JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

Size: px
Start display at page:

Download "JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson"

Transcription

1 JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson Introuction Average rates of change Instantaneous rates of change Derivatives Exercises Answers to exercises

2 UNIT DIFFERENTIATION 2 RATES OF CHANGE INTRODUCTION The functional relationship y = f(x) can be represente iagramatically by rawing the graph of y against x to obtain, in general, some kin of curve. Between one point of the curve an another, the values of both x an y will change, in general; an the purpose of this section is to introuce the concept of the rate of increase of y with respect to x. A convenient practical illustration which will provie an ai to unerstaning is to think of y as the istance travelle by a moving object at time x; because, in this case, the rate of increase of y with respect to x becomes the familiar quantity which we know as spee AVERAGE RATES OF CHANGE Suppose that a vehicle travelle a istance of 280 miles in 7 hours, a journey which is likely to have inclue short stops, traffic jams, traffic lights an also some fairly high spee motoring. The ratio = 40 represents the average spee of 40 miles per hour over the whole journey. It is a convenient representation of the spee uring the journey even though the vehicle might not have been travelling at that spee very often. Consier now a graph representing the relationship, y = f(x), between two arbitrary variables, x an y, not necessarily time an istance variables. 1

3 y P(a, b) Q(c, ) O x Between the two points P(a, b) an Q(c, ) an increase of c a in x gives rise to an increase of b in y. Therefore, the average rate of increase of y with respect to x from P to Q is b c a. If it shoul happen that y ecreases as x increases (between P an Q), this quantity will automatically turn out negative; hence, all rates of increase which are POSITIVE correspon to an INCREASING function, an all rates of increase which are NEGATIVE correspon to a DECREASING function. Note: For the purposes of later work, the two points P an Q will nee to be consiere as very close together on the graph, an another way of expressing a rate of increase is to consier notations such as P(x, y) an Q(x +, y + δy) for the pair of points. Here, we are using the symbols an δy to represent a small fraction of x an a small fraction of y, respectively. We o not mean δ times x an δ times y. We normally consier that is positive, but δy may turn out to be negative. The average rate of increase in this alternative notation is given by δy f(x + ) f(x) =. 2

4 In other wors, The average rate of increase is equal to (new value of y) minus (ol value of y) (new value of x) minus (ol value of x) EXAMPLE Determine the average rate of increase of the function y = x 2 between the following pairs of points on its graph: (a) (3, 9) an (3.3, 10.89); (b) (3, 9) an (3.2, 10.24); (c) (3, 9) an (3.1, 9.61). Solution The results are (a) δy = = 6.3; (b) δy = = 6.2; (c) δy = = INSTANTANEOUS RATES OF CHANGE The results of the example at the en of the previous section seem to suggest that, by letting the secon point become increasingly close to the first point along the curve, we coul etermine the actual rate of increase of y with respect to x at the first point only, rather than the average rate of increase between the two points. In the above example, the inications are that the rate of increase of y = x 2 with respect to x at the point (3, 9) is equal to 6; an this is calle the instantaneous rate of increase of y with respect to x at the chosen point. The instantaneous rate of increase in this example has been obtaine by guesswork on the strength of just three points approaching (3, 9). In general, we nee to consier a limiting process in which an infinite number of points approach the chosen one along the curve. 3

5 This process is represente by δy lim 0 an it forms the basis of our main iscussion on ifferential calculus which now follows DERIVATIVES (a) The Definition of a Derivative In the functional relationship y = f(x) the erivative of y with respect to x at any point (x, y) on the graph of the function is efine to be the instantaneous rate of increase of y with respect to x at that point. Assuming that a small increase of in x gives rise to a corresponing increase (positive or negative) of δy in y, the erivative will be given by δy lim 0 0 f(x + ) f(x). This limiting value is usually enote by one of the three symbols y x, f (x) or x [f(x)]. Notes: (i) In the thir of these notations, the symbol is calle a ifferential operator ; it x cannot exist on its own, but nees to be operating on some function of x. In fact, the first alternative notation is really this ifferential operator operating on y, which we certainly know to be a function of x. (ii) The secon an thir alternative notations are normally use when the erivative of a function of x is being consiere without reference to a secon variable, y. (iii) The erivative of a constant function must be zero since the rate of change of something which never changes is obviously zero. (iv) Geometrically, the erivative represents the graient of the tangent at the point (x, y) to the curve whose equation is y = f(x). 4

6 (b) Differentiation from First Principles Ultimately, the erivatives of simple functions may be quote from a table of stanar results; but the establishing of such results requires the use of the efinition of a erivative. We illustrate with two examples the process involve: EXAMPLES 1. Differentiate the function x 4 from first principles. Solution Here we have a situation where the variable y is not mentione; so, we coul say let y = x 4, an etermine y from first principles in orer to answer the question. x However, we shall choose the alternative notation which oes not require the use of y at all. Then, from Pascal s Triangle (Unit 2.2), [ ] x 4 (x + ) 4 x 4. x 0 [ ] x 4 x 4 + 4x 3 + 6x 2 () 2 + 4x() 3 + () 4 x 4 x 0 0 [ 4x 3 + 6x 2 + 4x() 2 + () 3] = 4x 3. Note: This result illustrates a general result which will not be prove here that x [xn ] = nx n 1 for any constant value n, not necessarily an integer. 2. Differentiate the function sin x from first principles. Solution [sin x] x 0 5 sin(x + ) sin x,

7 which, from Trigonometric Ientities (Unit 3.5), becomes [sin x] x 0 2 cos ( x + 2 ) sin ( 2 ) 0 cos ( x + 2 ) sin ( 2 2 ). Finally, using the stanar limit (Unit 10.1), we conclue that sin x lim x 0 x = 1, [sin x] = cos x. x Note: The erivative of cos x may be obtaine in the same way (see EXERCISES , question 2) but it will also be possible to obtain this later (Unit 10.3) by regaring cos x as sin ( π 2 x). 3. Differentiate from first principles the function where b is any base of logarithms. Solution log b x x [log log bx] b (x + ) log b x 0 log b 0 ( ) 1 + x. But writing we have x = r that is = rx, x [log bx] = 1 x lim log b (1 + r) r 0 r 6

8 = 1 x lim r 0 log b(1 + r) 1 r. For convenience, we may choose a base of logarithms which causes the limiting value above to equal 1; an this will occur when b r 0 (1 + r) 1 r. The appropriate value of b turns out to be approximately an this is the stanar base of natural logarithms enote by e. Hence, x [log ex] = 1 x. Note: In scientific work, the natural logarithm of x is usually enote by ln x an this notation will be use in future EXERCISES 1. Differentiate from first principles the function x Differentiate from first principles the function cos x. 3. Differentiate from first principles the function x. Hint: ( x + x)( x + + x) = ANSWERS TO EXERCISES 1. 3x sin x x. 7

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0.

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0. Calculus refresher Disclaimer: I claim no original content on this ocument, which is mostly a summary-rewrite of what any stanar college calculus book offers. (Here I ve use Calculus by Dennis Zill.) I

More information

Differentiability, Computing Derivatives, Trig Review

Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an original function Compute

More information

UNIT NUMBER DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

UNIT NUMBER DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS UNIT NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

SYDE 112, LECTURE 1: Review & Antidifferentiation

SYDE 112, LECTURE 1: Review & Antidifferentiation SYDE 112, LECTURE 1: Review & Antiifferentiation 1 Course Information For a etaile breakown of the course content an available resources, see the Course Outline. Other relevant information for this section

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then Bob Brown Math 51 Calculus 1 Chapter 3, Section Complete 1 Review of the Limit Definition of the Derivative Write the it efinition of the erivative function: f () Derivative of a Constant Multiple of a

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

Chapter 2. Exponential and Log functions. Contents

Chapter 2. Exponential and Log functions. Contents Chapter. Exponential an Log functions This material is in Chapter 6 of Anton Calculus. The basic iea here is mainly to a to the list of functions we know about (for calculus) an the ones we will stu all

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

2.1 Derivatives and Rates of Change

2.1 Derivatives and Rates of Change 1a 1b 2.1 Derivatives an Rates of Change Tangent Lines Example. Consier y f x x 2 0 2 x-, 0 4 y-, f(x) axes, curve C Consier a smooth curve C. A line tangent to C at a point P both intersects C at P an

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

there is no special reason why the value of y should be fixed at y = 0.3. Any y such that

there is no special reason why the value of y should be fixed at y = 0.3. Any y such that 25. More on bivariate functions: partial erivatives integrals Although we sai that the graph of photosynthesis versus temperature in Lecture 16 is like a hill, in the real worl hills are three-imensional

More information

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Fall 2016: Calculus I Final

Fall 2016: Calculus I Final Answer the questions in the spaces provie on the question sheets. If you run out of room for an answer, continue on the back of the page. NO calculators or other electronic evices, books or notes are allowe

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Math 19 Sample Final Exam Solutions

Math 19 Sample Final Exam Solutions SSEA Summer 2017 Math 19 Sample Final Exam Solutions 1. [10 points] For what value of the constant k will the function: ) 1 x 2 sin, x < 0 fx) = x, x + k coskx), x 0 be continuous at x = 0? Explain your

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes Implicit Differentiation 11.7 Introuction This Section introuces implicit ifferentiation which is use to ifferentiate functions expresse in implicit form (where the variables are foun together). Examples

More information

Math 1B, lecture 8: Integration by parts

Math 1B, lecture 8: Integration by parts Math B, lecture 8: Integration by parts Nathan Pflueger 23 September 2 Introuction Integration by parts, similarly to integration by substitution, reverses a well-known technique of ifferentiation an explores

More information

Antiderivatives Introduction

Antiderivatives Introduction Antierivatives 40. Introuction So far much of the term has been spent fining erivatives or rates of change. But in some circumstances we alreay know the rate of change an we wish to etermine the original

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

By writing (1) as y (x 5 1). (x 5 1), we can find the derivative using the Product Rule: y (x 5 1) 2. we know this from (2)

By writing (1) as y (x 5 1). (x 5 1), we can find the derivative using the Product Rule: y (x 5 1) 2. we know this from (2) 3.5 Chain Rule 149 3.5 Chain Rule Introuction As iscusse in Section 3.2, the Power Rule is vali for all real number exponents n. In this section we see that a similar rule hols for the erivative of a power

More information

Summary: Differentiation

Summary: Differentiation Techniques of Differentiation. Inverse Trigonometric functions The basic formulas (available in MF5 are: Summary: Differentiation ( sin ( cos The basic formula can be generalize as follows: Note: ( sin

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Basic Differentiation Rules and Rates of Change. The Constant Rule

Basic Differentiation Rules and Rates of Change. The Constant Rule 460_00.q //04 4:04 PM Page 07 SECTION. Basic Differentiation Rules an Rates of Change 07 Section. The slope of a horizontal line is 0. Basic Differentiation Rules an Rates of Change Fin the erivative of

More information

f(x) f(a) Limit definition of the at a point in slope notation.

f(x) f(a) Limit definition of the at a point in slope notation. Lesson 9: Orinary Derivatives Review Hanout Reference: Brigg s Calculus: Early Transcenentals, Secon Eition Topics: Chapter 3: Derivatives, p. 126-235 Definition. Limit Definition of Derivatives at a point

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

The Natural Logarithm

The Natural Logarithm The Natural Logarithm -28-208 In earlier courses, you may have seen logarithms efine in terms of raising bases to powers. For eample, log 2 8 = 3 because 2 3 = 8. In those terms, the natural logarithm

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Some functions and their derivatives

Some functions and their derivatives Chapter Some functions an their erivatives. Derivative of x n for integer n Recall, from eqn (.6), for y = f (x), Also recall that, for integer n, Hence, if y = x n then y x = lim δx 0 (a + b) n = a n

More information

Integration by Parts

Integration by Parts Integration by Parts 6-3-207 If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an

More information

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9 Calculus I Practice Test Problems for Chapter 3 Page of 9 This is a set of practice test problems for Chapter 3. This is in no wa an inclusive set of problems there can be other tpes of problems on the

More information

TMA 4195 Matematisk modellering Exam Tuesday December 16, :00 13:00 Problems and solution with additional comments

TMA 4195 Matematisk modellering Exam Tuesday December 16, :00 13:00 Problems and solution with additional comments Problem F U L W D g m 3 2 s 2 0 0 0 0 2 kg 0 0 0 0 0 0 Table : Dimension matrix TMA 495 Matematisk moellering Exam Tuesay December 6, 2008 09:00 3:00 Problems an solution with aitional comments The necessary

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

UNDERSTANDING INTEGRATION

UNDERSTANDING INTEGRATION UNDERSTANDING INTEGRATION Dear Reaer The concept of Integration, mathematically speaking, is the "Inverse" of the concept of result, the integration of, woul give us back the function f(). This, in a way,

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities:

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities: 6.4 Integration using tanx/) We will revisit the ouble angle ientities: sin x = sinx/) cosx/) = tanx/) sec x/) = tanx/) + tan x/) cos x = cos x/) sin x/) tan x = = tan x/) sec x/) tanx/) tan x/). = tan

More information

Section 7.2. The Calculus of Complex Functions

Section 7.2. The Calculus of Complex Functions Section 7.2 The Calculus of Complex Functions In this section we will iscuss limits, continuity, ifferentiation, Taylor series in the context of functions which take on complex values. Moreover, we will

More information

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS. An isosceles triangle, whose base is the interval from (0, 0) to (c, 0), has its verte on the graph

More information

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x)

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x) Limit We say the limit of f () as approaches c equals L an write, lim L. One-Sie Limits (Left an Right-Hane Limits) Suppose a function f is efine near but not necessarily at We say that f has a left-hane

More information

4.2 First Differentiation Rules; Leibniz Notation

4.2 First Differentiation Rules; Leibniz Notation .. FIRST DIFFERENTIATION RULES; LEIBNIZ NOTATION 307. First Differentiation Rules; Leibniz Notation In this section we erive rules which let us quickly compute the erivative function f (x) for any polynomial

More information

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth Friay, February 2, 2018. Objectives: Review log an exponential functions, their erivative an integration formulas. Exponential

More information

Computing Derivatives

Computing Derivatives Chapter 2 Computing Derivatives 2.1 Elementary erivative rules Motivating Questions In this section, we strive to unerstan the ieas generate by the following important questions: What are alternate notations

More information

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives.

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives. Math 1314 ONLINE More from Lesson 6 The Limit Definition of the Derivative an Rules for Fining Derivatives Eample 4: Use the Four-Step Process for fining the erivative of the function Then fin f (1) f(

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

C6-1 Differentiation 2

C6-1 Differentiation 2 C6-1 Differentiation 2 the erivatives of sin, cos, a, e an ln Pre-requisites: M5-4 (Raians), C5-7 (General Calculus) Estimate time: 2 hours Summary Lea-In Learn Solve Revise Answers Summary The erivative

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

Chapter 6: Integration: partial fractions and improper integrals

Chapter 6: Integration: partial fractions and improper integrals Chapter 6: Integration: partial fractions an improper integrals Course S3, 006 07 April 5, 007 These are just summaries of the lecture notes, an few etails are inclue. Most of what we inclue here is to

More information

Review of Differentiation and Integration for Ordinary Differential Equations

Review of Differentiation and Integration for Ordinary Differential Equations Schreyer Fall 208 Review of Differentiation an Integration for Orinary Differential Equations In this course you will be expecte to be able to ifferentiate an integrate quickly an accurately. Many stuents

More information

ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT

ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT Course: Math For Engineering Winter 8 Lecture Notes By Dr. Mostafa Elogail Page Lecture [ Functions / Graphs of Rational Functions] Functions

More information

SECTION 2.1 BASIC CALCULUS REVIEW

SECTION 2.1 BASIC CALCULUS REVIEW Tis capter covers just te very basics of wat you will nee moving forwar onto te subsequent capters. Tis is a summary capter, an will not cover te concepts in-ept. If you ve never seen calculus before,

More information

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises.

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises. BEFORE You Begin Calculus II If it has been awhile since you ha Calculus, I strongly suggest that you refresh both your ifferentiation an integration skills. I woul also like to remin you that in Calculus,

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

CHAPTER 3 DERIVATIVES (continued)

CHAPTER 3 DERIVATIVES (continued) CHAPTER 3 DERIVATIVES (continue) 3.3. RULES FOR DIFFERENTIATION A. The erivative of a constant is zero: [c] = 0 B. The Power Rule: [n ] = n (n-1) C. The Constant Multiple Rule: [c *f()] = c * f () D. The

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

Math Test #2 Info and Review Exercises

Math Test #2 Info and Review Exercises Math 180 - Test #2 Info an Review Exercises Spring 2019, Prof. Beyler Test Info Date: Will cover packets #7 through #16. You ll have the entire class to finish the test. This will be a 2-part test. Part

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

Day 4: Motion Along a Curve Vectors

Day 4: Motion Along a Curve Vectors Day 4: Motion Along a Curve Vectors I give my stuents the following list of terms an formulas to know. Parametric Equations, Vectors, an Calculus Terms an Formulas to Know: If a smooth curve C is given

More information

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS THE DERIVATIVE AS A FUNCTION f x = lim h 0 f x + h f(x) h Last class we examine the limit of the ifference quotient at a specific x as h 0,

More information

Derivatives of Constant and Linear Functions

Derivatives of Constant and Linear Functions These notes closely follow the presentation of the material given in James Stewart s textbook Calculus, Concepts an Contexts (2n eition). These notes are intene primarily for in-class presentation an shoul

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Method

Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Method Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Metho Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Computing Inverse Trig Derivatives. Starting with the inverse

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

II. First variation of functionals

II. First variation of functionals II. First variation of functionals The erivative of a function being zero is a necessary conition for the etremum of that function in orinary calculus. Let us now tackle the question of the equivalent

More information

Solutions to MATH 271 Test #3H

Solutions to MATH 271 Test #3H Solutions to MATH 71 Test #3H This is the :4 class s version of the test. See pages 4 7 for the 4:4 class s. (1) (5 points) Let a k = ( 1)k. Is a k increasing? Decreasing? Boune above? Boune k below? Convergant

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas Math 190 Chapter 3 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 190 Lecture Notes Section 3.1 Section 3.1 Derivatives of Polynomials an Exponential Functions Derivative of a Constant Function

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 5 Sturm-Liouville Theory In the three preceing lectures I emonstrate the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series are just the tip of the iceberg of the theory

More information

MATH 13200/58: Trigonometry

MATH 13200/58: Trigonometry MATH 00/58: Trigonometry Minh-Tam Trinh For the trigonometry unit, we will cover the equivalent of 0.7,.4,.4 in Purcell Rigon Varberg.. Right Triangles Trigonometry is the stuy of triangles in the plane

More information

Techniques of Differentiation. Chapter 2 Section 2 Techniques of Differentiation 109. The Constant Rule For any constant c,

Techniques of Differentiation. Chapter 2 Section 2 Techniques of Differentiation 109. The Constant Rule For any constant c, Chapter 2 Section 2 Techniques of Differentiation 109 UNEMPLOYMENT 34. In economics, the graph in Figure 2.3 is calle the Phillips curve, after A. W. Phillips, a New Zealaner associate with the Lonon School

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES 3: DIFFERENTIATION RULES Name: Date: Perio: LESSON 3. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Eample : Prove f ( ) 6 is not ifferentiable at 4. Practice Problems: Fin f '( ) using the

More information

First Order Linear Differential Equations

First Order Linear Differential Equations LECTURE 6 First Orer Linear Differential Equations A linear first orer orinary ifferential equation is a ifferential equation of the form ( a(xy + b(xy = c(x. Here y represents the unknown function, y

More information

Math 11 Fall 2016 Section 1 Monday, September 19, Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v

Math 11 Fall 2016 Section 1 Monday, September 19, Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v Math Fall 06 Section Monay, September 9, 06 First, some important points from the last class: Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v passing through

More information

Math 210 Midterm #1 Review

Math 210 Midterm #1 Review Math 20 Miterm # Review This ocument is intene to be a rough outline of what you are expecte to have learne an retaine from this course to be prepare for the first miterm. : Functions Definition: A function

More information

ELEC3114 Control Systems 1

ELEC3114 Control Systems 1 ELEC34 Control Systems Linear Systems - Moelling - Some Issues Session 2, 2007 Introuction Linear systems may be represente in a number of ifferent ways. Figure shows the relationship between various representations.

More information

Lecture 4 : General Logarithms and Exponentials. a x = e x ln a, a > 0.

Lecture 4 : General Logarithms and Exponentials. a x = e x ln a, a > 0. For a > 0 an x any real number, we efine Lecture 4 : General Logarithms an Exponentials. a x = e x ln a, a > 0. The function a x is calle the exponential function with base a. Note that ln(a x ) = x ln

More information