EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

Size: px
Start display at page:

Download "EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture"

Transcription

1 EE C45 ME C18 Introduction to MEMS Desin all 3 Roer Howe and Thara Srinivasan Lecture 1 Electrostatic Actuators I Today s Lecture Enery in electromechanical systems define carefully Parallelplate electrostatic actuators: snapdown Why is electrostatic actuation important in MEMS? Linearization of the squarelaw electrostatic force: differential electrostatic actuation Readin: Senturia, S. D., Microsystem Desin, Kluwer Academic Publishers, 1, Chapter 6, pp

2 Basic Physics of Electrostatic Actuation Two ways to chane the enery: e e q q 1. Chane the chare q. Chane the separation x W(q,) q e Note: we assume that the plates are supported elastically, so they don t collapse. H. H. Woodsen and J. R. Melcher, Electromehcanical Dynamics Part I, Chapter 3, Wiley, ChareControl Case Stored enery: work done in increasin ap after charin capacitor at zero ap W d e Electrostatic force as a function chare ρ(x) E(x) q q W(q,) x x 4

3 ChareControl Case (Cont.) Stored enery: q q W d εa εa constant orce (attractive, internal): oltae: 5 oltaecontrol Case Practical situation: we control (since charecontrol on the typical subp MEMS actuation capacitor is a major challene for electronics desiners) Can we find e as a partial derivative of the stored enery W W(,) with respect to with held constant? No! Answer: apply Leendre transformation and define the coenery W (,) W (, ) q W 6 3

4 oltaecontrol Case (Cont.) Evaluate the coenery: W q(, ) d W (,) oltae in terms of chare at ap: 7 Electrostatic orce (oltae Control) ind coenery in terms of voltae W q(, ) d ariation of coenery with respect to ap yields e.s. force: W (, ) e ariation of coenery with respect to voltae yields chare: W (, ) q 8 4

5 5 9 SprinSuspended Capacitor: ChareControl Case q q e k z q e q W ), ( e kz 1 SprinSuspended Capacitor: oltaecontrol Case 1 ), ( A W q e ε e kz q q e k z k z e o o /

6 Stability Analysis Rane of stability: examine net (attractive) force on plate εa net k ( ) o If we increment the ap by d, the increment d net > or the plate collapses d net net d 11 PullIn oltae PI Solve for point at which plate oes unstable: εa k PI 3 PI net εapi PI Substitution for k leads to: k( o PI ) net 1 6

7 Graphical Solution for Plate Stability Plot normalized electrostatic and sprin forces vs. normalized displacement 1(/ o ) 1.8 forces displacement 13 So Why are Electrostatic Actuators Important in MEMS, Anyway? Easy to make in micromachinin processes, since conductors and air aps are all that s needed Eneryconservin only parasitic enery loss throuh i R losses in conductors and interconnects Pullin phenomenon can be exploited to make a hysteretic actuator simplifies control Multiple plate structures (combs, 3D) can be used to tailor the force(displacement,voltae) function Scalin of the electrostatic force is favorable due to Paschen s curve Same structure can be used for position sensin 14 7

8 Paschen s Curve Air, o C vacuum limit: field emission at E 1 /nm 1 /µm 15 Linearizin the oltae SquareLaw Polarize the capacitor by applyin a DC offset voltae P toether with a (small) sinal voltae v si (t) << P q(t) e (t) q(t) 1 C 1 C e v ( P v si ( t)) v(t) P v si (t) 16 8

9 The Differential Electrostatic Actuator q l (t) q(t) el (t) er (t) q r (t) Net force on suspended center electrode is the difference net er (t) el (t) v L (t) P v(t) v R (t) P v(t) 17 SecondOrder Effects Assumption was that the aps were both correct only if the fabrication technoloy is perfect and the movin electrode is stationary Allow for ap difference: residual DC and v are present Is there a way to ensure linearization? 18 9

10 Pulse Linearization Applied voltae is limited to discrete levels (e.., 1 and 3 ) applied at a clock rate much hiher than the mechanical resonant frequency The electrostatic force is either zero or a value that is precisely set by the capacitance and the voltae The density of pulses determines the force, with the system bandwidth filterin out the hih frequency components EE: simadelta feedback ME: banban control 19 1

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 22: Capacitive

More information

Energy-conserving Transducers

Energy-conserving Transducers Eneryconservin Transducers Joel oldman* Massachusetts Institute of Technoloy (*with thanks to SDS) Cite as: Joel oldman, course materials for 6.777J /.37J Desin and Fabrication of Microelectromechanical

More information

EE C245 - ME C218. Fall 2003

EE C245 - ME C218. Fall 2003 EE C45 - ME C8 Introduction to MEMS Dein all 003 Roer Howe and Thara Srinivaan Lecture Electrotatic Actuator II EE C45 ME C8 all 003 Lecture Today Lecture Linear (v. diplacement) electrotatic actuation:

More information

EE C247B ME C218 Introduction to MEMS Design Spring 2016

EE C247B ME C218 Introduction to MEMS Design Spring 2016 EE C47B ME C18 Introduction to MEMS Design Spring 016 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture EE C45:

More information

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture EE C45 - ME C18 Introduction to MEMS Design Fall 003 Roger Howe and Thara Srinivasan Lecture 11 Electrostatic Actuators II Today s Lecture Linear (vs. displacement) electrostatic actuation: vary overlap

More information

Transducers. Today: Electrostatic Capacitive. EEL5225: Principles of MEMS Transducers (Fall 2003) Instructor: Dr. Hui-Kai Xie

Transducers. Today: Electrostatic Capacitive. EEL5225: Principles of MEMS Transducers (Fall 2003) Instructor: Dr. Hui-Kai Xie EEL55: Principles of MEMS Transducers (Fall 3) Instructor: Dr. Hui-Kai Xie Last lecture Piezoresistive Pressure sensor Transducers Today: Electrostatic Capacitive Reading: Senturia, Chapter 6, pp. 15-138

More information

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN03: Modeling, design and analysis Spring 2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture MEMS functional operation Transducer principles Sensor principles Methods

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 23: Electrical

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 21: Gyros

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-1 Transduction Based on Changes in the Energy Stored in an Electrical Field Electric Field and Forces Suppose a charged fixed q 1 in a space, an exploring charge q is moving toward the fixed

More information

Capacitive Sensor Interfaces

Capacitive Sensor Interfaces Capacitive Sensor Interfaces Bernhard E. Boser Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Capacitive Sensor Interfaces 1996

More information

ENERGY HARVESTING TRANSDUCERS - ELECTROSTATIC (ICT-ENERGY SUMMER SCHOOL 2016)

ENERGY HARVESTING TRANSDUCERS - ELECTROSTATIC (ICT-ENERGY SUMMER SCHOOL 2016) ENERGY HARVESTING TRANSDUCERS - ELECTROSTATIC (ICT-ENERGY SUMMER SCHOOL 2016) Shad Roundy, PhD Department of Mechanical Engineering University of Utah shad.roundy@utah.edu Three Types of Electromechanical

More information

CAPACITANCE Parallel-plates capacitor E + V 1 + V 2 - V 1 = + - E = A: Area of the plates. = E d V 1 - V 2. V = E d = Q =

CAPACITANCE Parallel-plates capacitor E + V 1 + V 2 - V 1 = + - E = A: Area of the plates. = E d V 1 - V 2. V = E d = Q = Andres La Rosa Portland State University Lecture Notes PH212 CAPACITANCE Parallelplates capacitor 1 2 Q Q E V 1 V 2 V 2 V 1 = 2 E E is assumed to be uniform between the plates Q Q V (Battery) V 2 V 1 =

More information

ANALYSIS OF POWER EFFICIENCY FOR FOUR-PHASE POSITIVE CHARGE PUMPS

ANALYSIS OF POWER EFFICIENCY FOR FOUR-PHASE POSITIVE CHARGE PUMPS ANALYSS OF POWER EFFCENCY FOR FOUR-PHASE POSTVE CHARGE PUMPS Chien-pin Hsu and Honchin Lin Department of Electrical Enineerin National Chun-Hsin University, Taichun, Taiwan e-mail:hclin@draon.nchu.edu.tw

More information

CHAPTER 5 FIXED GUIDED BEAM ANALYSIS

CHAPTER 5 FIXED GUIDED BEAM ANALYSIS 77 CHAPTER 5 FIXED GUIDED BEAM ANALYSIS 5.1 INTRODUCTION Fixed guided clamped and cantilever beams have been designed and analyzed using ANSYS and their performance were calculated. Maximum deflection

More information

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and

More information

Lecture 25 ANNOUNCEMENTS. Reminder: Prof. Liu s office hour is cancelled on Tuesday 12/4 OUTLINE. General considerations Benefits of negative feedback

Lecture 25 ANNOUNCEMENTS. Reminder: Prof. Liu s office hour is cancelled on Tuesday 12/4 OUTLINE. General considerations Benefits of negative feedback Lecture 25 ANNOUNCEMENTS eminder: Prof. Liu s office hour is cancelled on Tuesday 2/4 Feedback OUTLINE General considerations Benefits of neative feedback Sense andreturn techniques Voltae voltae feedback

More information

Effects of etching holes on complementary metal oxide semiconductor microelectromechanical systems capacitive structure

Effects of etching holes on complementary metal oxide semiconductor microelectromechanical systems capacitive structure Article Effects of etchin holes on complementary metal oxide semiconductor microelectromechanical systems capacitive structure Journal of Intellient Material Systems and Structures 24(3) 310 317 Ó The

More information

Modeling of High Voltage AlGaN/GaN HEMT. Copyright 2008 Crosslight Software Inc.

Modeling of High Voltage AlGaN/GaN HEMT. Copyright 2008 Crosslight Software Inc. Modelin of Hih Voltae AlGaN/GaN HEMT Copyriht 2008 Crossliht Software Inc. www.crossliht.com 1 Introduction 2 AlGaN/GaN HEMTs - potential to be operated at hih power and hih breakdown voltae not possible

More information

Capacitors. Lecture 10. Chapter 26. My Capacitance is limited. PHYS.1440 Lecture 10 Danylov. Department of Physics and Applied Physics

Capacitors. Lecture 10. Chapter 26. My Capacitance is limited. PHYS.1440 Lecture 10 Danylov. Department of Physics and Applied Physics Lecture 10 Chapter 26 Capacitors My Capacitance is limited Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 26: Section 26.2 The Geometry

More information

INF5490 RF MEMS. LN06: RF MEMS switches, II. Spring 2012, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN06: RF MEMS switches, II. Spring 2012, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN06: RF MEMS switches, II Spring 2012, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Design of RF MEMS switches Electromechanical design, II RF design Examples of implementations

More information

EECS C245 ME C218 Midterm Exam

EECS C245 ME C218 Midterm Exam University of California at Berkeley College of Engineering EECS C245 ME C218 Midterm Eam Fall 2003 Prof. Roger T. Howe October 15, 2003 Dr. Thara Srinivasan Guidelines Your name: SOLUTIONS Circle your

More information

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture EE C45 - ME C8 Introduction to MEMS Design Fall 3 Roger Howe and Thara Srinivasan Lecture 9 Energy Methods II Today s Lecture Mechanical structures under driven harmonic motion develop analytical techniques

More information

The Pull-In of Symmetrically and Asymmetrically Driven Microstructures and the Use in DC Voltage References

The Pull-In of Symmetrically and Asymmetrically Driven Microstructures and the Use in DC Voltage References IEEE Instrumentation and Measurement Technology Conference Anchorage, AK, USA, 1-3 May 00 The Pull-In of Symmetrically and Asymmetrically Driven Microstructures and the Use in DC Voltage References L.A.

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field. Lecture 6-5. Department of Mechanical Engineering

Transduction Based on Changes in the Energy Stored in an Electrical Field. Lecture 6-5. Department of Mechanical Engineering Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-5 Transducers with cylindrical Geometry For a cylinder of radius r centered inside a shell with with an inner radius

More information

Today in Physics 122: capacitors

Today in Physics 122: capacitors Today in Physics 122: capacitors Parallelplate and cylindrical capacitors: calculation of capacitance as a review in the calculation of field and potential Dielectrics in capacitors Capacitors, dielectrics

More information

A Comparison of Pull-in Voltage Calculation Methods for MEMS-Based Electrostatic Actuator Design

A Comparison of Pull-in Voltage Calculation Methods for MEMS-Based Electrostatic Actuator Design A Comparison of Pull-in Voltage Calculation Methods for MEMS-Based Electrostatic Actuator Design Abstract Sazzadur Chowdhury, M. Ahmadi, W. C. Miller Department of Electrical and Computer Engineering University

More information

Last Name _Piatoles_ Given Name Americo ID Number

Last Name _Piatoles_ Given Name Americo ID Number Last Name _Piatoles_ Given Name Americo ID Number 20170908 Question n. 1 The "C-V curve" method can be used to test a MEMS in the electromechanical characterization phase. Describe how this procedure is

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2012

EE C245 ME C218 Introduction to MEMS Design Fall 2012 EE C245 ME C218 Introduction to MEMS Design Fall 2012 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

The Electric Potential Energy

The Electric Potential Energy Lecture 6 Chapter 25 The Electric Potential Energy Course website: http://aculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 25: Section 25.1 Electric Potential Energy

More information

(3.5.1) V E x, E, (3.5.2)

(3.5.1) V E x, E, (3.5.2) Lecture 3.5 Capacitors Today we shall continue our discussion of electrostatics and, in particular, the concept of electrostatic potential energy and electric potential. The main example which we have

More information

Experiment 4: Electrostatic Force

Experiment 4: Electrostatic Force MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Sprin 3 OBJECTIVE Experiment 4: Electrostatic Force To measure ε, the permittivity of free space. INTRODUCTION Electrostatic force plays a

More information

Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover

Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Excerpt from the Proceedins of the COMSO Conference 8 Hannover Modelin and Characterization of Superconductin MEMS for Microwave Applications in Radioastronomy N. Al Cheikh *,1, P. Xavier 1, J.-M. Duchamp

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential

Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential Lecture 7. Capacitors and Electric Field Energy Last lecture review: Electrostatic potential V r = U r q Q Iclicker question The figure shows cross sections through two equipotential surfaces. In both

More information

Mixed-Signal IC Design Notes set 1: Quick Summary of Device Models

Mixed-Signal IC Design Notes set 1: Quick Summary of Device Models ECE194J /594J notes, M. Rodwell, copyrihted 2011 Mixed-Sinal IC Desin Notes set 1: Quick Summary of Device Models Mark Rodwell University of California, Santa Barbara rodwell@ece.ucsb.edu 805-893-3244,

More information

E05 Resonator Design

E05 Resonator Design POLITECNICO DI MILANO MSC COURSE - MEMS AND MICROSENSORS - 2018/2019 E05 Resonator Design Giorgio Mussi 16/10/2018 In this class we will learn how an in-plane MEMS resonator handles process variabilities,

More information

Capacitors and more. Lecture 9. Chapter 29. Physics II. Course website:

Capacitors and more. Lecture 9. Chapter 29. Physics II. Course website: Lecture 9 Chapter 29 Physics II Capacitors and more Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html The

More information

Capacitors and more. Lecture 9. Chapter 29. Physics II. Course website:

Capacitors and more. Lecture 9. Chapter 29. Physics II. Course website: Lecture 9 Chapter 29 Physics II Capacitors and more Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html The

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6- Transduction Based on Changes in the Energy Stored in an Electrical Field Actuator Examples Microgrippers Normal force driving In-plane force driving» Comb-drive device F = εav d 1 ε oε F rwv

More information

LECTURE 8 INTRODUCTION TO MAGNETICS (2)

LECTURE 8 INTRODUCTION TO MAGNETICS (2) ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE 8 INTRODUCTION TO MAGNETICS (2) Aknowledment-These handouts and leture notes iven in lass are based on material from Prof. Peter Sauer s ECE 330 leture

More information

Lecture 12: FET AC Properties

Lecture 12: FET AC Properties Lecture 1: FET AC Properties 016-0- Lecture 11, Hih Spee evices 016 1 Lecture 1: FET AC Properties Quasi-static operation iffusive an Ballistic FETs y-parameters Hybri p-moel Non-quasi Static effects Reain

More information

Interactions with Matter

Interactions with Matter Manetic Lenses Manetic fields can displace electrons Manetic field can be produced by passin an electrical current throuh coils of wire Manetic field strenth can be increased by usin a soft ferromanetic

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C8 Introduction to MEMS Design Fall 007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 5: Output t

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 19: Resonance

More information

Sensors & Transducers 2016 by IFSA Publishing, S. L.

Sensors & Transducers 2016 by IFSA Publishing, S. L. Sensors & Transducers, Vol. 96, Issue, January 206, pp. 52-56 Sensors & Transducers 206 by IFSA Publishing, S. L. http://www.sensorsportal.com Collapse Mode Characteristics of Parallel Plate Ultrasonic

More information

Midterm 2 PROBLEM POINTS MAX

Midterm 2 PROBLEM POINTS MAX Midterm 2 PROBLEM POINTS MAX 1 30 2 24 3 15 4 45 5 36 1 Personally, I liked the University; they gave us money and facilities, we didn't have to produce anything. You've never been out of college. You

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters Issued: Wednesday, Nov. 23, 2011. PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 8, 2011, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Today s Presentation

Today s Presentation Today s Presentation MEMS Comb Drive Actuator to Vary Tension & Compression of a Resonating Nano-Doubly Clamped Beam for High-Resolution & High Sensitivity Mass Detection Adam Hurst 1 John Regis 1 Chou

More information

Coupled electrostatic-elastic analysis for topology optimization using material interpolation

Coupled electrostatic-elastic analysis for topology optimization using material interpolation Institute of Physics Publishing Journal of Physics: Conference Series 34 (2006) 264 270 doi:0.088/742-6596/34//044 International MEMS Conference 2006 Coupled electrostatic-elastic analysis for topology

More information

Feedback. Joel Voldman* Massachusetts Institute of Technology *(with thanks to SDS)

Feedback. Joel Voldman* Massachusetts Institute of Technology *(with thanks to SDS) Feedback Joel Voldman* Massachusetts Institute of Technology *(with thanks to SDS) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices,

More information

where C f = A ρ g fluid capacitor But when squeezed, h (and hence P) may vary with time even though V does not. Seems to imply C f = C f (t)

where C f = A ρ g fluid capacitor But when squeezed, h (and hence P) may vary with time even though V does not. Seems to imply C f = C f (t) ENERGY-STORING COUPLING BETWEEN DOMAINS MULTI-PORT ENERGY STORAGE ELEMENTS Context: examine limitations of some basic model elements. EXAMPLE: open fluid container with deformable walls P = ρ g h h = A

More information

Coulomb blockade and single-electron devices

Coulomb blockade and single-electron devices oulomb blockade and sinle-electron devices One interestin limit of nanoelectronics are devices with impedances stronly influenced by the positions of sinle electrons. Imaine a transistor where the source-drain

More information

g L Simple Pendulum, cont Simple Pendulum Period of Simple Pendulum Equations of Motion for SHM: 4/8/16 k m

g L Simple Pendulum, cont Simple Pendulum Period of Simple Pendulum Equations of Motion for SHM: 4/8/16 k m Simple Pendulum The simple pendulum is another example of simple harmonic motion The force is the component of the weiht tanent to the path of motion F t = - m sin θ Simple Pendulum, cont In eneral, the

More information

Electrostatics and Electric Potential - Outline

Electrostatics and Electric Potential - Outline Electrostatics and Electric Potential - Outline 1. Understand the basic properties of electric charge, including conservation of charge and that charges are quantized. 2. Differentiate between conductors

More information

Capacitance. Chapter 21 Chapter 25. K = C / C o V = V o / K. 1 / Ceq = 1 / C / C 2. Ceq = C 1 + C 2

Capacitance. Chapter 21 Chapter 25. K = C / C o V = V o / K. 1 / Ceq = 1 / C / C 2. Ceq = C 1 + C 2 = Chapter 21 Chapter 25 Capacitance K = C / C o V = V o / K 1 / Ceq = 1 / C 1 + 1 / C 2 Ceq = C 1 + C 2 Copyright 25-2 Capacitance 25.01 Sketch a schematic diagram of a circuit with a parallel-plate capacitor,

More information

Capacitors. Gauss s law leads to

Capacitors. Gauss s law leads to Capacitors The electric field lines starts from a positive charge and ends at a negative charge. Gauss s law leads to If the two charge sheets are on two conductor plates, you have a parallel-plate capacitor.

More information

Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool

Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool Gireesh K C 1, Harisha M 2, Karthick Raj M 3, Karthikkumar M 4, Thenmoli M 5 UG Students, Department

More information

Modeling of Electrical Elements

Modeling of Electrical Elements Modeling of Electrical Elements Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD This Lecture Contains Modeling of

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C45 ME C8 Introduction to MEMS Design Fall 007 Prof. Clark T.C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 3: Input Modeling

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics Lecture by Dr. Hebin Li Goals for Chapter 24 To understand capacitors and calculate capacitance To analyze networks of capacitors To calculate the energy stored in

More information

Investigation of Piezoelectric Vibro Impact Energy System

Investigation of Piezoelectric Vibro Impact Energy System International Journal of Emerin Enineerin Research and Technoloy Volume, Issue 7, October 4, PP 99- ISSN 349-4395 (Print) & ISSN 349-449 (Online) Investiation of Piezoelectric Vibro Impact Enery System

More information

EE C245 - ME C218. Fall 2003

EE C245 - ME C218. Fall 2003 EE C45 - E C8 Introduction to ES Design Fall Roger Howe and Thara Srinivasan ecture 9 Energy ethods II Today s ecture echanical structures under driven harmonic motion develop analytical techniques for

More information

EE 435. Lecture 18. Two-Stage Op Amp with LHP Zero Loop Gain - Breaking the Loop

EE 435. Lecture 18. Two-Stage Op Amp with LHP Zero Loop Gain - Breaking the Loop EE 435 Lecture 8 Two-Stae Op Amp with LHP Zero Loop Gain - Breakin the Loop Review from last lecture Nyquist and Gain-Phase Plots Nyquist and Gain-Phase Plots convey identical information but ain-phase

More information

Modelling of Electrostatic Force for Glass-to-Glass Anodic Bonding

Modelling of Electrostatic Force for Glass-to-Glass Anodic Bonding STR/03/01/JT S. M. L. Nai, J. Wei, and C. K. Won Abstract In this paper, a model for evaluatin the electrostatic force for lass-to-lass wafer anodic bondin will be presented. 4-inch lass wafers (Pyrex

More information

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors Capacitors Parallel-plate Physics 132: Lecture e 7 Elements of Physics II Charging of capacitors Agenda for Today Combinations of capacitors Energy stored in a capacitor Dielectrics in capacitors Physics

More information

DESIGN, FABRICATION AND ELECTROMECHANICAL CHARACTERISTICS OF A MEMS BASED MICROMIRROR

DESIGN, FABRICATION AND ELECTROMECHANICAL CHARACTERISTICS OF A MEMS BASED MICROMIRROR XIX IMEKO World Congress Fundamental and Applied Metrology September 6 11, 2009, Lisbon, Portugal DESIGN, FABRICATION AND ELECTROMECHANICAL CHARACTERISTICS OF A MEMS BASED MICROMIRROR Talari Rambabu 1,

More information

AP Physics C Electricity and Magnetism

AP Physics C Electricity and Magnetism AP Physics C Electricity and Magnetism Course overview This is a calculus based course in physics. The course is the equivalent of an introductory engineering course in Physics. The main objective of the

More information

Chapter 20 Electric Potential and Electric Potential Energy

Chapter 20 Electric Potential and Electric Potential Energy Chapter 20 Electric Potential and Electric Potential Energy 1 Overview of Chapter 20 Electric Potential Energy and the Electric Potential! Energy Conservation! The Electric Potential of Point Charges!

More information

Department of Physics. PHYS MAJOR 2 EXAM Test Code: 015. Monday 1 st May 2006 Exam Duration: 2hrs (from 6:30pm to 8:30pm)

Department of Physics. PHYS MAJOR 2 EXAM Test Code: 015. Monday 1 st May 2006 Exam Duration: 2hrs (from 6:30pm to 8:30pm) Department of Physics PHYS1005 MJOR EXM Test Code: 015 Monday 1 st May 006 Exam Duration: hrs (from 6:30pm to 8:30pm) Name: Student Number: Section Number: Version 15 Page 1 1. Each of the four capacitors

More information

The Electric. Potential Energy

The Electric. Potential Energy Lecture 7 Chapter 25 The Electric Ok, let s move to scalar quantities. Potential Energy I am sick and tired o your orces, ields!!! Course website: http://aculty.uml.edu/andriy_danylov/teaching/physicsii

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 ME C218 Introduction to MEMS Design Fall 2011 EE C245 ME C218 Introduction to MEMS Design Fall 2011 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

A Stacked-type Electrostatic Actuator and Measurement of its Energy Efficiency

A Stacked-type Electrostatic Actuator and Measurement of its Energy Efficiency A Stacked-type Electrostatic Actuator and Measurement of its Energy Efficiency Yoshiyuki Hata Tokyo Institute of Technology yoshiyuki@ric.titech.ac.jp Keiji Saneyoshi Tokyo Institute of Technology ksaneyos@ric.titech.ac.jp

More information

An Investigation of the Effects of Crack on the Zone of Pull-in Suppression in MicroElectromechanical Systems Using High-Frequency Excitation

An Investigation of the Effects of Crack on the Zone of Pull-in Suppression in MicroElectromechanical Systems Using High-Frequency Excitation AUT Journal of Mechanical Engineering AUT J. Mech. Eng., 1(1) (017) 99-108 DOI: 10.060/mej.016.803 An Investigation of the Effects of Crack on the Zone of Pull-in Suppression in MicroElectromechanical

More information

EE 435 Lecture 13. Cascaded Amplifiers. -- Two-Stage Op Amp Design

EE 435 Lecture 13. Cascaded Amplifiers. -- Two-Stage Op Amp Design EE 435 Lecture 13 ascaded Amplifiers -- Two-Stae Op Amp Desin Review from Last Time Routh-Hurwitz Stability riteria: A third-order polynomial s 3 +a 2 s 2 +a 1 s+a 0 has all poles in the LHP iff all coefficients

More information

1. Narrative Overview Questions

1. Narrative Overview Questions Homework 4 Due Nov. 16, 010 Required Reading: Text and Lecture Slides on Downloadable from Course WEB site: http://courses.washington.edu/overney/nme498.html 1. Narrative Overview Questions Question 1

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory.

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. Issued: Thursday, Nov. 24, 2009 PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors Capacitors Parallel-plate Physics 132: Lecture e 7 Elements of Physics II Charging of capacitors Agenda for Today Combinations of capacitors Energy stored in a capacitor Dielectrics in capacitors Physics

More information

An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT)

An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT) An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT) Mosaddequr Rahman, Sazzadur Chowdhury Department of Electrical and Computer Engineering

More information

DESIGN AND ANALYSIS OF ROTATION RATE SENSOR. Modeling of vibratory MEMs Gyroscope

DESIGN AND ANALYSIS OF ROTATION RATE SENSOR. Modeling of vibratory MEMs Gyroscope DESIGN AND ANALYSIS OF ROTATION RATE SENSOR Modeling of vibratory MEMs Gyroscope 1 Priya.P.Shreshtha & 2 Sushas S.Mohite 1 Mechanical Department, Rajaram Bapu institute of Technology Islampur, Dist. Sangli,

More information

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason.

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2014 F 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2. Figure shows the field lines on a positive charge. Is the work done

More information

J.L. Kirtley Jr. September 4, 2010

J.L. Kirtley Jr. September 4, 2010 Massachusetts Institute of Technoloy Department of Electrical Enineerin and Computer Science 6.007 Electromanetic Enery: From Motors to Lasers Supplemental Class Notes Manetic Circuit Analo to Electric

More information

Newton's laws of motion

Newton's laws of motion Episode No - 5 Date: 03-04-2017 Faculty: Sunil Deshpande Newton's laws of motion * A plank with a box on it at one end is slowly raised about the other end. As the anle with the horizontal slowly reaches

More information

SWITCHED CAPACITOR AMPLIFIERS

SWITCHED CAPACITOR AMPLIFIERS SWITCHED CAPACITOR AMPLIFIERS AO 0V 4. AO 0V 4.2 i Q AO 0V 4.3 Q AO 0V 4.4 Q i AO 0V 4.5 AO 0V 4.6 i Q AO 0V 4.7 Q AO 0V 4.8 i Q AO 0V 4.9 Simple amplifier First approach: A 0 = infinite. C : V C = V s

More information

Lab 4: Frequency Response of CG and CD Amplifiers.

Lab 4: Frequency Response of CG and CD Amplifiers. ESE 34 Electronics aboratory B Departent of Electrical and Coputer Enineerin Fall 2 ab 4: Frequency esponse of CG and CD Aplifiers.. OBJECTIVES Understand the role of input and output ipedance in deterinin

More information

Experiment FT1: Measurement of Dielectric Constant

Experiment FT1: Measurement of Dielectric Constant Experiment FT1: Measurement of Dielectric Constant Name: ID: 1. Objective: (i) To measure the dielectric constant of paper and plastic film. (ii) To examine the energy storage capacity of a practical capacitor.

More information

Uncertainty Quantification in MEMS

Uncertainty Quantification in MEMS Uncertainty Quantification in MEMS N. Agarwal and N. R. Aluru Department of Mechanical Science and Engineering for Advanced Science and Technology Introduction Capacitive RF MEMS switch Comb drive Various

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture

More information

Electrical schematics for 1D analysis of a bridge type MEMS capacitive switch

Electrical schematics for 1D analysis of a bridge type MEMS capacitive switch Computer Applications in Electrical Engineering Vol. 12 2014 Electrical schematics for 1D analysis of a bridge type MEMS capacitive switch Sebastian Kula Kazimierz Wielki University in Bydgoszcz 85-074

More information

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below AP Physics Study Guide Chapter 17 Electric Potential and Energy Name Circle the vector quantities below and underline the scalar quantities below electric potential electric field electric potential energy

More information

Experimental analysis of spring hardening and softening nonlinearities in. microelectromechanical oscillators. Sarah Johnson

Experimental analysis of spring hardening and softening nonlinearities in. microelectromechanical oscillators. Sarah Johnson Experimental analysis of spring hardening and softening nonlinearities in microelectromechanical oscillators. Sarah Johnson Department of Physics, University of Florida Mentored by Dr. Yoonseok Lee Abstract

More information

I. Conductors and Insulators :

I. Conductors and Insulators : Chapter 6 : Conductors - Insulators - Capacitors We have, till now, studied the electric charges and the interactions between them but not evoked how the electricity can be transfered? which meterials

More information

19. Capacitive Accelerometers : A Case Study. 19. Capacitive Accelerometers : A Case Study. Introduction. Introduction (ctnd.)

19. Capacitive Accelerometers : A Case Study. 19. Capacitive Accelerometers : A Case Study. Introduction. Introduction (ctnd.) 19 Capacitive Accelerometers : A Case Study 19 Capacitive Accelerometers : A Case Study Fundamentals of Quasi-Static Accelerometers Position Measurement with Capacitance Capacitive Accelerometer Case Study

More information

Polytech Montpellier MEA4 M2 EEA Systèmes Microélectroniques. Analog IC Design

Polytech Montpellier MEA4 M2 EEA Systèmes Microélectroniques. Analog IC Design Analo C Desin - Academic year 05/06 - Session 3 04/0/5 Polytech Montellier MEA4 M EEA Systèmes Microélectroniques Analo C Desin From transistor in to current sources Pascal Nouet 05/06 - nouet@lirmm.fr

More information

Proceedings of IMECE' ASME International Mechanical Engineering Congress and Exposition November 5-11, 2005, Orlando, Florida

Proceedings of IMECE' ASME International Mechanical Engineering Congress and Exposition November 5-11, 2005, Orlando, Florida DRAFT Proceedings of IMECE'5 5 ASME International Mechanical Engineering Congress and Exposition November 5-, 5, Orlando, Florida IMECE5-87 RESPONSE OF MEMS DEVICES UNDER SHOCK LOADS Mohammad I. Younis

More information

MEAM 550 Modeling and Design of MEMS Spring Solution to homework #4

MEAM 550 Modeling and Design of MEMS Spring Solution to homework #4 Solution to homework #4 Problem 1 We know from the previous homework that the spring constant of the suspension is 14.66 N/m. Let us now compute the electrostatic force. l g b p * 1 1 ε wl Co-energy =

More information

Supplementary Methods A. Sample fabrication

Supplementary Methods A. Sample fabrication Supplementary Methods A. Sample fabrication Supplementary Figure 1(a) shows the SEM photograph of a typical sample, with three suspended graphene resonators in an array. The cross-section schematic is

More information

ES 272 Assignment #2. in,3

ES 272 Assignment #2. in,3 ES 272 Assignment #2 Due: March 14th, 2014; 5pm sharp, in the dropbox outside MD 131 (Donhee Ham office) Instructor: Donhee Ham (copyright c 2014 by D. Ham) (Problem 1) The kt/c Noise (50pt) Imagine an

More information

An efficient and accurate MEMS accelerometer model with sense finger dynamics for applications in mixed-technology control loops

An efficient and accurate MEMS accelerometer model with sense finger dynamics for applications in mixed-technology control loops BMAS 2007, San Jose, 20-21 September 2007 An efficient and accurate MEMS accelerometer model with sense finger dynamics for applications in mixed-technology control loops Chenxu Zhao, Leran Wang and Tom

More information