveed that single, isolated magnetic poles actuall eisted. Detemine the oncept Gauss law fo magnetism now eads

More information

Article : 8 Article : 8 Stress Field. and. Singularity Problem

Article : 8 Article : 8 Stress Field. and. Singularity Problem Aticle : 8 Aticle : 8 Stess Field and Singulaity Poblem (fatigue cack gowth) Repeated load cycles cack development Time (cycles) Cack length 3 Weakening due to gowing cacks Cack length stess concentation

More information

3.6 Applied Optimization

3.6 Applied Optimization .6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

Stress, Cauchy s equation and the Navier-Stokes equations

Stress, Cauchy s equation and the Navier-Stokes equations Chapte 3 Stess, Cauchy s equation and the Navie-Stokes equations 3. The concept of taction/stess Conside the volume of fluid shown in the left half of Fig. 3.. The volume of fluid is subjected to distibuted

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

STRENGTH OF MATERIALS 140AU0402 UNIT 3: BEAMS - LOADS AND STRESSES

STRENGTH OF MATERIALS 140AU0402 UNIT 3: BEAMS - LOADS AND STRESSES STRENGTH OF MATERALS 140AU040 UNT 3: BEAMS - LOADS AND STRESSES Tpes of beams: Suppots and Loads Shea foce and Bending Moment in beams Cantileve, Simpl suppoted and Ovehanging beams Stesses in beams Theo

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Welcome to Physics 272

Welcome to Physics 272 Welcome to Physics 7 Bob Mose mose@phys.hawaii.edu http://www.phys.hawaii.edu/~mose/physics7.html To do: Sign into Masteing Physics phys-7 webpage Registe i-clickes (you i-clicke ID to you name on class-list)

More information

Cross section dependence on ski pole sti ness

Cross section dependence on ski pole sti ness Coss section deendence on ski ole sti ness Johan Bystöm and Leonid Kuzmin Abstact Ski equiment oduce SWIX has ecently esented a new ai of ski oles, called SWIX Tiac, which di es fom conventional (ound)

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

CBN 98-1 Developable constant perimeter surfaces: Application to the end design of a tape-wound quadrupole saddle coil

CBN 98-1 Developable constant perimeter surfaces: Application to the end design of a tape-wound quadrupole saddle coil CBN 98-1 Developale constant peimete sufaces: Application to the end design of a tape-wound quadupole saddle coil G. Dugan Laoatoy of Nuclea Studies Conell Univesity Ithaca, NY 14853 1. Intoduction Constant

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call Today s Plan lectic Dipoles Moe on Gauss Law Comment on PDF copies of Lectues Final iclicke oll-call lectic Dipoles A positive (q) and negative chage (-q) sepaated by a small distance d. lectic dipole

More information

Physics 101 Lecture 6 Circular Motion

Physics 101 Lecture 6 Circular Motion Physics 101 Lectue 6 Cicula Motion Assist. Pof. D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Equilibium, Example 1 q What is the smallest value of the foce F such that the.0-kg block will not slide

More information

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law PHY61 Eniched Physics Lectue Notes Law Disclaime: These lectue notes ae not meant to eplace the couse textbook. The content may be incomplete. ome topics may be unclea. These notes ae only meant to be

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6 MOTION IN A PLANE 1. Scala Quantities Physical quantities that have only magnitude and no diection ae called scala quantities o scalas. e.g. Mass, time, speed etc. 2. Vecto Quantities Physical quantities

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

MONTE CARLO SIMULATION OF FLUID FLOW

MONTE CARLO SIMULATION OF FLUID FLOW MONTE CARLO SIMULATION OF FLUID FLOW M. Ragheb 3/7/3 INTRODUCTION We conside the situation of Fee Molecula Collisionless and Reflective Flow. Collisionless flows occu in the field of aefied gas dynamics.

More information

Physics 201 Lecture 18

Physics 201 Lecture 18 Phsics 0 ectue 8 ectue 8 Goals: Define and anale toque ntoduce the coss poduct Relate otational dnamics to toque Discuss wok and wok eneg theoem with espect to otational motion Specif olling motion (cente

More information

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface . CONICAL PROJECTIONS In elementay texts on map pojections, the pojection sufaces ae often descibed as developable sufaces, such as the cylinde (cylindical pojections) and the cone (conical pojections),

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

EN40: Dynamics and Vibrations. Midterm Examination Thursday March EN40: Dynamics and Vibations Midtem Examination Thusday Mach 9 2017 School of Engineeing Bown Univesity NAME: Geneal Instuctions No collaboation of any kind is pemitted on this examination. You may bing

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM Poceedings of the ASME 2010 Intenational Design Engineeing Technical Confeences & Computes and Infomation in Engineeing Confeence IDETC/CIE 2010 August 15-18, 2010, Monteal, Quebec, Canada DETC2010-28496

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

Rotational Motion: Statics and Dynamics

Rotational Motion: Statics and Dynamics Physics 07 Lectue 17 Goals: Lectue 17 Chapte 1 Define cente of mass Analyze olling motion Intoduce and analyze toque Undestand the equilibium dynamics of an extended object in esponse to foces Employ consevation

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 hsics 1, Fall 1 3 Octobe 1 Toda in hsics 1: finding Foce between paallel cuents Eample calculations of fom the iot- Savat field law Ampèe s Law Eample calculations of fom Ampèe s law Unifom cuents in conductos?

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

Magnetic Fields Due to Currents

Magnetic Fields Due to Currents PH -C Fall 1 Magnetic Fields Due to Cuents Lectue 14 Chapte 9 (Halliday/esnick/Walke, Fundamentals of Physics 8 th edition) 1 Chapte 9 Magnetic Fields Due to Cuents In this chapte we will exploe the elationship

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

Much that has already been said about changes of variable relates to transformations between different coordinate systems.

Much that has already been said about changes of variable relates to transformations between different coordinate systems. MULTIPLE INTEGRLS I P Calculus Cooinate Sstems Much that has alea been sai about changes of vaiable elates to tansfomations between iffeent cooinate sstems. The main cooinate sstems use in the solution

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

Superposition. Section 8.5.3

Superposition. Section 8.5.3 Supeposition Section 8.5.3 Simple Potential Flows Most complex potential (invicid, iotational) flows can be modeled using a combination of simple potential flows The simple flows used ae: Unifom flows

More information

PHYSICS 151 Notes for Online Lecture #20

PHYSICS 151 Notes for Online Lecture #20 PHYSICS 151 Notes fo Online Lectue #20 Toque: The whole eason that we want to woy about centes of mass is that we ae limited to looking at point masses unless we know how to deal with otations. Let s evisit

More information

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once. Honos Physics Fall, 2016 Cicula Motion & Toque Test Review Name: M. Leonad Instuctions: Complete the following woksheet. SHOW ALL OF YOUR WORK ON A SEPARATE SHEET OF PAPER. 1. Detemine whethe each statement

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

A dual-reciprocity boundary element method for axisymmetric thermoelastodynamic deformations in functionally graded solids

A dual-reciprocity boundary element method for axisymmetric thermoelastodynamic deformations in functionally graded solids APCOM & ISCM 11-14 th Decembe, 013, Singapoe A dual-ecipocity bounday element method fo axisymmetic themoelastodynamic defomations in functionally gaded solids *W. T. Ang and B. I. Yun Division of Engineeing

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

Electric field generated by an electric dipole

Electric field generated by an electric dipole Electic field geneated by an electic dipole ( x) 2 (22-7) We will detemine the electic field E geneated by the electic dipole shown in the figue using the pinciple of supeposition. The positive chage geneates

More information

Chapters 5-8. Dynamics: Applying Newton s Laws

Chapters 5-8. Dynamics: Applying Newton s Laws Chaptes 5-8 Dynamics: Applying Newton s Laws Systems of Inteacting Objects The Fee Body Diagam Technique Examples: Masses Inteacting ia Nomal Foces Masses Inteacting ia Tensions in Ropes. Ideal Pulleys

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

COLD STRANGLING HOLLOW PARTS FORCES CALCULATION OF CONICAL AND CONICAL WITH CYLINDRICAL COLLAR

COLD STRANGLING HOLLOW PARTS FORCES CALCULATION OF CONICAL AND CONICAL WITH CYLINDRICAL COLLAR COLD STANGLING HOLLOW PATS OCES CALCULATION O CONICAL AND CONICAL WITH CYLINDICAL COLLA Lucian V. Sevein, Taian Lucian Sevein,, Stefan cel Mae Univesity of Suceava, aculty of Mechanical Engineeing, Mechatonics

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

3-7 FLUIDS IN RIGID-BODY MOTION

3-7 FLUIDS IN RIGID-BODY MOTION 3-7 FLUIDS IN IGID-BODY MOTION S-1 3-7 FLUIDS IN IGID-BODY MOTION We ae almost eady to bein studyin fluids in motion (statin in Chapte 4), but fist thee is one cateoy of fluid motion that can be studied

More information

Dynamics of Rotating Discs

Dynamics of Rotating Discs Dynamics of Rotating Discs Mini Poject Repot Submitted by Subhajit Bhattachaya (0ME1041) Unde the guidance of Pof. Anivan Dasgupta Dept. of Mechanical Engineeing, IIT Khaagpu. Depatment of Mechanical Engineeing,

More information

Physics Spring 2012 Announcements: Mar 07, 2012

Physics Spring 2012 Announcements: Mar 07, 2012 Physics 00 - Sping 01 Announcements: Ma 07, 01 HW#6 due date has been extended to the moning of Wed. Ma 1. Test # (i. Ma ) will cove only chaptes 0 and 1 All of chapte will be coveed in Test #4!!! Test

More information

( )( )( ) ( ) + ( ) ( ) ( )

( )( )( ) ( ) + ( ) ( ) ( ) 3.7. Moel: The magnetic fiel is that of a moving chage paticle. Please efe to Figue Ex3.7. Solve: Using the iot-savat law, 7 19 7 ( ) + ( ) qvsinθ 1 T m/a 1.6 1 C. 1 m/s sin135 1. 1 m 1. 1 m 15 = = = 1.13

More information

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8.

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8. CHAPTR : Gauss s Law Solutions to Assigned Poblems Use -b fo the electic flux of a unifom field Note that the suface aea vecto points adially outwad, and the electic field vecto points adially inwad Thus

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 5: Aeodynamics D ABM Toufique Hasan Pofesso Depatment of Mechanical Engineeing, BUET Lectue- 8 Apil 7 teachebuetacbd/toufiquehasan/ toufiquehasan@mebuetacbd ME5: Aeodynamics (Jan 7) Flow ove a stationay

More information

Physics 11 Chapter 4: Forces and Newton s Laws of Motion. Problem Solving

Physics 11 Chapter 4: Forces and Newton s Laws of Motion. Problem Solving Physics 11 Chapte 4: Foces and Newton s Laws of Motion Thee is nothing eithe good o bad, but thinking makes it so. William Shakespeae It s not what happens to you that detemines how fa you will go in life;

More information

Chapter Sixteen: Electric Charge and Electric Fields

Chapter Sixteen: Electric Charge and Electric Fields Chapte Sixteen: Electic Chage and Electic Fields Key Tems Chage Conducto The fundamental electical popety to which the mutual attactions o epulsions between electons and potons ae attibuted. Any mateial

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

DESIGN OF INTERMEDIATE RING STIFFENERS FOR COLUMN-SUPPORTED CYLINDRICAL STEEL SHELLS

DESIGN OF INTERMEDIATE RING STIFFENERS FOR COLUMN-SUPPORTED CYLINDRICAL STEEL SHELLS DESIGN OF INTERMEDIATE RING STIFFENERS FOR COLUMN-SUPPORTED CYLINDRICAL STEEL SHELLS Öze Zeybek Reseach Assistant Depatment of Civil Engineeing, Middle East Technical Univesity, Ankaa, Tukey E-mail: ozeybek@metu.edu.t

More information