3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

Size: px
Start display at page:

Download "3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes"

Transcription

1 Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we fin the erivatives of these inverse functions? y e Let s look at a brief introuction to Implicit Differentiation so that we can fin the erivatives of these three inverse functions. Up to now, we have worke eplicitly, solving an equation for one variable y in terms of another variable. For eample, if you y were aske to fin for y 4, you woul solve for y an get y 4 an then take the erivative. This erivative requires the use of the chain rule. Sometimes it is inconvenient, ifficult or impossible to solve for y. In this case, we use implicit ifferentiation. It is imperative to note that anytime you see a y-variable you must think of y as a function of just as in the notation: know the eplicit form of f() I will apply the chain rule to inicate it s erivative. Differentiating with respect to : y f. Since I o not Variables agree use power rule variables agree y y y Variables isagree use power rule an chain rule variables isagree 5 4 y 0 y variables isagree variables agree

2 Practice:. y Fin 4 y 5. y y cos.6 Implicit Differentiation -- Stuent Notes Let s return to our inverse functions an use implicit ifferentiation to fin their erivatives: arctan arcsin ln Eamples using the erivative rules we just foun an applying rules we alreay learne: (arctan( t )) (arcsin(tan( ))) ln( ) a) b) c) t ) ( t ln t) t e) ( ln( y)) y f) (cos(sin ))

3 Derivative of Inverse Function Theorem Function an Inverse Pre-requisites: Given each function, ientify key points on the function that fall on lattice points of the coorinate gri. Mark 7 points on the parabola with visible ots. Mark points on the cubic with visible ots. ) ) a) Write the equation of each function in (h,k) form an evaluate the function at the given point. Quaratic function, f = Cubic function, f = f f b) For each function, list the operations on that yiel y. Parabola Cubic f c) Write inverse equations by using the list in (b) & applying inverse operations in reverse orer on. State the corresponing inverse coorinate from the point on the function in part (a), f f, f ) Accurately, sketch the inverse function on the coorinate gri using the key lattice points. Label f. f f e) Fin the erivative of the function at the specifie point. Fin the erivative of its inverse at the corresponing point on the inverse. y f ' ' ' ' f f ' y f ' f) What is the relationship between the erivative value of the function at the point an its inverse at the corresponing inverse point?

4 AB Calculus Supplement: Derivative of the Inverse of a Function Suppose that f an g f are inverse functions. What is the relationship between their erivatives? Algebraically: inverses are obtaine by interchanging the an y coorinates an solving for y. Graphically: inverses are reflections of each other in the line y. If f passes through the point ab,, then the slope of the curve at ais represente by f a an by the ratio of the change in y over ' the change in, slope triangle at point y. In the figure, note the P a, b on f with vertical length y an horizontal length an slope y. When the graph of f is reflecte in the line y, we obtain the graph of the inverse of f enote as f an this inverse graph passes through the point ba,. The slope of the inverse curve at bis represente by f ' b an by the ratio of the change in over the change in y, because the y y horizontal an vertical lengths of the slope triangle at Point P were interchange at P. The slope of the line tangent to the graph of g f at b is the reciprocal of the slope of f at a. Given ab, if Derivative of the Inverse of a Function is a point on f an f ' a m g f g ' b f ' b, then is the inverse of f, m. The erivative of the inverse of a function at a point is the reciprocal of the erivative of the function at the corresponing point. 4

5 Eamples: ) If f 7 an f ' 7 5 an g is the inverse of f, that is g f g '?, then ) If f 5, f ' 6 an f ' 5 an g is the inverse of f, that is, then g g f ' 5? ) Values for a function f an its erivative are shown in the table. If g is the inverse of f then evaluate g '4 an ' g. f f ' ) Let f, an let g be the inverse of f. Evaluate ' g. 4 g at 5) Let f, f ' & g be the inverse of f, what is the equation of the tangent line to? 5

6 6) The following figure shows f an f a) f, f, f ', f '.. Using the given table, fin: f f ' b) The equation of the tangent line at the points,8 Q 8,. P an c) What is the relationship between the two tangent lines? 7) Calculate g ' where g is the inverse of f e without solving for g. 8) Calculate g' where g is the inverse of f without solving for g. 4 9) Let f. Assume f is one-to-one, meaning that f function. has an inverse that is also a a) What is the value of f when? at. b) Fin the slope of the tangent line to the curve y f 6

7 Keys to Properly Solving Derivative of Inverse Problems: Ientify the point ab, on the function f using the information that is given. Differentiate f Take the reciprocal of the erivative of f. This is the erivative of Evaluate the erivative of f at the point ba, f. Practice: Given the table of values for ifferentiable functions f an g. a) If h f, then evaluate '4 h. f f ' g ½ ½ g' b) If h f, then evaluate ' h. c) If g, then evaluate '. ) If g, then evaluate '. An these are not erivatives of inverses, but they are goo practice. e) If p g, then evaluate ' p. f) If b f g, then evaluate ' b. g) If n f h) If, then evaluate ' m f p., then evaluate m '9. i) If q g, then evaluate q '. 7

8 .7 Implicit Differentiation -- Stuent Notes Up to now, we have worke eplicitly, solving an equation for one variable in terms of another. For eample, if you y were aske to fin for y 4, you woul solve for y an get y 4 an then take the erivative. Sometimes it is inconvenient or ifficult to solve for y. In this case, we use implicit ifferentiation. You assume y coul be solve in terms of an treat it as a function in terms of. Thus, you must apply the chain rule because you are assuming y is efine in terms of. Differentiating with respect to : Variables agree use power rule variables agree y y y Variables isagree use power rule an chain rule variables isagree y y variables agree variables isagree y y y y variables isagree y y y use prouct an chain rules Consier the problem, fin y for y y. Treat y as a quantity in terms of so y y Different Same y y y y y y Now solve for y Guielines for Implicit Differentiation: y. y y y 8

9 . Differentiate both sies of the equation with respect to.. y Collect all terms involving on one sie of the equation an move all other terms to the other sie. y. Factor out of the terms on the one sie. y 4. Solve for by iviing both sies of the equation by the factore term. Practice: Fin y :. 7cos y y. 4 y y. y y y 0y 0 5. Fin the equation of the normal line (the line perpenicular to the tangent line) to the curve y y 5 at the point (, ). 6 Given y f rewrite the inverse function as erivative of an inverse function. Write the final answer in terms of only. f y then use implicit ifferentiation to fin the 9

10 .9 Linear Approimation an the Derivative Stuent Notes Tangent Line Approimations: We can use the equation of the tangent line to approimate the value of a function at a particular value of. The concavity of the function tells us if an approimation mae with the tangent line if an over-estimate (too high) or an uner-estimate (too low.) If a function is concave up, the tangent line will be tangent line equation will be. If a function is concave own, the tangent line will be tangent line equation will be. the curve an any approimation mae from the the curve an any approimation mae from the Sketch four portions of graphs satisfying the criteria given, then raw a point on each of the portions an raw a tangent line to the curve at that point. Do your pictures illustrate the conclusions you mae above? f ' 0 & f " 0 f ' 0 & f " 0 f ' 0 & f " 0 f ' 0 & f " 0 For each question below, write the equation of the tangent line to the curve at the esignate value of. Use the tangent line equation to approimate the value of the function at the given -value. Finally use the n Derivative an concavity to justify whether the tangent line approimation is too high or too low. Function & a f 49 Tangent line equation at a Tangent line Secon Derivative approimation at evaluate at a a f 50 f " 49 Is the tangent line approimation an overestimate or unerestimate? Justify using f f f. f " 0

11 ln f e f f " e 4 g f. f " h 5 f.0 f " 6 j 6 cos f 0.5 f " 6

12 .0 Mean Value Theorem Stuent Notes MEAN VALUE THEOREM: If a function is continuous on [a, b] an ifferentiable on (a, b), then there is as number c in the interval (a, b) such that f ( c) = f ( b ) f ( a ) b a or (b a) f ( c) = f (b) f (a).. Use the graph to illustrate the Mean Value Theorem with a continuous an ifferentiable function. Show f (), a, b, c an all other conitions of the theorem.. Fin the number c that satisfies the Mean Value Theorem (MVT) for f on the interval [0,4]. Draw a picture.. Why oes the MVT not apply? a) y = on [0,] b) f () = on [-,] 4. Apply the MVT, if possible. If not possible eplain why. A f () = on [-,] B f () = on [0,] C f () = on [0,]

13 MVT Problems. The function f ( ) on [ - 8, 8] oes not satisfy the conitions of the Mean Value Theorem because A. f (0) is not efine B. f () is not continuous of [ -8, 8] C. f ( ) oes not eist D. f () is not efine for < 0. E. f (0) oes not eist. If f (a) = f (b) an f () is continuous on [a, b], then A. f () must be ientically zero B. f( ) may be ifferent from zero for all on [a,b] C. there eists at least one number c, a < c< b, such that f( c) 0 D. f ( ) must eist for every on (a, b) E. none of the preceing is true. Fin the value of c that satisfies the Mean Value Theorem for f ( ) 4 on the interval [-, ]. A. B. C. 0 D. 4 E. None of these. 4. Fin the number that satisfies the MVT on the given interval or state why the theorem oes not apply. 5 a) f ( ) on [0, ] b) f( ) on [, 5] ( ) c) g( ) on [, ] ) h( ) ( ) on [, 9] 00 #9: Let f be efine by f ln change of f at cis the same as the average rate of change of f over,4? ( A) B.44 C.64 D.4 E.45. What is the value of c for which the instantaneous rate of

14 HW MVT Write the efinition of continuity. ) ) ) Write mathematical notation for ifferentiability: State the two prerequisite conitions that must be etermine before the Mean Value Theorem can be applie. ) ) What two calculations must be etermine before making a conclusion using the Mean Value Theorem. ) ) Rea questions #-4. If the function satisfies the hypotheses of the Mean Value Theorem, then solve for the value of c that satisfies the conclusion of the Mean Value Theorem. Otherwise, tell why it fails to meet the conitions of the Mean Value Theorem.. Given f 4 5, fin all values, c, in the interval [,4]. f, fin all values, c, in the interval [-,].. Given 4. Given f, fin all values, c, in the interval [-,]. 4. Given f, fin all values, c, in the interval [-8,8]. 4

3.2 Differentiability

3.2 Differentiability Section 3 Differentiability 09 3 Differentiability What you will learn about How f (a) Might Fail to Eist Differentiability Implies Local Linearity Numerical Derivatives on a Calculator Differentiability

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

Section 2.1 The Derivative and the Tangent Line Problem

Section 2.1 The Derivative and the Tangent Line Problem Chapter 2 Differentiation Course Number Section 2.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x)

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x) Limit We say the limit of f () as approaches c equals L an write, lim L. One-Sie Limits (Left an Right-Hane Limits) Suppose a function f is efine near but not necessarily at We say that f has a left-hane

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Chapter 1 Overview: Review of Derivatives

Chapter 1 Overview: Review of Derivatives Chapter Overview: Review of Derivatives The purpose of this chapter is to review the how of ifferentiation. We will review all the erivative rules learne last year in PreCalculus. In the net several chapters,

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

Implicit Differentiation and Inverse Trigonometric Functions

Implicit Differentiation and Inverse Trigonometric Functions Implicit Differentiation an Inverse Trigonometric Functions MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Explicit vs. Implicit Functions 0.5 1 y 0.0 y 2 0.5 3 4 1.0 0.5

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

MATH 205 Practice Final Exam Name:

MATH 205 Practice Final Exam Name: MATH 205 Practice Final Eam Name:. (2 points) Consier the function g() = e. (a) (5 points) Ientify the zeroes, vertical asymptotes, an long-term behavior on both sies of this function. Clearly label which

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then Bob Brown Math 51 Calculus 1 Chapter 3, Section Complete 1 Review of the Limit Definition of the Derivative Write the it efinition of the erivative function: f () Derivative of a Constant Multiple of a

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS. An isosceles triangle, whose base is the interval from (0, 0) to (c, 0), has its verte on the graph

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

Summary: Differentiation

Summary: Differentiation Techniques of Differentiation. Inverse Trigonometric functions The basic formulas (available in MF5 are: Summary: Differentiation ( sin ( cos The basic formula can be generalize as follows: Note: ( sin

More information

MATH2231-Differentiation (2)

MATH2231-Differentiation (2) -Differentiation () The Beginnings of Calculus The prime occasion from which arose my iscovery of the metho of the Characteristic Triangle, an other things of the same sort, happene at a time when I ha

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES 3: DIFFERENTIATION RULES Name: Date: Perio: LESSON 3. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Eample : Prove f ( ) 6 is not ifferentiable at 4. Practice Problems: Fin f '( ) using the

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

Day 4: Motion Along a Curve Vectors

Day 4: Motion Along a Curve Vectors Day 4: Motion Along a Curve Vectors I give my stuents the following list of terms an formulas to know. Parametric Equations, Vectors, an Calculus Terms an Formulas to Know: If a smooth curve C is given

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES : DIFFERENTIATION RULES Name: LESSON. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Date: Perio: Mrs. Nguyen s Initial: Eample : Prove f ( ) 4 is not ifferentiable at. Practice Problems: Fin

More information

by using the derivative rules. o Building blocks: d

by using the derivative rules. o Building blocks: d Calculus for Business an Social Sciences - Prof D Yuen Eam Review version /9/01 Check website for any poste typos an upates Eam is on Sections, 5, 6,, 1,, Derivatives Rules Know how to fin the formula

More information

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following.

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following. AP Calculus AB One Last Mega Review Packet of Stuff Name: Date: Block: Take the erivative of the following. 1.) x (sin (5x)).) x (etan(x) ) 3.) x (sin 1 ( x3 )) 4.) x (x3 5x) 4 5.) x ( ex sin(x) ) 6.)

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

Section 7.1: Integration by Parts

Section 7.1: Integration by Parts Section 7.1: Integration by Parts 1. Introuction to Integration Techniques Unlike ifferentiation where there are a large number of rules which allow you (in principle) to ifferentiate any function, the

More information

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2 Problems Calculus AB Stuents Shoul Know: Solutions. + ) = + =. chain rule ) e = e = e. ) =. ) = ln.. + + ) = + = = +. ln ) =. ) log ) =. sin ) = cos. cos ) = sin. tan ) = sec. cot ) = csc. sec ) = sec

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam.

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam. MATH 2250 Calculus I Date: October 5, 2017 Eric Perkerson Optimization Notes 1 Chapter 4 Note: Any material in re you will nee to have memorize verbatim (more or less) for tests, quizzes, an the final

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes Implicit Differentiation 11.7 Introuction This Section introuces implicit ifferentiation which is use to ifferentiate functions expresse in implicit form (where the variables are foun together). Examples

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

3.6. Implicit Differentiation. Implicitly Defined Functions

3.6. Implicit Differentiation. Implicitly Defined Functions 3.6 Implicit Differentiation 205 3.6 Implicit Differentiation 5 2 25 2 25 2 0 5 (3, ) Slope 3 FIGURE 3.36 The circle combines the graphs of two functions. The graph of 2 is the lower semicircle an passes

More information

CHAPTER 3 DERIVATIVES (continued)

CHAPTER 3 DERIVATIVES (continued) CHAPTER 3 DERIVATIVES (continue) 3.3. RULES FOR DIFFERENTIATION A. The erivative of a constant is zero: [c] = 0 B. The Power Rule: [n ] = n (n-1) C. The Constant Multiple Rule: [c *f()] = c * f () D. The

More information

The Natural Logarithm

The Natural Logarithm The Natural Logarithm -28-208 In earlier courses, you may have seen logarithms efine in terms of raising bases to powers. For eample, log 2 8 = 3 because 2 3 = 8. In those terms, the natural logarithm

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

Breakout Session 13 Solutions

Breakout Session 13 Solutions Problem True or False: If f = 2, then f = 2 False Any time that you have a function of raise to a function of, in orer to compute the erivative you nee to use logarithmic ifferentiation or something equivalent

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

Further Differentiation and Applications

Further Differentiation and Applications Avance Higher Notes (Unit ) Prerequisites: Inverse function property; prouct, quotient an chain rules; inflexion points. Maths Applications: Concavity; ifferentiability. Real-Worl Applications: Particle

More information

DT7: Implicit Differentiation

DT7: Implicit Differentiation Differentiation Techniques 7: Implicit Differentiation 143 DT7: Implicit Differentiation Moel 1: Solving for y Most of the functions we have seen in this course are like those in Table 1 (an the first

More information

Fall 2016: Calculus I Final

Fall 2016: Calculus I Final Answer the questions in the spaces provie on the question sheets. If you run out of room for an answer, continue on the back of the page. NO calculators or other electronic evices, books or notes are allowe

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

IB Math High Level Year 2 Calc Differentiation Practice IB Practice - Calculus - Differentiation (V2 Legacy)

IB Math High Level Year 2 Calc Differentiation Practice IB Practice - Calculus - Differentiation (V2 Legacy) IB Math High Level Year Calc Differentiation Practice IB Practice - Calculus - Differentiation (V Legac). If =, fin the two values of when = 5. Answer:.. (Total marks). Differentiate = arccos ( ) with

More information

f(x + h) f(x) f (x) = lim

f(x + h) f(x) f (x) = lim Introuction 4.3 Some Very Basic Differentiation Formulas If a ifferentiable function f is quite simple, ten it is possible to fin f by using te efinition of erivative irectly: f () 0 f( + ) f() However,

More information

Pure Further Mathematics 1. Revision Notes

Pure Further Mathematics 1. Revision Notes Pure Further Mathematics Revision Notes June 20 2 FP JUNE 20 SDB Further Pure Complex Numbers... 3 Definitions an arithmetical operations... 3 Complex conjugate... 3 Properties... 3 Complex number plane,

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

Chapter 2 The Derivative Business Calculus 155

Chapter 2 The Derivative Business Calculus 155 Chapter The Derivative Business Calculus 155 Section 11: Implicit Differentiation an Relate Rates In our work up until now, the functions we neee to ifferentiate were either given explicitly, x such as

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Basic Differentiation Rules and Rates of Change. The Constant Rule

Basic Differentiation Rules and Rates of Change. The Constant Rule 460_00.q //04 4:04 PM Page 07 SECTION. Basic Differentiation Rules an Rates of Change 07 Section. The slope of a horizontal line is 0. Basic Differentiation Rules an Rates of Change Fin the erivative of

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Lesson 5.6 Exercises, pages

Lesson 5.6 Exercises, pages Lesson 5.6 Eercises, pages 05 0 A. Approimate the value of each logarithm, to the nearest thousanth. a) log 9 b) log 00 Use the change of base formula to change the base of the logarithms to base 0. log

More information

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3 SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 8 3 L P f Q L segments L an L 2 to be tangent to the parabola at the transition points P an Q. (See the figure.) To simplify the equations you ecie to place the

More information

Calculus of Variations

Calculus of Variations Calculus of Variations Lagrangian formalism is the main tool of theoretical classical mechanics. Calculus of Variations is a part of Mathematics which Lagrangian formalism is base on. In this section,

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

Math 210 Midterm #1 Review

Math 210 Midterm #1 Review Math 20 Miterm # Review This ocument is intene to be a rough outline of what you are expecte to have learne an retaine from this course to be prepare for the first miterm. : Functions Definition: A function

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

C6-1 Differentiation 2

C6-1 Differentiation 2 C6-1 Differentiation 2 the erivatives of sin, cos, a, e an ln Pre-requisites: M5-4 (Raians), C5-7 (General Calculus) Estimate time: 2 hours Summary Lea-In Learn Solve Revise Answers Summary The erivative

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

1 Applications of the Chain Rule

1 Applications of the Chain Rule November 7, 08 MAT86 Week 6 Justin Ko Applications of the Chain Rule We go over several eamples of applications of the chain rule to compute erivatives of more complicate functions. Chain Rule: If z =

More information

Math 1720 Final Exam Review 1

Math 1720 Final Exam Review 1 Math 70 Final Eam Review Remember that you are require to evaluate this class by going to evaluate.unt.eu an filling out the survey before minight May 8. It will only take between 5 an 0 minutes, epening

More information

Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Method

Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Method Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Metho Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Computing Inverse Trig Derivatives. Starting with the inverse

More information

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 This is a set of practice test problems for Chapter 4. This is in no way an inclusive set of problems there can be other types of problems

More information

Trigonometric Functions

Trigonometric Functions 72 Chapter 4 Trigonometric Functions 4 Trigonometric Functions To efine the raian measurement system, we consier the unit circle in the y-plane: (cos,) A y (,0) B So far we have use only algebraic functions

More information

Chapter 3 Notes, Applied Calculus, Tan

Chapter 3 Notes, Applied Calculus, Tan Contents 3.1 Basic Rules of Differentiation.............................. 2 3.2 The Prouct an Quotient Rules............................ 6 3.3 The Chain Rule...................................... 9 3.4

More information

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy)

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy) Math 7 Activit: Implicit & Logarithmic Differentiation (Solutions) Implicit Differentiation. For each of the following equations, etermine x. a. tan x = x 2 + 2 tan x] = x x x2 + 2 ] = tan x] + tan x =

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval Exam 3 Review Lessons 17-18: Relative Extrema, Critical Numbers, an First Derivative Test (from exam 2 review neee for curve sketching) Critical Numbers: where the erivative of a function is zero or unefine.

More information

Final Exam: Sat 12 Dec 2009, 09:00-12:00

Final Exam: Sat 12 Dec 2009, 09:00-12:00 MATH 1013 SECTIONS A: Professor Szeptycki APPLIED CALCULUS I, FALL 009 B: Professor Toms C: Professor Szeto NAME: STUDENT #: SECTION: No ai (e.g. calculator, written notes) is allowe. Final Exam: Sat 1

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

Unit #3 Rules of Differentiation Homework Packet

Unit #3 Rules of Differentiation Homework Packet Unit #3 Rules of Differentiation Homework Packet In the table below, a function is given. Show the algebraic analysis that leads to the derivative of the function. Find the derivative by the specified

More information

Chapter 9 Method of Weighted Residuals

Chapter 9 Method of Weighted Residuals Chapter 9 Metho of Weighte Resiuals 9- Introuction Metho of Weighte Resiuals (MWR) is an approimate technique for solving bounary value problems. It utilizes a trial functions satisfying the prescribe

More information

Integration by Parts

Integration by Parts Integration by Parts 6-3-207 If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions -8-006 If you restrict fx) = sinx to the interval π x π, the function increases: y = sin x - / / This implies that the function is one-to-one, an hence it has an inverse. The inverse

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION Mathematics Revision Guies Implicit Differentiation Page 1 of Author: Mark Kulowski MK HOME TUITION Mathematics Revision Guies Level: AS / A Level AQA : C4 Eecel: C4 OCR: C4 OCR MEI: C3 IMPLICIT DIFFERENTIATION

More information

Related Rates. Introduction. We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones.

Related Rates. Introduction. We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones. Relate Rates Introuction We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones For example, for the sies of a right triangle we have a 2 + b 2 = c 2 or

More information

Antiderivatives. Definition (Antiderivative) If F (x) = f (x) we call F an antiderivative of f. Alan H. SteinUniversity of Connecticut

Antiderivatives. Definition (Antiderivative) If F (x) = f (x) we call F an antiderivative of f. Alan H. SteinUniversity of Connecticut Antierivatives Definition (Antierivative) If F (x) = f (x) we call F an antierivative of f. Antierivatives Definition (Antierivative) If F (x) = f (x) we call F an antierivative of f. Definition (Inefinite

More information