Lower bounds on Locality Sensitive Hashing

Size: px
Start display at page:

Download "Lower bounds on Locality Sensitive Hashing"

Transcription

1 Lower bouns on Locality Sensitive Hashing Rajeev Motwani Assaf Naor Rina Panigrahy Abstract Given a metric space (X, X ), c 1, r > 0, an p, q [0, 1], a istribution over mappings H : X N is calle a (r, cr, p, q)-sensitive hash family if any two points in X at istance at most r are mappe by H to the same value with probability at least p, an any two points at istance greater than cr are mappe by H to the same value with probability at most q. This notion was introuce by Iny an Motwani in 1998 as the basis for an efficient approximate nearest neighbor search algorithm, an has since been use extensively for this purpose. The performance of these algorithms is governe by the parameter ρ = log(1/p) log(1/q), an constructing hash families with small ρ automatically yiels improve nearest neighbor algorithms. Here we show that for X = l 1 it is impossible to achieve ρ 1 2c. This almost matches the construction of Iny an Motwani which achieves ρ 1 c. 1 Introuction In this note we stuy the complexity of fining the nearest neighbor of a query point in certain high imensional spaces using Locality Sensitive Hashing (LSH). The nearest neighbor problem is formulate as follows: Given a atabase of n points in a metric space, preprocess it so that given a new query point it is possible to quicly fin the point closest to it in the ata set. This funamental problem arises in numerous applications, incluing ata mining, information retrieval, an image search, where istinctive features of the objects are represente as points in R. There is a vast amount of literature on this topic, an we shall not attempt to iscuss it here. We refer the intereste reaer to the papers [6, 5, 4, 7], an especially to the references therein, for bacgroun on the nearest neighbor problem. While the exact nearest neighbor problem seems to suffer from the curse of imensionality, many efficient techniques have been evise for fining an approximate solution whose istance from the query point is at most c times its istance from the nearest neighbor. One of the most versatile an efficient methos for approximate nearest neighbor search is base on Locality Sensitive Hashing, as introuce by Iny an Motwani in 1998 [6]. This metho has been refine an improve in several papers- the most recent algorithm can be foun in [4]. We also refer the reaer to the LSH website, where more information on this algorithm can be foun, incluing its implementation an coe- all this can be foun at The LSH approach to the approximate nearest neighbor problem is base on the following concept. Definition 1.1. Let (X, X ) be a metric space, r, R > 0 an p, q [0, 1]. A istribution over mappings H : X N is calle a (r, R, p, q)-sensitive hash family if for any x, y X, X (x, y) r = Pr H [H (x) = H (y)] p. X (x, y) > R = Pr H [H (x) = H (y)] q. 1

2 Given c 1 an q (0, 1) we efine ρ X (c, q) to be the smallest constant ρ > 0 such that for every r > 0 there exists p (0, 1) an a (r, cr, p, q)- sensitive hash family H : X N with log(1/p) log(1/q) ρ. In other wors { } log(1/p) ρ X (c, q) = sup inf : (r, cr, p, q) sensitive hash family H : X N. (1) r>0 log(1/q) Of particular interest is the case X = l s, for some s > 0 an N. Here, an in what follows, l s enotes the space R equippe with the l s norm (x 1,..., x ) s = ( x 1 s + + x s ) 1/s (this is only a quasi-norm when 0 < s < 1). In this case we efine ρ s (c) = sup lim sup ρ l s (c, q). 0<q<1 The importance of these parameters stems from the following application to approximate nearest neighbor search. It will be convenient to iscuss it in the framewor of the following ecision version of the c-approximate nearest neighbor problem: Given a query point, fin any element of the ata set which is at istance at most cr from it, provie that there is a ata point at istance at most r from the query point. This ecision version is nown as the (r, cr)- near neighbor problem. It is well nown that the reuction to the ecision version as only a logarithmic factor in the time an space complexity [6, 5]. The following theorem was prove in [6]; the exact formulation presente here is taen from [4]. Theorem 1.2. Let (X, X ) be a metric on a subset of R. Suppose that (X, X ) amits a (r, cr, p, q)-sensitive hash family H, an write ρ = log(1/p) log(1/q). Then for any n 1 q there exists a ranomize algorithm for (r, cr)- near neighbor on n-point subsets of X which uses O ( n + n 1+ρ) space, with query time ominate by O (n ρ ) istance computations an O ( n ρ log 1/q n ) evaluations of hash functions from H. Thus, obtaining bouns on ρ X (c) is of great algorithmic interest. It is prove in [6] that ρ 1 (c) 1/c, an for small values of c, namely c [1, 10], is was shown in [4] that this inequality is strict. We refer to [4] for numerical ata on the best now estimates for ρ 1 (c) for small c. For s = 2 a recent result of Anoni an Iny [1] shows that ρ 2 (c) 1/c 2, an for general s (0, 2] the best nown bouns [4] are ρ s (c) max{1/c, 1/c s }. The main purpose of this note is to obtain lower bouns on ρ 1 (c) an ρ 2 (c) which nearly match the bouns obtaine from the constructions in [6, 4, 1]. Our main result is: Theorem 1.3. For every c, s 1, ρ s (c) e 1 c s 1 e 1 c s + 1 e 1 e c s c s. (2) The secon to last inequality in (2) follows from concavity of the function t et 1 e t +1 on [0, ). Observe also that as c, e1/c 1 e 1/c c. It woul be very interesting to etermine lim sup c c ρ 1(c) exactly- ue to Theorem 1.3 an the results of [6] we currently now that this number is in the interval [1/2, 1]. 2 Proof of Theorem 1.3 The basic iea in the proof of Theorem 1.3 is simple. Choose a ranom point x {0, 1} an consier the ranom subset A of the cube {0, 1} consisting of points u for which H (u) = H (x). The secon conition 2

3 in Definition 1.1 forces A to be small in expectation. But, when A is small we can boun from above the probability that after r steps, the ranom wal starting at a ranom point in A will en up in A. We obtain this upper boun using a Fourier analytic argument, an in combination with the first conition in Definition 1.1 we euce the esire boun on ρ 1 (c). Theorem 1.3 follows from the following result: Proposition 2.1. Let H be a (r, R, p, q)- sensitive hash family on the Hamming cube ({0, 1}, 1 ). Assume that r is an o integer an that R < 2. Then p (q + e 1 ( 2 R)2) e2r/ 1 e 2r/ +1. Choosing R 2 log an r R/c in Proposition 2.1, an letting, yiels Theorem 1.3 in the case s = 1. The case of general s 1 follows from the fact that for x, y {0, 1}, x y s = x y 1/s 1. Remar 2.1. Proposition 2.1 implies non-trivial lower bouns on log(1/p) log(1/q) for any (r, cr, p, q)- sensitive hash family on ({0, 1}, 1 ) even if q is allowe to epen on. Observe that with the efinition given in (1), Theorem 1.3 implies such a lower boun only for constant q. But, Proposition 2.1 is much stronger, an implies a boun which asymptotically coincies with the lower boun in 1.3 for every q 2 o(). The proof of Proposition 2.1 will be broen into a few lemmas. Lemma 2.2. Let H be a (r, R, p, q)-sensitive hash family on the Hamming cube ({0, 1}, 1 ), an fix x {0, 1}. Then E H 1 (H (x)) R ( ) ( ) + q. Proof. We simply write E H 1 (H (x)) = = =0 = R +1 Pr[H (u) = H (x)] u {0,1} {u {0, 1} : u x 1 R} + q {u {0, 1} : u x 1 > R} R ( ) + q =0 = R +1 Corollary 2.3. Assume that R < 2. Then, using the notation of Lemma 2.2, we have that E H 1 (H (x)) ( 2 q + e ( 1 R)2) 2. ( ) Proof. This follows from Lemma 2.2 an the stanar estimate 2 a ( ) 2 e a2. Lemma 2.4 (Ranom wal lemma). Let r be an o integer. Given B {0, 1}, consier the ranom variable Q B {0, 1} efine as follows: Choose a point z B uniformly at ranom, an perform r-steps of the stanar ranom wal on the Hamming cube starting from z. The point thus obtaine will be enote Q B. Then ( ) e 2r/ 1 e Pr[Q B B] 2r/

4 Proof. We begin by recalling some bacgroun an notation on Fourier analysis on the Hamming cube. Given S {1,... }, the Walsh function W S : {0, 1} { 1, 1} is efine by For f : {0, 1} R we set so that f can be ecompose as follows: W S (u) = ( 1) j S u j. f (S ) = 1 2 f (u)w S (u), u {0,1} f = f (S )W S. For every f, g : {0, 1} R we write f, g = 1 2 u {0,1} f (u)g(u). By Parseval s ientity, f, g = f (S )ĝ(s ). For ε [0, 1] the Bonami-Becner operator T ε is efine as T ε f = ε S f (S )W S. The Bonami-Becner inequality [3, 2] states that for every f : {0, 1} R, ε 2 S f (S ) 2 = T ε f 2 2 = 1 2 (T ε f (u)) 2 f 2 1 = 1+ε 2 2 f (u) 1+ε2 u {0,1} u {0,1} Specializing to the inicator of B {0, 1} we get that ε 2 S 1 B (S ) ε 2. ( ) 2 1+ε 2 2. (3) Now, let P be the transition matrix of the stanar ranom wal on {0, 1}, i.e. P uv = 1/ if u an v iffer in exactly one coorinate, P uv = 0 otherwise. By a irect computation we have that for every S {1,..., }, ( PW S = 1 2 S ) W S, 4

5 i.e. W S is an eigenvector of P with eigenvalue 1 2 S. The probability that the ranom wal starting form a ranom point in B ens up in B after r steps equals 1 ( Pr[Q B B] = P r ) ab = 2 = 2 a,b B Pr 1 B, 1 B 2 S /2 ( 1 B (S ) S 1 B (S ) 2 ( 1 2 S where we use the fact that r is o (i.e. we roppe negative terms). Thus, using (3) we see that ) r ) r, Pr[Q B B] 2 1 B (S ) 2 e 2r S / 2 ( ) 2 1+e 2r/ 2 = ( ) 1 e 2r/ 1+e 2r/ 2. Proof of Proposition 2.1. Assume that r is an o integer an R < 2. For x {0, 1} let W r (x) {0, 1} be the ranom point obtaine by preforming a ranom wal for r steps starting at x. Since x W r (x) 1 r we now that Pr [H (W r (x)) = H (x)] p. Taing expectation with respect to the uniform probability measure on {0, 1} we euce that p E x {0,1} n Pr [H (W r (x)) = H (x)] = E H Pr [ x {0, 1} n : W r (x) H 1 (H (x)) ] = E H Pr [ x {0, 1} n : W r (x) H 1 (H (x)) H (x) = ] N = E H N E H N H 1 () 2 Pr [ Q H 1 () H 1 () ] H 1 () 2 H 1 () 2 H 1 (H (x)) = E H E x {0,1} E x {0,1} 2 E H 1 H (H (x)) 2 e 2r/ 1 e 2r/ +1 e 2r/ 1 e 2r/ +1 e 2r/ 1 e 2r/ +1 (4) (5) (q + e 1 ( 2 R)2) e2r/ 1 e 2r/ +1, (6) where in (4) we use Lemma 2.4, in (5) we use Jensen s inequality, an in (6) we use Corollary

6 Acnowlegements. We are grateful to Piotr Iny an Jira Matouše for helpful suggestions. References [1] A. Anoni an P. Iny. Faster algorithms for high imensional nearest neighbor problems. Manuscript, [2] W. Becner. Inequalities in Fourier analysis. Ann. of Math. (2), 102(1): , [3] A. Bonami. Étue es coefficients e Fourier es fonctions e L p (G). Ann. Inst. Fourier (Grenoble), 20(fasc. 2): (1971), [4] M. Datar, N. Immorlica, P. Iny, an V. S. Mirroni. Locality-sensitive hashing scheme base on p- stable istributions. In SCG 04: Proceeings of the Twentieth Annual Symposium on Computational Geometry (Broolyn, NY, 2004), pages ACM Press, New Yor, NY, [5] S. Har-Pele. A replacement for Voronoi iagrams of near linear size. In 42n IEEE Symposium on Founations of Computer Science (Las Vegas, NV, 2001), pages IEEE Computer Soc., Los Alamitos, CA, [6] P. Iny an R. Motwani. Approximate nearest neighbors: towars removing the curse of imensionality. In STOC 98: Proceeings of the Thirtieth Annual ACM Symposium on Theory of Computing (Dallas, TX, 1998), pages ACM Press, New Yor, NY, [7] R. Panigrahy. Entropy base nearest neighbor search in high imensions. In SODA 06: Proceeings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm (Miami, FL, 2006), pages ACM Press, New Yor, NY,

Locality Sensitive Hashing

Locality Sensitive Hashing Locality Sensitive Hashing February 1, 016 1 LSH in Hamming space The following discussion focuses on the notion of Locality Sensitive Hashing which was first introduced in [5]. We focus in the case of

More information

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012 CS-6 Theory Gems November 8, 0 Lecture Lecturer: Alesaner Mąry Scribes: Alhussein Fawzi, Dorina Thanou Introuction Toay, we will briefly iscuss an important technique in probability theory measure concentration

More information

LECTURE NOTES ON DVORETZKY S THEOREM

LECTURE NOTES ON DVORETZKY S THEOREM LECTURE NOTES ON DVORETZKY S THEOREM STEVEN HEILMAN Abstract. We present the first half of the paper [S]. In particular, the results below, unless otherwise state, shoul be attribute to G. Schechtman.

More information

On the Cauchy Problem for Von Neumann-Landau Wave Equation

On the Cauchy Problem for Von Neumann-Landau Wave Equation Journal of Applie Mathematics an Physics 4 4-3 Publishe Online December 4 in SciRes http://wwwscirporg/journal/jamp http://xoiorg/436/jamp4343 On the Cauchy Problem for Von Neumann-anau Wave Equation Chuangye

More information

Lecture 6 : Dimensionality Reduction

Lecture 6 : Dimensionality Reduction CPS290: Algorithmic Founations of Data Science February 3, 207 Lecture 6 : Dimensionality Reuction Lecturer: Kamesh Munagala Scribe: Kamesh Munagala In this lecture, we will consier the roblem of maing

More information

On the minimum distance of elliptic curve codes

On the minimum distance of elliptic curve codes On the minimum istance of elliptic curve coes Jiyou Li Department of Mathematics Shanghai Jiao Tong University Shanghai PRChina Email: lijiyou@sjtueucn Daqing Wan Department of Mathematics University of

More information

A new proof of the sharpness of the phase transition for Bernoulli percolation on Z d

A new proof of the sharpness of the phase transition for Bernoulli percolation on Z d A new proof of the sharpness of the phase transition for Bernoulli percolation on Z Hugo Duminil-Copin an Vincent Tassion October 8, 205 Abstract We provie a new proof of the sharpness of the phase transition

More information

Lower Bounds for the Smoothed Number of Pareto optimal Solutions

Lower Bounds for the Smoothed Number of Pareto optimal Solutions Lower Bouns for the Smoothe Number of Pareto optimal Solutions Tobias Brunsch an Heiko Röglin Department of Computer Science, University of Bonn, Germany brunsch@cs.uni-bonn.e, heiko@roeglin.org Abstract.

More information

LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION

LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION The Annals of Statistics 1997, Vol. 25, No. 6, 2313 2327 LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION By Eva Riccomagno, 1 Rainer Schwabe 2 an Henry P. Wynn 1 University of Warwick, Technische

More information

On the Surprising Behavior of Distance Metrics in High Dimensional Space

On the Surprising Behavior of Distance Metrics in High Dimensional Space On the Surprising Behavior of Distance Metrics in High Dimensional Space Charu C. Aggarwal, Alexaner Hinneburg 2, an Daniel A. Keim 2 IBM T. J. Watson Research Center Yortown Heights, NY 0598, USA. charu@watson.ibm.com

More information

Least-Squares Regression on Sparse Spaces

Least-Squares Regression on Sparse Spaces Least-Squares Regression on Sparse Spaces Yuri Grinberg, Mahi Milani Far, Joelle Pineau School of Computer Science McGill University Montreal, Canaa {ygrinb,mmilan1,jpineau}@cs.mcgill.ca 1 Introuction

More information

Database-friendly Random Projections

Database-friendly Random Projections Database-frienly Ranom Projections Dimitris Achlioptas Microsoft ABSTRACT A classic result of Johnson an Linenstrauss asserts that any set of n points in -imensional Eucliean space can be embee into k-imensional

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics 309 (009) 86 869 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: wwwelseviercom/locate/isc Profile vectors in the lattice of subspaces Dániel Gerbner

More information

A Lower Bound On Proximity Preservation by Space Filling Curves

A Lower Bound On Proximity Preservation by Space Filling Curves A Lower Boun On Proximity Preservation by Space Filling Curves Pan Xu Inustrial an Manufacturing Systems Engg. Iowa State University Ames, IA, USA Email: panxu@iastate.eu Srikanta Tirthapura Electrical

More information

A Weak First Digit Law for a Class of Sequences

A Weak First Digit Law for a Class of Sequences International Mathematical Forum, Vol. 11, 2016, no. 15, 67-702 HIKARI Lt, www.m-hikari.com http://x.oi.org/10.1288/imf.2016.6562 A Weak First Digit Law for a Class of Sequences M. A. Nyblom School of

More information

TOEPLITZ AND POSITIVE SEMIDEFINITE COMPLETION PROBLEM FOR CYCLE GRAPH

TOEPLITZ AND POSITIVE SEMIDEFINITE COMPLETION PROBLEM FOR CYCLE GRAPH English NUMERICAL MATHEMATICS Vol14, No1 Series A Journal of Chinese Universities Feb 2005 TOEPLITZ AND POSITIVE SEMIDEFINITE COMPLETION PROBLEM FOR CYCLE GRAPH He Ming( Λ) Michael K Ng(Ξ ) Abstract We

More information

Acute sets in Euclidean spaces

Acute sets in Euclidean spaces Acute sets in Eucliean spaces Viktor Harangi April, 011 Abstract A finite set H in R is calle an acute set if any angle etermine by three points of H is acute. We examine the maximal carinality α() of

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

Agmon Kolmogorov Inequalities on l 2 (Z d )

Agmon Kolmogorov Inequalities on l 2 (Z d ) Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Publishe by Canaian Center of Science an Eucation Agmon Kolmogorov Inequalities on l (Z ) Arman Sahovic Mathematics Department,

More information

A Unified Theorem on SDP Rank Reduction

A Unified Theorem on SDP Rank Reduction A Unifie heorem on SDP Ran Reuction Anthony Man Cho So, Yinyu Ye, Jiawei Zhang November 9, 006 Abstract We consier the problem of fining a low ran approximate solution to a system of linear equations in

More information

Tractability results for weighted Banach spaces of smooth functions

Tractability results for weighted Banach spaces of smooth functions Tractability results for weighte Banach spaces of smooth functions Markus Weimar Mathematisches Institut, Universität Jena Ernst-Abbe-Platz 2, 07740 Jena, Germany email: markus.weimar@uni-jena.e March

More information

arxiv: v4 [cs.ds] 7 Mar 2014

arxiv: v4 [cs.ds] 7 Mar 2014 Analysis of Agglomerative Clustering Marcel R. Ackermann Johannes Blömer Daniel Kuntze Christian Sohler arxiv:101.697v [cs.ds] 7 Mar 01 Abstract The iameter k-clustering problem is the problem of partitioning

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

High-Dimensional p-norms

High-Dimensional p-norms High-Dimensional p-norms Gérar Biau an Davi M. Mason Abstract Let X = X 1,...,X be a R -value ranom vector with i.i.. components, an let X p = j=1 X j p 1/p be its p-norm, for p > 0. The impact of letting

More information

u!i = a T u = 0. Then S satisfies

u!i = a T u = 0. Then S satisfies Deterministic Conitions for Subspace Ientifiability from Incomplete Sampling Daniel L Pimentel-Alarcón, Nigel Boston, Robert D Nowak University of Wisconsin-Maison Abstract Consier an r-imensional subspace

More information

Hyperbolic Systems of Equations Posed on Erroneous Curved Domains

Hyperbolic Systems of Equations Posed on Erroneous Curved Domains Hyperbolic Systems of Equations Pose on Erroneous Curve Domains Jan Norström a, Samira Nikkar b a Department of Mathematics, Computational Mathematics, Linköping University, SE-58 83 Linköping, Sween (

More information

Ramsey numbers of some bipartite graphs versus complete graphs

Ramsey numbers of some bipartite graphs versus complete graphs Ramsey numbers of some bipartite graphs versus complete graphs Tao Jiang, Michael Salerno Miami University, Oxfor, OH 45056, USA Abstract. The Ramsey number r(h, K n ) is the smallest positive integer

More information

Multi-View Clustering via Canonical Correlation Analysis

Multi-View Clustering via Canonical Correlation Analysis Keywors: multi-view learning, clustering, canonical correlation analysis Abstract Clustering ata in high-imensions is believe to be a har problem in general. A number of efficient clustering algorithms

More information

PDE Notes, Lecture #11

PDE Notes, Lecture #11 PDE Notes, Lecture # from Professor Jalal Shatah s Lectures Febuary 9th, 2009 Sobolev Spaces Recall that for u L loc we can efine the weak erivative Du by Du, φ := udφ φ C0 If v L loc such that Du, φ =

More information

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS MARK SCHACHNER Abstract. When consiere as an algebraic space, the set of arithmetic functions equippe with the operations of pointwise aition an

More information

Collapsed Gibbs and Variational Methods for LDA. Example Collapsed MoG Sampling

Collapsed Gibbs and Variational Methods for LDA. Example Collapsed MoG Sampling Case Stuy : Document Retrieval Collapse Gibbs an Variational Methos for LDA Machine Learning/Statistics for Big Data CSE599C/STAT59, University of Washington Emily Fox 0 Emily Fox February 7 th, 0 Example

More information

arxiv: v4 [math.pr] 27 Jul 2016

arxiv: v4 [math.pr] 27 Jul 2016 The Asymptotic Distribution of the Determinant of a Ranom Correlation Matrix arxiv:309768v4 mathpr] 7 Jul 06 AM Hanea a, & GF Nane b a Centre of xcellence for Biosecurity Risk Analysis, University of Melbourne,

More information

Multi-View Clustering via Canonical Correlation Analysis

Multi-View Clustering via Canonical Correlation Analysis Technical Report TTI-TR-2008-5 Multi-View Clustering via Canonical Correlation Analysis Kamalika Chauhuri UC San Diego Sham M. Kakae Toyota Technological Institute at Chicago ABSTRACT Clustering ata in

More information

7.1 Support Vector Machine

7.1 Support Vector Machine 67577 Intro. to Machine Learning Fall semester, 006/7 Lecture 7: Support Vector Machines an Kernel Functions II Lecturer: Amnon Shashua Scribe: Amnon Shashua 7. Support Vector Machine We return now to

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions Working Paper 2013:5 Department of Statistics Computing Exact Confience Coefficients of Simultaneous Confience Intervals for Multinomial Proportions an their Functions Shaobo Jin Working Paper 2013:5

More information

SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. where L is some constant, usually called the Lipschitz constant. An example is

SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. where L is some constant, usually called the Lipschitz constant. An example is SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. Uniqueness for solutions of ifferential equations. We consier the system of ifferential equations given by x = v( x), () t with a given initial conition

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

Influence of weight initialization on multilayer perceptron performance

Influence of weight initialization on multilayer perceptron performance Influence of weight initialization on multilayer perceptron performance M. Karouia (1,2) T. Denœux (1) R. Lengellé (1) (1) Université e Compiègne U.R.A. CNRS 817 Heuiasyc BP 649 - F-66 Compiègne ceex -

More information

LEGENDRE TYPE FORMULA FOR PRIMES GENERATED BY QUADRATIC POLYNOMIALS

LEGENDRE TYPE FORMULA FOR PRIMES GENERATED BY QUADRATIC POLYNOMIALS Ann. Sci. Math. Québec 33 (2009), no 2, 115 123 LEGENDRE TYPE FORMULA FOR PRIMES GENERATED BY QUADRATIC POLYNOMIALS TAKASHI AGOH Deicate to Paulo Ribenboim on the occasion of his 80th birthay. RÉSUMÉ.

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Time-of-Arrival Estimation in Non-Line-Of-Sight Environments

Time-of-Arrival Estimation in Non-Line-Of-Sight Environments 2 Conference on Information Sciences an Systems, The Johns Hopkins University, March 2, 2 Time-of-Arrival Estimation in Non-Line-Of-Sight Environments Sinan Gezici, Hisashi Kobayashi an H. Vincent Poor

More information

FLUCTUATIONS IN THE NUMBER OF POINTS ON SMOOTH PLANE CURVES OVER FINITE FIELDS. 1. Introduction

FLUCTUATIONS IN THE NUMBER OF POINTS ON SMOOTH PLANE CURVES OVER FINITE FIELDS. 1. Introduction FLUCTUATIONS IN THE NUMBER OF POINTS ON SMOOTH PLANE CURVES OVER FINITE FIELDS ALINA BUCUR, CHANTAL DAVID, BROOKE FEIGON, MATILDE LALÍN 1 Introuction In this note, we stuy the fluctuations in the number

More information

Sharp Thresholds. Zachary Hamaker. March 15, 2010

Sharp Thresholds. Zachary Hamaker. March 15, 2010 Sharp Threshols Zachary Hamaker March 15, 2010 Abstract The Kolmogorov Zero-One law states that for tail events on infinite-imensional probability spaces, the probability must be either zero or one. Behavior

More information

Monotonicity for excited random walk in high dimensions

Monotonicity for excited random walk in high dimensions Monotonicity for excite ranom walk in high imensions Remco van er Hofsta Mark Holmes March, 2009 Abstract We prove that the rift θ, β) for excite ranom walk in imension is monotone in the excitement parameter

More information

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k A Proof of Lemma 2 B Proof of Lemma 3 Proof: Since the support of LL istributions is R, two such istributions are equivalent absolutely continuous with respect to each other an the ivergence is well-efine

More information

Lower Bounds for k-distance Approximation

Lower Bounds for k-distance Approximation Lower Bouns for k-distance Approximation Quentin Mérigot March 21, 2013 Abstract Consier a set P of N ranom points on the unit sphere of imension 1, an the symmetrize set S = P ( P). The halving polyheron

More information

Generalized Tractability for Multivariate Problems

Generalized Tractability for Multivariate Problems Generalize Tractability for Multivariate Problems Part II: Linear Tensor Prouct Problems, Linear Information, an Unrestricte Tractability Michael Gnewuch Department of Computer Science, University of Kiel,

More information

Qubit channels that achieve capacity with two states

Qubit channels that achieve capacity with two states Qubit channels that achieve capacity with two states Dominic W. Berry Department of Physics, The University of Queenslan, Brisbane, Queenslan 4072, Australia Receive 22 December 2004; publishe 22 March

More information

Necessary and Sufficient Conditions for Sketched Subspace Clustering

Necessary and Sufficient Conditions for Sketched Subspace Clustering Necessary an Sufficient Conitions for Sketche Subspace Clustering Daniel Pimentel-Alarcón, Laura Balzano 2, Robert Nowak University of Wisconsin-Maison, 2 University of Michigan-Ann Arbor Abstract This

More information

A Randomized Approximate Nearest Neighbors Algorithm - a short version

A Randomized Approximate Nearest Neighbors Algorithm - a short version We present a ranomize algorithm for the approximate nearest neighbor problem in - imensional Eucliean space. Given N points {x } in R, the algorithm attempts to fin k nearest neighbors for each of x, where

More information

Lecture 14 October 16, 2014

Lecture 14 October 16, 2014 CS 224: Advanced Algorithms Fall 2014 Prof. Jelani Nelson Lecture 14 October 16, 2014 Scribe: Jao-ke Chin-Lee 1 Overview In the last lecture we covered learning topic models with guest lecturer Rong Ge.

More information

Estimation of the Maximum Domination Value in Multi-Dimensional Data Sets

Estimation of the Maximum Domination Value in Multi-Dimensional Data Sets Proceeings of the 4th East-European Conference on Avances in Databases an Information Systems ADBIS) 200 Estimation of the Maximum Domination Value in Multi-Dimensional Data Sets Eleftherios Tiakas, Apostolos.

More information

Quantum Search on the Spatial Grid

Quantum Search on the Spatial Grid Quantum Search on the Spatial Gri Matthew D. Falk MIT 2012, 550 Memorial Drive, Cambrige, MA 02139 (Date: December 11, 2012) This paper explores Quantum Search on the two imensional spatial gri. Recent

More information

On the enumeration of partitions with summands in arithmetic progression

On the enumeration of partitions with summands in arithmetic progression AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 8 (003), Pages 149 159 On the enumeration of partitions with summans in arithmetic progression M. A. Nyblom C. Evans Department of Mathematics an Statistics

More information

A note on asymptotic formulae for one-dimensional network flow problems Carlos F. Daganzo and Karen R. Smilowitz

A note on asymptotic formulae for one-dimensional network flow problems Carlos F. Daganzo and Karen R. Smilowitz A note on asymptotic formulae for one-imensional network flow problems Carlos F. Daganzo an Karen R. Smilowitz (to appear in Annals of Operations Research) Abstract This note evelops asymptotic formulae

More information

Survival exponents for fractional Brownian motion with multivariate time

Survival exponents for fractional Brownian motion with multivariate time Survival exponents for fractional Brownian motion with multivariate time G Molchan Institute of Earthquae Preiction heory an Mathematical Geophysics Russian Acaemy of Science 84/3 Profsoyuznaya st 7997

More information

Leaving Randomness to Nature: d-dimensional Product Codes through the lens of Generalized-LDPC codes

Leaving Randomness to Nature: d-dimensional Product Codes through the lens of Generalized-LDPC codes Leaving Ranomness to Nature: -Dimensional Prouct Coes through the lens of Generalize-LDPC coes Tavor Baharav, Kannan Ramchanran Dept. of Electrical Engineering an Computer Sciences, U.C. Berkeley {tavorb,

More information

Convergence of Random Walks

Convergence of Random Walks Chapter 16 Convergence of Ranom Walks This lecture examines the convergence of ranom walks to the Wiener process. This is very important both physically an statistically, an illustrates the utility of

More information

Robustness and Perturbations of Minimal Bases

Robustness and Perturbations of Minimal Bases Robustness an Perturbations of Minimal Bases Paul Van Dooren an Froilán M Dopico December 9, 2016 Abstract Polynomial minimal bases of rational vector subspaces are a classical concept that plays an important

More information

Asymptotic estimates on the time derivative of entropy on a Riemannian manifold

Asymptotic estimates on the time derivative of entropy on a Riemannian manifold Asymptotic estimates on the time erivative of entropy on a Riemannian manifol Arian P. C. Lim a, Dejun Luo b a Nanyang Technological University, athematics an athematics Eucation, Singapore b Key Lab of

More information

II. First variation of functionals

II. First variation of functionals II. First variation of functionals The erivative of a function being zero is a necessary conition for the etremum of that function in orinary calculus. Let us now tackle the question of the equivalent

More information

Optimal Lower Bounds for Locality Sensitive Hashing (except when q is tiny)

Optimal Lower Bounds for Locality Sensitive Hashing (except when q is tiny) Innovations in Computer Science 20 Optimal Lower Bounds for Locality Sensitive Hashing (except when q is tiny Ryan O Donnell Yi Wu 3 Yuan Zhou 2 Computer Science Department, Carnegie Mellon University,

More information

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold CHAPTER 1 : DIFFERENTIABLE MANIFOLDS 1.1 The efinition of a ifferentiable manifol Let M be a topological space. This means that we have a family Ω of open sets efine on M. These satisfy (1), M Ω (2) the

More information

Dissipative numerical methods for the Hunter-Saxton equation

Dissipative numerical methods for the Hunter-Saxton equation Dissipative numerical methos for the Hunter-Saton equation Yan Xu an Chi-Wang Shu Abstract In this paper, we present further evelopment of the local iscontinuous Galerkin (LDG) metho esigne in [] an a

More information

Mark J. Machina CARDINAL PROPERTIES OF "LOCAL UTILITY FUNCTIONS"

Mark J. Machina CARDINAL PROPERTIES OF LOCAL UTILITY FUNCTIONS Mark J. Machina CARDINAL PROPERTIES OF "LOCAL UTILITY FUNCTIONS" This paper outlines the carinal properties of "local utility functions" of the type use by Allen [1985], Chew [1983], Chew an MacCrimmon

More information

Perfect Matchings in Õ(n1.5 ) Time in Regular Bipartite Graphs

Perfect Matchings in Õ(n1.5 ) Time in Regular Bipartite Graphs Perfect Matchings in Õ(n1.5 ) Time in Regular Bipartite Graphs Ashish Goel Michael Kapralov Sanjeev Khanna Abstract We consier the well-stuie problem of fining a perfect matching in -regular bipartite

More information

Combinatorica 9(1)(1989) A New Lower Bound for Snake-in-the-Box Codes. Jerzy Wojciechowski. AMS subject classification 1980: 05 C 35, 94 B 25

Combinatorica 9(1)(1989) A New Lower Bound for Snake-in-the-Box Codes. Jerzy Wojciechowski. AMS subject classification 1980: 05 C 35, 94 B 25 Combinatorica 9(1)(1989)91 99 A New Lower Boun for Snake-in-the-Box Coes Jerzy Wojciechowski Department of Pure Mathematics an Mathematical Statistics, University of Cambrige, 16 Mill Lane, Cambrige, CB2

More information

Some Examples. Uniform motion. Poisson processes on the real line

Some Examples. Uniform motion. Poisson processes on the real line Some Examples Our immeiate goal is to see some examples of Lévy processes, an/or infinitely-ivisible laws on. Uniform motion Choose an fix a nonranom an efine X := for all (1) Then, {X } is a [nonranom]

More information

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential Avances in Applie Mathematics an Mechanics Av. Appl. Math. Mech. Vol. 1 No. 4 pp. 573-580 DOI: 10.4208/aamm.09-m0946 August 2009 A Note on Exact Solutions to Linear Differential Equations by the Matrix

More information

Range and speed of rotor walks on trees

Range and speed of rotor walks on trees Range an spee of rotor wals on trees Wilfrie Huss an Ecaterina Sava-Huss May 15, 1 Abstract We prove a law of large numbers for the range of rotor wals with ranom initial configuration on regular trees

More information

On non-antipodal binary completely regular codes

On non-antipodal binary completely regular codes Discrete Mathematics 308 (2008) 3508 3525 www.elsevier.com/locate/isc On non-antipoal binary completely regular coes J. Borges a, J. Rifà a, V.A. Zinoviev b a Department of Information an Communications

More information

arxiv: v1 [math.co] 15 Sep 2015

arxiv: v1 [math.co] 15 Sep 2015 Circular coloring of signe graphs Yingli Kang, Eckhar Steffen arxiv:1509.04488v1 [math.co] 15 Sep 015 Abstract Let k, ( k) be two positive integers. We generalize the well stuie notions of (k, )-colorings

More information

Lecture 8 January 30, 2014

Lecture 8 January 30, 2014 MTH 995-3: Intro to CS and Big Data Spring 14 Inst. Mark Ien Lecture 8 January 3, 14 Scribe: Kishavan Bhola 1 Overvie In this lecture, e begin a probablistic method for approximating the Nearest Neighbor

More information

Chromatic number for a generalization of Cartesian product graphs

Chromatic number for a generalization of Cartesian product graphs Chromatic number for a generalization of Cartesian prouct graphs Daniel Král Douglas B. West Abstract Let G be a class of graphs. The -fol gri over G, enote G, is the family of graphs obtaine from -imensional

More information

ON ISENTROPIC APPROXIMATIONS FOR COMPRESSIBLE EULER EQUATIONS

ON ISENTROPIC APPROXIMATIONS FOR COMPRESSIBLE EULER EQUATIONS ON ISENTROPIC APPROXIMATIONS FOR COMPRESSILE EULER EQUATIONS JUNXIONG JIA AND RONGHUA PAN Abstract. In this paper, we first generalize the classical results on Cauchy problem for positive symmetric quasilinear

More information

Multi-agent Systems Reaching Optimal Consensus with Time-varying Communication Graphs

Multi-agent Systems Reaching Optimal Consensus with Time-varying Communication Graphs Preprints of the 8th IFAC Worl Congress Multi-agent Systems Reaching Optimal Consensus with Time-varying Communication Graphs Guoong Shi ACCESS Linnaeus Centre, School of Electrical Engineering, Royal

More information

DECOMPOSITION OF POLYNOMIALS AND APPROXIMATE ROOTS

DECOMPOSITION OF POLYNOMIALS AND APPROXIMATE ROOTS DECOMPOSITION OF POLYNOMIALS AND APPROXIMATE ROOTS ARNAUD BODIN Abstract. We state a kin of Eucliian ivision theorem: given a polynomial P (x) an a ivisor of the egree of P, there exist polynomials h(x),

More information

1. Aufgabenblatt zur Vorlesung Probability Theory

1. Aufgabenblatt zur Vorlesung Probability Theory 24.10.17 1. Aufgabenblatt zur Vorlesung By (Ω, A, P ) we always enote the unerlying probability space, unless state otherwise. 1. Let r > 0, an efine f(x) = 1 [0, [ (x) exp( r x), x R. a) Show that p f

More information

arxiv: v1 [math.mg] 10 Apr 2018

arxiv: v1 [math.mg] 10 Apr 2018 ON THE VOLUME BOUND IN THE DVORETZKY ROGERS LEMMA FERENC FODOR, MÁRTON NASZÓDI, AND TAMÁS ZARNÓCZ arxiv:1804.03444v1 [math.mg] 10 Apr 2018 Abstract. The classical Dvoretzky Rogers lemma provies a eterministic

More information

Permanent vs. Determinant

Permanent vs. Determinant Permanent vs. Determinant Frank Ban Introuction A major problem in theoretical computer science is the Permanent vs. Determinant problem. It asks: given an n by n matrix of ineterminates A = (a i,j ) an

More information

Proof of SPNs as Mixture of Trees

Proof of SPNs as Mixture of Trees A Proof of SPNs as Mixture of Trees Theorem 1. If T is an inuce SPN from a complete an ecomposable SPN S, then T is a tree that is complete an ecomposable. Proof. Argue by contraiction that T is not a

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

A Sketch of Menshikov s Theorem

A Sketch of Menshikov s Theorem A Sketch of Menshikov s Theorem Thomas Bao March 14, 2010 Abstract Let Λ be an infinite, locally finite oriente multi-graph with C Λ finite an strongly connecte, an let p

More information

Convergence rates of moment-sum-of-squares hierarchies for optimal control problems

Convergence rates of moment-sum-of-squares hierarchies for optimal control problems Convergence rates of moment-sum-of-squares hierarchies for optimal control problems Milan Kora 1, Diier Henrion 2,3,4, Colin N. Jones 1 Draft of September 8, 2016 Abstract We stuy the convergence rate

More information

On the Aloha throughput-fairness tradeoff

On the Aloha throughput-fairness tradeoff On the Aloha throughput-fairness traeoff 1 Nan Xie, Member, IEEE, an Steven Weber, Senior Member, IEEE Abstract arxiv:1605.01557v1 [cs.it] 5 May 2016 A well-known inner boun of the stability region of

More information

arxiv: v1 [cs.it] 21 Aug 2017

arxiv: v1 [cs.it] 21 Aug 2017 Performance Gains of Optimal Antenna Deployment for Massive MIMO ystems Erem Koyuncu Department of Electrical an Computer Engineering, University of Illinois at Chicago arxiv:708.06400v [cs.it] 2 Aug 207

More information

THE KELLER-SEGEL MODEL FOR CHEMOTAXIS WITH PREVENTION OF OVERCROWDING: LINEAR VS. NONLINEAR DIFFUSION

THE KELLER-SEGEL MODEL FOR CHEMOTAXIS WITH PREVENTION OF OVERCROWDING: LINEAR VS. NONLINEAR DIFFUSION THE KELLER-SEGEL MODEL FOR CHEMOTAXIS WITH PREVENTION OF OVERCROWDING: LINEAR VS. NONLINEAR DIFFUSION MARTIN BURGER, MARCO DI FRANCESCO, AND YASMIN DOLAK Abstract. The aim of this paper is to iscuss the

More information

On the number of isolated eigenvalues of a pair of particles in a quantum wire

On the number of isolated eigenvalues of a pair of particles in a quantum wire On the number of isolate eigenvalues of a pair of particles in a quantum wire arxiv:1812.11804v1 [math-ph] 31 Dec 2018 Joachim Kerner 1 Department of Mathematics an Computer Science FernUniversität in

More information

Pseudo-Free Families of Finite Computational Elementary Abelian p-groups

Pseudo-Free Families of Finite Computational Elementary Abelian p-groups Pseuo-Free Families of Finite Computational Elementary Abelian p-groups Mikhail Anokhin Information Security Institute, Lomonosov University, Moscow, Russia anokhin@mccme.ru Abstract We initiate the stuy

More information

Asymptotic determination of edge-bandwidth of multidimensional grids and Hamming graphs

Asymptotic determination of edge-bandwidth of multidimensional grids and Hamming graphs Asymptotic etermination of ege-banwith of multiimensional gris an Hamming graphs Reza Akhtar Tao Jiang Zevi Miller. Revise on May 7, 007 Abstract The ege-banwith B (G) of a graph G is the banwith of the

More information

Upper and Lower Bounds on ε-approximate Degree of AND n and OR n Using Chebyshev Polynomials

Upper and Lower Bounds on ε-approximate Degree of AND n and OR n Using Chebyshev Polynomials Upper an Lower Bouns on ε-approximate Degree of AND n an OR n Using Chebyshev Polynomials Mrinalkanti Ghosh, Rachit Nimavat December 11, 016 1 Introuction The notion of approximate egree was first introuce

More information

Counting Lattice Points in Polytopes: The Ehrhart Theory

Counting Lattice Points in Polytopes: The Ehrhart Theory 3 Counting Lattice Points in Polytopes: The Ehrhart Theory Ubi materia, ibi geometria. Johannes Kepler (1571 1630) Given the profusion of examples that gave rise to the polynomial behavior of the integer-point

More information

Multi-View Clustering via Canonical Correlation Analysis

Multi-View Clustering via Canonical Correlation Analysis Kamalika Chauhuri ITA, UC San Diego, 9500 Gilman Drive, La Jolla, CA Sham M. Kakae Karen Livescu Karthik Sriharan Toyota Technological Institute at Chicago, 6045 S. Kenwoo Ave., Chicago, IL kamalika@soe.ucs.eu

More information

WUCHEN LI AND STANLEY OSHER

WUCHEN LI AND STANLEY OSHER CONSTRAINED DYNAMICAL OPTIMAL TRANSPORT AND ITS LAGRANGIAN FORMULATION WUCHEN LI AND STANLEY OSHER Abstract. We propose ynamical optimal transport (OT) problems constraine in a parameterize probability

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

Expected Value of Partial Perfect Information

Expected Value of Partial Perfect Information Expecte Value of Partial Perfect Information Mike Giles 1, Takashi Goa 2, Howar Thom 3 Wei Fang 1, Zhenru Wang 1 1 Mathematical Institute, University of Oxfor 2 School of Engineering, University of Tokyo

More information

On permutation-invariance of limit theorems

On permutation-invariance of limit theorems On permutation-invariance of limit theorems I. Beres an R. Tichy Abstract By a classical principle of probability theory, sufficiently thin subsequences of general sequences of ranom variables behave lie

More information

The Generalized Incompressible Navier-Stokes Equations in Besov Spaces

The Generalized Incompressible Navier-Stokes Equations in Besov Spaces Dynamics of PDE, Vol1, No4, 381-400, 2004 The Generalize Incompressible Navier-Stokes Equations in Besov Spaces Jiahong Wu Communicate by Charles Li, receive July 21, 2004 Abstract This paper is concerne

More information

Diophantine Approximations: Examining the Farey Process and its Method on Producing Best Approximations

Diophantine Approximations: Examining the Farey Process and its Method on Producing Best Approximations Diophantine Approximations: Examining the Farey Process an its Metho on Proucing Best Approximations Kelly Bowen Introuction When a person hears the phrase irrational number, one oes not think of anything

More information