Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Size: px
Start display at page:

Download "Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions"

Transcription

1 Section The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3

2 The Chain Rule: Derivative of a Composite Function Assume y = f u) an u = g). Then y = F ) = f g) is a composite function. Theorem The Chain Rule) If g is ifferentiable at an f is ifferentiable at g), then the composite function F = f g efine by F ) = f g)) is ifferentiable at an F is given by the prouct F ) = f g)) g ) In Leibniz notation, if y = f u) an u = g) are both ifferentiable functions, then y = y u u Iea Let u = g). We have f g)) f ga)) a = f u) f ga)) u ga) g) ga). a a u = g) ga). As a result, we obtain f g) a) = f ga)) g a). Ruipeng Shen MATH 1ZA3 September 3r, 5th / 3

3 The First Eample Eample Fin the erivative of F ) = + 1. Solution 1 We can epress F ) = f g)) = f g)) where f u) = u an g) = + 1. Since f u) = 1 u an g ) =, we have F ) = f g)) g ) = = + 1. Solution If we let u = + 1 an y = u, then y = F ). Thus F ) = y = y u u = 1 u = + 1. Ruipeng Shen MATH 1ZA3 September 3r, 5th 3 / 3

4 Make the Calculation Easier: Combine Rules Let us consier the general case: If y is a composition of a power function y = f u) = u n an another function u = g), then y = y u u = nun 1 u. Formula The Power Rule Combine with the Chain Rule) If n is any number an u = g) is ifferentiable, then un n 1 u ) = nu g n ) = ng n 1 g Eample Fin the erivative of F ) = + + 1) 9. Solution F ) = ) ) = ) 8 + 1). Ruipeng Shen MATH 1ZA3 September 3r, 5th 4 / 3

5 More Combine Rules Formula Combine Rules) If f ) be a ifferentiable function, then ef ) ) = e f ) f ) [cos f )] = [ sin f )] f ) [sin f )] = [cos f )] f ) [tan f )] = [sec f )] f ) Eample Differentiate the function F ) = e Solution By the prouct rule, we have F ) = ) e + e ) = e + e ) = + 1)e. Ruipeng Shen MATH 1ZA3 September 3r, 5th 5 / 3

6 More Eamples Eample Differentiate the function G) = cos Solution By the chain rule an the quotient rule G ) = sin 1 ) ) = sin 1 ) 1 ) 1 + ) 1 ) 1 + ) ) = sin 1 ) 1 + ) 1 ) ) = sin 1 ) [ ] ) = 1 + ) sin Ruipeng Shen MATH 1ZA3 September 3r, 5th 6 / 3

7 More Eamples Eample Differentiate the function F ) = e sincos ). Solution 1 If y = e u, u = sin w, w = cos, then y = F ). Applying the chain rule twice, we have F ) = y = y u u = y u w u w. Thus F ) = e u )cos w) sin ) = e sincos ) [coscos )] sin. Solution By the combine rules, F ) = e sincos ) }{{} coscos ) }{{} sin ) }{{} Combine Rule Combine Rule Derivative of cos with Eponential with Sine F ) = e sincos) coscos ) sin. Ruipeng Shen MATH 1ZA3 September 3r, 5th 7 / 3

8 Application on the Derivative of Eponential Functions Formula If a > 0, then a ) = a ln a; af ) ) = a ln a)f ). Proof: We have a = e ln a ) = e ln a. By the chain rule, we obtain a ) = e ln a ) = e ln a ln a) = a ln a. Eample Differentiate the function f ) = tan. Solution By the combine rule, f ) = tan ln tan ) = ln ) tan sec. Ruipeng Shen MATH 1ZA3 September 3r, 5th 8 / 3

9 Implicit Differentiation: Eample Eample Consier the curve C efine by the equation 3 + y 3 = 6y. Fin the tangent line to C at the point P4/3, 8/3). 5.5 y=f ) 1 P A y =6y y=f ) y=f ) 3 =a -5 B Ruipeng Shen MATH 1ZA3 September 3r, 5th 9 / 3

10 Implicit Differentiation: Eample Continue) Let us assume y is a function of. Differentiating both sies of the equation 3 + y 3 = 6y, we obtain 3 + y 3 = 6y 3 + 3y y = 6 y + 6y 3 + 3y y = 6y + 6y 3y 6)y = 6y 3 y = y y 3 + [y)] 3 = 6[y)] 3 + 3[y)] y ) = 6y + 6 y ) y ) = y) [y)] Thus we can calculate the slope of the tangent line at P4/3, 8/3): slope = y 4/3) = 8/3) 4/3) 8/3) 4/3) = 4 5. As a result, we obtain the equation of the tangent line: y 8 3 = ). Ruipeng Shen MATH 1ZA3 September 3r, 5th 10 / 3

11 Implicit Differentiation: Eample Continue) Question Fin the point Aa, b) where the tangent line to C is vertical. The tangent line at Aa, b) is vertical. Thus the erivative y = y y is not well efine at A. This implies the enominator y is equal to zero at a, b). We have a, b) satisfies the equation { b a = 0; a 3 + b 3 = 6ab. Plugging a = b / into the secon equation, we have ) b 3 ) b + b 3 = 6 b b6 8 + b3 = 3b 3 b 6 = 16b 3 b 3 = 16. Thus b = 4/3 = a = b / = 8/3 1 = 5/3. Therefore A is 5/3, 4/3 ). Ruipeng Shen MATH 1ZA3 September 3r, 5th 11 / 3

12 Implicit Differentiation Proposition Let y be an implicit function of efine by an implicit equation. In orer to epress the erivative y/ in terms of an y, one can ifferentiate both sies of the equation with respect to an then solve the resulting equation for y/ or y ). Remark An implicit equation is usually given by F, y) = G, y). Eample Fin y an y if 4 + y 4 = r 4. Solution By implicit ifferentiation, we have 4 + y 4 = r 4 = y 3 y = 0 = y = 3 y 3. Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3

13 Eample: Fin the Secon Derivative Continue) In orer to epress f in term of an y, we can ifferentiate y an obtain y = y ) = 3 ) = 3 ) y 3 3 y 3 ) Plugging in y = 3 /y 3, we have the answer y 3 = 3 y 3 3 3y y y 6 = 3 y y y ) y 6. ] y 3 ) [ 3 y y 3 y = y 6 = 3 y 4 + 4) y 7 = 3r 4 y 7. In the last step, we use the equation 4 + y 4 = r 4. y 6 [ 3 y 3 y + 4 y = 3 y 7 ] Ruipeng Shen MATH 1ZA3 September 3r, 5th 13 / 3

14 Application: Derivative of Inverse Sine Function Recall the efinition of the inverse sine function arcsine function) y = sin 1 sin y = an π y π. Differentiating the equation sin y =, we obtain cos y) y = 1 y = = 1 cos y. By the ientity cos y = 1 sin y = 1 an the fact cos y 0, we have cos y = 1. Therefore Formula sin 1 ) = y = 1 cos y = , if 1 < < 1. 1 Ruipeng Shen MATH 1ZA3 September 3r, 5th 14 / 3

15 Application: Derivative of Inverse Tangent Function Recall the efinition of the inverse tangent function arctangent function) y = tan 1 tan y = an π < y < π. Differentiating the equation tan y =, we obtain sec y) y = 1 y = = 1 sec y. By the ientity sec y = 1 + tan y = 1 +. Therefore Formula tan 1 ) = y = 1 sec y = Ruipeng Shen MATH 1ZA3 September 3r, 5th 15 / 3

16 Derivatives of Inverse Trigonometric Function Formula Derivatives of inverse trigonometric functions are given by sin 1 ) 1 = csc 1 ) 1 = 1 1 cos 1 ) 1 = sec 1 ) 1 = 1 1 tan 1 ) = 1 cot ) = sin 1 f ) ) f ) = tan 1 f ) ) f ) = 1 [f )] 1 + [f )] Eample If F ) = tan 1 ), then F ) = ) ) = Ruipeng Shen MATH 1ZA3 September 3r, 5th 16 / 3

17 Derivative of an Inverse Function If f ) is a one-to-one ifferentiable function an its inverse function f 1 is also ifferentiable, then we can ifferentiate both sies of the ientity f f 1 )) = an obtain provie f f 1 )) 0. Theorem f f 1 )) f 1 ) ) = 1 = f 1 ) ) = 1 f f 1 )), If f ) is a one-to-one ifferentiable function an f f 1 a)) 0, then f 1 is ifferentiable at a an f 1 ) 1 a) = f f 1 a)). Ruipeng Shen MATH 1ZA3 September 3r, 5th 17 / 3

18 Derivative of Logarithm Functions If f ) = a then f 1 ) = log a. Since f ) = a ln a 0, we can apply the formula for erivative of the inverse function an obtain log a ) = f 1 ) 1 ) = f f 1 )) = 1 f log a ) = 1 a log a ln a = 1 ln a. Formula Derivative of Logarithm Functions) If a > 0 an a 1, then log a ) = 1 ln a. In particular, if a = e, we have ln ) = 1, ln u) = 1 u u, [ln g)] = g ) g). Ruipeng Shen MATH 1ZA3 September 3r, 5th 18 / 3

19 Eamples Eample Let f ) = ln. Fin the erivative f ). Solution I) If > 0, then f ) = ln. Therefore f ) = 1/. II) If < 0, then f ) = ln ). By the combine rule In summary, we have ln = 1. Eample f ) = 1 ) = 1. Differentiate the function f ) = lnsin ). Solution By the combine rule, we have f ) = sin ) sin = cos sin = cot. Ruipeng Shen MATH 1ZA3 September 3r, 5th 19 / 3

20 More Eamples Eample Differentiate the function g) = ln + + 1). Solution We can apply the chain rule an basic formulas: g ) = = = = = ) ) ) ) ln u) = 1 u u u) = 1 u u Ruipeng Shen MATH 1ZA3 September 3r, 5th 0 / 3

21 Eample of Logarithmic Differentiation Eample Differentiate the function y = Solution Take natural logarithms of both sies an ifferentiate ln y = ln ) = ln 1 y = y ) ln + ln ) 1 = ln + 1 = ln + y = y ln + = ln +. Alternative Metho We can also use the ientity y = = e ln ) = e ln an ifferentiate by the chain rule. Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3

22 Logarithmic Differentiation Proposition Steps in Logarithmic Differentiation) I) Take natural logarithms of both sies of an equation y = f ) an use the Laws of Logarithms to simplify. II) Differentiate implicitly with respect to. III) Solve the resulting equation for y. Eample Prove the formula n ) = n n 1 for an arbitrary real number n. Solution Let y = n. Applying the Logarithmic Differentiation, we obtain ln y = n ln ; 1 y y = n 1 ; y = y n = n n = n n 1. Ruipeng Shen MATH 1ZA3 September 3r, 5th / 3

23 Eample Eample Differentiate the function y =. + 1) Solution Applying the Logarithmic Differentiation, we obtain ln y = ln = ln ln + 1) ) [ + 1 = ln 1 ] ln + 1) 1 y = [ln 1 ] [ 1 y ln + 1) ) ] + 1 y = ln 1 ln + 1) + [ 1 = ln 1 ln + 1) = ) [ ln 1 ln + 1) ] ]. Ruipeng Shen MATH 1ZA3 September 3r, 5th 3 / 3

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

Computing Derivatives Solutions

Computing Derivatives Solutions Stuent Stuy Session Solutions We have intentionally inclue more material than can be covere in most Stuent Stuy Sessions to account for groups that are able to answer the questions at a faster rate. Use

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

Implicit Differentiation and Inverse Trigonometric Functions

Implicit Differentiation and Inverse Trigonometric Functions Implicit Differentiation an Inverse Trigonometric Functions MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Explicit vs. Implicit Functions 0.5 1 y 0.0 y 2 0.5 3 4 1.0 0.5

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Section 2.1 The Derivative and the Tangent Line Problem

Section 2.1 The Derivative and the Tangent Line Problem Chapter 2 Differentiation Course Number Section 2.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

CHAPTER 3 DERIVATIVES (continued)

CHAPTER 3 DERIVATIVES (continued) CHAPTER 3 DERIVATIVES (continue) 3.3. RULES FOR DIFFERENTIATION A. The erivative of a constant is zero: [c] = 0 B. The Power Rule: [n ] = n (n-1) C. The Constant Multiple Rule: [c *f()] = c * f () D. The

More information

Summary: Differentiation

Summary: Differentiation Techniques of Differentiation. Inverse Trigonometric functions The basic formulas (available in MF5 are: Summary: Differentiation ( sin ( cos The basic formula can be generalize as follows: Note: ( sin

More information

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

Table of Contents Derivatives of Logarithms

Table of Contents Derivatives of Logarithms Derivatives of Logarithms- Table of Contents Derivatives of Logarithms Arithmetic Properties of Logarithms Derivatives of Logarithms Example Example 2 Example 3 Example 4 Logarithmic Differentiation Example

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

MATH2231-Differentiation (2)

MATH2231-Differentiation (2) -Differentiation () The Beginnings of Calculus The prime occasion from which arose my iscovery of the metho of the Characteristic Triangle, an other things of the same sort, happene at a time when I ha

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Recapitulation of Mathematics

Recapitulation of Mathematics Unit I Recapitulation of Mathematics Basics of Differentiation Rolle s an Lagrange s Theorem Tangent an Normal Inefinite an Definite Integral Engineering Mathematics I Basics of Differentiation CHAPTER

More information

Section 7.1: Integration by Parts

Section 7.1: Integration by Parts Section 7.1: Integration by Parts 1. Introuction to Integration Techniques Unlike ifferentiation where there are a large number of rules which allow you (in principle) to ifferentiate any function, the

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Chapter 1 Overview: Review of Derivatives

Chapter 1 Overview: Review of Derivatives Chapter Overview: Review of Derivatives The purpose of this chapter is to review the how of ifferentiation. We will review all the erivative rules learne last year in PreCalculus. In the net several chapters,

More information

1 Applications of the Chain Rule

1 Applications of the Chain Rule November 7, 08 MAT86 Week 6 Justin Ko Applications of the Chain Rule We go over several eamples of applications of the chain rule to compute erivatives of more complicate functions. Chain Rule: If z =

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Logarithmic, Exponential and Other Transcendental Functions

Logarithmic, Exponential and Other Transcendental Functions Logarithmic, Eponential an Other Transcenental Fnctions 5: The Natral Logarithmic Fnction: Differentiation The Definition First, yo mst know the real efinition of the natral logarithm: ln= t (where > 0)

More information

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES 3: DIFFERENTIATION RULES Name: Date: Perio: LESSON 3. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Eample : Prove f ( ) 6 is not ifferentiable at 4. Practice Problems: Fin f '( ) using the

More information

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x)

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x) Limit We say the limit of f () as approaches c equals L an write, lim L. One-Sie Limits (Left an Right-Hane Limits) Suppose a function f is efine near but not necessarily at We say that f has a left-hane

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

Breakout Session 13 Solutions

Breakout Session 13 Solutions Problem True or False: If f = 2, then f = 2 False Any time that you have a function of raise to a function of, in orer to compute the erivative you nee to use logarithmic ifferentiation or something equivalent

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES : DIFFERENTIATION RULES Name: LESSON. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Date: Perio: Mrs. Nguyen s Initial: Eample : Prove f ( ) 4 is not ifferentiable at. Practice Problems: Fin

More information

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form)

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form) INTRO TO CALCULUS REVIEW FINAL EXAM NAME: DATE: A. Equations of Lines (Review Chapter) y = m + b (Slope-Intercept Form) A + By = C (Stanar Form) y y = m( ) (Point-Slope Form). Fin the equation of a line

More information

Math 20B. Lecture Examples.

Math 20B. Lecture Examples. Math 20B. Lecture Eamples. (7/8/08) Comple eponential functions A comple number is an epression of the form z = a + ib, where a an b are real numbers an i is the smbol that is introuce to serve as a square

More information

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy)

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy) Math 7 Activit: Implicit & Logarithmic Differentiation (Solutions) Implicit Differentiation. For each of the following equations, etermine x. a. tan x = x 2 + 2 tan x] = x x x2 + 2 ] = tan x] + tan x =

More information

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3 SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 8 3 L P f Q L segments L an L 2 to be tangent to the parabola at the transition points P an Q. (See the figure.) To simplify the equations you ecie to place the

More information

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital.

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital. 7.5. Ineterminate Forms an L Hôpital s Rule L Hôpital s Rule was iscovere by Bernoulli but written for the first time in a text by L Hôpital. Ineterminate Forms 0/0 an / f(x) If f(x 0 ) = g(x 0 ) = 0,

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular,

More information

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures Hyperbolic Functions Notice: this material must not be use as a substitute for attening the lectures 0. Hyperbolic functions sinh an cosh The hyperbolic functions sinh (pronounce shine ) an cosh are efine

More information

Further Differentiation and Applications

Further Differentiation and Applications Avance Higher Notes (Unit ) Prerequisites: Inverse function property; prouct, quotient an chain rules; inflexion points. Maths Applications: Concavity; ifferentiability. Real-Worl Applications: Particle

More information

Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions Derivatives of Trigonometric Functions 9-8-28 In this section, I ll iscuss its an erivatives of trig functions. I ll look at an important it rule first, because I ll use it in computing the erivative of

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

By writing (1) as y (x 5 1). (x 5 1), we can find the derivative using the Product Rule: y (x 5 1) 2. we know this from (2)

By writing (1) as y (x 5 1). (x 5 1), we can find the derivative using the Product Rule: y (x 5 1) 2. we know this from (2) 3.5 Chain Rule 149 3.5 Chain Rule Introuction As iscusse in Section 3.2, the Power Rule is vali for all real number exponents n. In this section we see that a similar rule hols for the erivative of a power

More information

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim Math 0-0-RE - Calculus I Trigonometry Limits & Derivatives Page of 8 Trigonometric Limits It has been shown in class that: lim 0 sin lim 0 sin lim 0 cos cos 0 lim 0 cos lim 0 + cos + To evaluate trigonometric

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2 Problems Calculus AB Stuents Shoul Know: Solutions. + ) = + =. chain rule ) e = e = e. ) =. ) = ln.. + + ) = + = = +. ln ) =. ) log ) =. sin ) = cos. cos ) = sin. tan ) = sec. cot ) = csc. sec ) = sec

More information

f(x) f(a) Limit definition of the at a point in slope notation.

f(x) f(a) Limit definition of the at a point in slope notation. Lesson 9: Orinary Derivatives Review Hanout Reference: Brigg s Calculus: Early Transcenentals, Secon Eition Topics: Chapter 3: Derivatives, p. 126-235 Definition. Limit Definition of Derivatives at a point

More information

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. CALCULUS: Graphical,Numerical,Algebraic b Finne,Demana,Watts and Kenned Chapter : Derivatives.: Derivative of a function pg. 116-16 What ou'll Learn About How to find the derivative of: Functions with

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas Math 190 Chapter 3 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 190 Lecture Notes Section 3.1 Section 3.1 Derivatives of Polynomials an Exponential Functions Derivative of a Constant Function

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Math 1 Lecture 20. Dartmouth College. Wednesday

Math 1 Lecture 20. Dartmouth College. Wednesday Math 1 Lecture 20 Dartmouth College Wenesay 10-26-16 Contents Reminers/Announcements Last Time Derivatives of Trigonometric Functions Reminers/Announcements WebWork ue Friay x-hour problem session rop

More information

CHAPTER 4. INTEGRATION 68. Previously, we chose an antiderivative which is correct for the given integrand 1/x 2. However, 6= 1 dx x x 2 if x =0.

CHAPTER 4. INTEGRATION 68. Previously, we chose an antiderivative which is correct for the given integrand 1/x 2. However, 6= 1 dx x x 2 if x =0. CHAPTER 4. INTEGRATION 68 Previously, we chose an antierivative which is correct for the given integran /. However, recall 6 if 0. That is F 0 () f() oesn t hol for apple apple. We have to be sure the

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review)

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review) Name Date Miterm Score Overall Grae Math A Miterm 2 Fall 205 Riversie City College (Use this as a Review) Instructions: All work is to be shown, legible, simplifie an answers are to be boxe in the space

More information

Trigonometric Functions

Trigonometric Functions 72 Chapter 4 Trigonometric Functions 4 Trigonometric Functions To efine the raian measurement system, we consier the unit circle in the y-plane: (cos,) A y (,0) B So far we have use only algebraic functions

More information

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I MTH Test Spring 209 Name Calculus I Justify all answers by showing your work or by proviing a coherent eplanation. Please circle your answers.. 4 z z + 6 z 3 ez 2 = 4 z + 2 2 z2 2ez Rewrite as 4 z + 6

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION CALCULUS 3 INU0115/515 (MATHS 2) Dr Arian Jannetta MIMA CMath FRAS Implicit Differentiation 1/ 11 Arian Jannetta Explicit an implicit functions Explicit functions An explicit function

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

x 2 2x 8 (x 4)(x + 2)

x 2 2x 8 (x 4)(x + 2) Problems With Notation Mathematical notation is very precise. This contrasts with both oral communication an some written English. Correct mathematical notation: x 2 2x 8 (x 4)(x + 2) lim x 4 = lim x 4

More information

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x)

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x) Derivative Rules Using te efinition of te erivative of a function is quite teious. Let s prove some sortcuts tat we can use. Recall tat te efinition of erivative is: Given any number x for wic te limit

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Differentiation Rules and Formulas

Differentiation Rules and Formulas Differentiation Rules an Formulas Professor D. Olles December 1, 01 1 Te Definition of te Derivative Consier a function y = f(x) tat is continuous on te interval a, b]. Ten, te slope of te secant line

More information

Lecture 3Section 7.3 The Logarithm Function, Part II

Lecture 3Section 7.3 The Logarithm Function, Part II Lectre 3Section 7.3 The Logarithm Fnction, Part II Jiwen He Section 7.2: Highlights 2 Properties of the Log Fnction ln = t t, ln = 0, ln e =. (ln ) = > 0. ln(y) = ln + ln y, ln(/y) = ln ln y. ln ( r) =

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

3.2 Differentiability

3.2 Differentiability Section 3 Differentiability 09 3 Differentiability What you will learn about How f (a) Might Fail to Eist Differentiability Implies Local Linearity Numerical Derivatives on a Calculator Differentiability

More information

MATH 205 Practice Final Exam Name:

MATH 205 Practice Final Exam Name: MATH 205 Practice Final Eam Name:. (2 points) Consier the function g() = e. (a) (5 points) Ientify the zeroes, vertical asymptotes, an long-term behavior on both sies of this function. Clearly label which

More information

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions Chapter 5 Logarithmic, Exponential, an Other Transcenental Functions 5.1 The Natural Logarithmic Function: Differentiation 5.2 The Natural Logarithmic Function: Integration 5.3 Inverse Functions 5.4 Exponential

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Math 251 Notes. Part I.

Math 251 Notes. Part I. Math 251 Notes. Part I. F. Patricia Meina May 6, 2013 Growth Moel.Consumer price inex. [Problem 20, page 172] The U.S. consumer price inex (CPI) measures the cost of living base on a value of 100 in the

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable. y For example,, or y = x sin x,

More information

Integration by Parts

Integration by Parts Integration by Parts 6-3-207 If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an

More information

The Natural Logarithm

The Natural Logarithm The Natural Logarithm -28-208 In earlier courses, you may have seen logarithms efine in terms of raising bases to powers. For eample, log 2 8 = 3 because 2 3 = 8. In those terms, the natural logarithm

More information

(a 1 m. a n m = < a 1/N n

(a 1 m. a n m = < a 1/N n Notes on a an log a Mat 9 Fall 2004 Here is an approac to te eponential an logaritmic functions wic avois any use of integral calculus We use witout proof te eistence of certain limits an assume tat certain

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

NOTES ON INVERSE TRIGONOMETRIC FUNCTIONS

NOTES ON INVERSE TRIGONOMETRIC FUNCTIONS NOTES ON INVERSE TRIGONOMETRIC FUNCTIONS MATH 5 (S). Definitions of Inverse Trigonometric Functions () y = sin or y = arcsin is the inverse function of y = sin on [, ]. The omain of y = sin = arcsin is

More information

Additional Exercises for Chapter 10

Additional Exercises for Chapter 10 Aitional Eercises for Chapter 0 About the Eponential an Logarithm Functions 6. Compute the area uner the graphs of i. f() =e over the interval [ 3, ]. ii. f() =e over the interval [, 4]. iii. f() = over

More information

(x,y) 4. Calculus I: Differentiation

(x,y) 4. Calculus I: Differentiation 4. Calculus I: Differentiation 4. The eriatie of a function Suppose we are gien a cure with a point lying on it. If the cure is smooth at then we can fin a unique tangent to the cure at : If the tangent

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

Implicit Differentiation. Lecture 16.

Implicit Differentiation. Lecture 16. Implicit Differentiation. Lecture 16. We are use to working only with functions that are efine explicitly. That is, ones like f(x) = 5x 3 + 7x x 2 + 1 or s(t) = e t5 3, in which the function is escribe

More information

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x) L Hôpital s Rule In this note we will evaluate the its of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0 f() Suppose a f() = 0 and a g() = 0. Then a g() the indeterminate

More information

Mathematics 116 HWK 14 Solutions Section 4.5 p305. Note: This set of solutions also includes 3 problems from HWK 12 (5,7,11 from 4.5).

Mathematics 116 HWK 14 Solutions Section 4.5 p305. Note: This set of solutions also includes 3 problems from HWK 12 (5,7,11 from 4.5). Mathematics 6 HWK 4 Solutions Section 4.5 p305 Note: This set of solutions also includes 3 problems from HWK 2 (5,7, from 4.5). Find the indicated it. Use l Hospital s Rule where appropriate. Consider

More information

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then Bob Brown Math 51 Calculus 1 Chapter 3, Section Complete 1 Review of the Limit Definition of the Derivative Write the it efinition of the erivative function: f () Derivative of a Constant Multiple of a

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

Derivatives of Inverse Functions

Derivatives of Inverse Functions Derivatives of Inverse Functions Implicit differentiation enables us to determine the derivatives of inverse functions. determine the derivatives of arcsin, arccos, arctan, and ln. In this lecture, we

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION Mathematics Revision Guies Implicit Differentiation Page 1 of Author: Mark Kulowski MK HOME TUITION Mathematics Revision Guies Level: AS / A Level AQA : C4 Eecel: C4 OCR: C4 OCR MEI: C3 IMPLICIT DIFFERENTIATION

More information