Lecture 8 January 30, 2014

Size: px
Start display at page:

Download "Lecture 8 January 30, 2014"

Transcription

1 MTH 995-3: Intro to CS and Big Data Spring 14 Inst. Mark Ien Lecture 8 January 3, 14 Scribe: Kishavan Bhola 1 Overvie In this lecture, e begin a probablistic method for approximating the Nearest Neighbor problem by ay of a locality sensitive hash function. We compute the to probabilities for the relevant hash function. Problem Given r R +, c > 1, and X := { x 1,..., x P } R D, compute f : [P ] [P ] { 1} such that 1. d( x j, x f(j) ) c r for all j [P ] such that j i [P ] ith d( x j, x i ) r; and. f(j) = 1 if there does not exist j i [P ] ith d( x j, x i ) c r. Remark 1 The above can easily be generalized to arbitrary metric spaces, here d is the metric, but in the folloing, e ill focus on R D ith d being the Euclidean -norm. Remark This is knon as the (c, r) - Nearest Neighbor Problem. Note that (1) and () do not uniquely determine a function, and moreover, it is possible that x f(j) is not the nearest neighbor to x j (see Figure 1). Hence, such an f is an approximation to the standard Nearest Neighbor problem. 3 Naive Solution 1. Compute every pairise distance x j x i, i j. This takes O(P D)-time.. Output the index of the closest point to each x j as f(j). Clearly such an f gives an exact solution to the Nearest-Neighbor problem, and thus also satisfies (1) and () in the Problem statement. We ish to approximate this Naive solution ith better runtime than O(P D). 1

2 Figure 1: Ambiguity of f 4 Idea Project x 1,..., x p onto a random vector or one dimensional subspace and then see ho far their projections are from one another (see Figure ): Runtime of Idea 1. Projecting all times is O(P D)-time (just inner products).. Finding close projected points is equivalent to sorting a list and thus has time-complexity O(P log(p )) (using, for example, merge-sort). Therefore, the total time-complexity is O(P (D + log(p ))). This is an approximation even to our approximated problem, and so e ould like error guarantees. 5 Solution Definition Call a random function h : R D Z a locality sensitive hash function if there is p 1, p (, 1) ith p 1 > p and such that the folloing holds for arbitrary x, y R D, (i) x y < r implies h( x) = h( y) ith probability at least p 1. (ii) if x y > c r, then h( x) = h( y) ith probability at most p.

3 Figure : Projection onto 1-Dimensional Subspace Remark A locality sensitive hash function h sends points that are close to the same integer and sends far points to different integers (this follos from (i) and (ii) and the fact that p 1 > p ). No consider the folloing random function: Pick R +. Then let G N(, I D D ) and U U([, ]). Finally, define h : R D Z as g, x + u h(x) = (*) here U = u and G = g are instances of the random variable and vector defined above. Remark The above notation means that g is a random vector ith independent, identically distributed, mean, and variance 1, Gaussian entries. Similarly, u is a random uniform variable from the closed interval [, ]. Theorem 1. The function h defined by (*) is a locality-sensitive hash function. Proof: Let x, y R D be arbitrary. Define the folloing to events A and B, A : h( x) = h( y) B : g, x y < Note, by the definition of h (*), if A occurs, then B occurs; that is P [B A] = 1. Therefore, Bayes La simplifies: P[A] P[B A] = P[B] P[A B] 3

4 P[A] = P[B] P[A B] (1) Then, by using the variable z := g, x y, and considering all possible values of z for hich event B is true, e may transform the right-hand side of (I) to an integral. Writing this all out, e get, P [h( x) = h( y)] = P [h( x) = h( y) z = g, x y ] P [z = g, x y ] dz () We no ish to simplify P [h( x) = h( y) z = g, x y ]. One can sho that for z, e have, P [h( x) = h( y) z = g, x y ] = z. This follos from considering the different values of u in (*) that ill either (i) shift the integer parts of g, x / and g, y / to be the same hen they are different, or (ii) shift them so that they stay the same hen they are already the same. So () becomes z P [ g, x y = z] dz = ( = x y π P [ g, x y = z] dz ( ) z exp x y dz z z exp P [ g, x y = z] dz ( z x y ) ) dz No riting n := x y, using the change of variables integral, e get, z n z, and integrating the second P [h( x) = h( y)] = π n exp( z )dz + [ ( ( ) ) ] n exp n 1 π (3) Define p (n) = P [h( x) = h( y)]. (3) shos that p (n) = so that p (n) < for all n (since n ). No, let s consider the to cases: (i) n r: this implies here e have defined p 1 above. ( ) e n 1 π ( ) ( ( ) ) r p (n) erf r + e r 1 =: p 1 4

5 (ii) n cr: this and p (n) < imply ( ) ( ( ) ) rc p (n) erf + e r 1 =: p rc here e have defined p above. Finally, e note p 1 and p satisfy the required properties in the definition of a locality sensitive hash function. In particular, p 1 > p. Therefore, h is a locality sensitive hash function for Euclidean distance. References [1] M. Datar, P. Indyk, N. Immorlica, and V. Mirrokni. Locality-Sensitive Hashing Scheme Based on p-stable Distributions. SCG 4 Proceedings of the tentieth annual symposium on Computational Geometry, pages 53-6, 4. [] P. Indyk and R. Motani. Approximate Nearest Neighbors: Toards Removing the Curse of Dimensionality. STOC 98 Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages ,

Lecture 14 October 16, 2014

Lecture 14 October 16, 2014 CS 224: Advanced Algorithms Fall 2014 Prof. Jelani Nelson Lecture 14 October 16, 2014 Scribe: Jao-ke Chin-Lee 1 Overview In the last lecture we covered learning topic models with guest lecturer Rong Ge.

More information

Bloom Filters and Locality-Sensitive Hashing

Bloom Filters and Locality-Sensitive Hashing Randomized Algorithms, Summer 2016 Bloom Filters and Locality-Sensitive Hashing Instructor: Thomas Kesselheim and Kurt Mehlhorn 1 Notation Lecture 4 (6 pages) When e talk about the probability of an event,

More information

Locality Sensitive Hashing

Locality Sensitive Hashing Locality Sensitive Hashing February 1, 016 1 LSH in Hamming space The following discussion focuses on the notion of Locality Sensitive Hashing which was first introduced in [5]. We focus in the case of

More information

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes UC Berkeley Department of Electrical Engineering and Computer Sciences EECS 26: Probability and Random Processes Problem Set Spring 209 Self-Graded Scores Due:.59 PM, Monday, February 4, 209 Submit your

More information

4 Locality-sensitive hashing using stable distributions

4 Locality-sensitive hashing using stable distributions 4 Locality-sensitive hashing using stable distributions 4. The LSH scheme based on s-stable distributions In this chapter, we introduce and analyze a novel locality-sensitive hashing family. The family

More information

Lecture 17 03/21, 2017

Lecture 17 03/21, 2017 CS 224: Advanced Algorithms Spring 2017 Prof. Piotr Indyk Lecture 17 03/21, 2017 Scribe: Artidoro Pagnoni, Jao-ke Chin-Lee 1 Overview In the last lecture we saw semidefinite programming, Goemans-Williamson

More information

Lower bounds on Locality Sensitive Hashing

Lower bounds on Locality Sensitive Hashing Lower bouns on Locality Sensitive Hashing Rajeev Motwani Assaf Naor Rina Panigrahy Abstract Given a metric space (X, X ), c 1, r > 0, an p, q [0, 1], a istribution over mappings H : X N is calle a (r,

More information

STATC141 Spring 2005 The materials are from Pairwise Sequence Alignment by Robert Giegerich and David Wheeler

STATC141 Spring 2005 The materials are from Pairwise Sequence Alignment by Robert Giegerich and David Wheeler STATC141 Spring 2005 The materials are from Pairise Sequence Alignment by Robert Giegerich and David Wheeler Lecture 6, 02/08/05 The analysis of multiple DNA or protein sequences (I) Sequence similarity

More information

y(x) = x w + ε(x), (1)

y(x) = x w + ε(x), (1) Linear regression We are ready to consider our first machine-learning problem: linear regression. Suppose that e are interested in the values of a function y(x): R d R, here x is a d-dimensional vector-valued

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 23, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 47 High dimensional

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

Ch. 2 Math Preliminaries for Lossless Compression. Section 2.4 Coding

Ch. 2 Math Preliminaries for Lossless Compression. Section 2.4 Coding Ch. 2 Math Preliminaries for Lossless Compression Section 2.4 Coding Some General Considerations Definition: An Instantaneous Code maps each symbol into a codeord Notation: a i φ (a i ) Ex. : a 0 For Ex.

More information

Lecture 3a: The Origin of Variational Bayes

Lecture 3a: The Origin of Variational Bayes CSC535: 013 Advanced Machine Learning Lecture 3a: The Origin of Variational Bayes Geoffrey Hinton The origin of variational Bayes In variational Bayes, e approximate the true posterior across parameters

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 26, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 55 High dimensional

More information

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7.

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7. Preliminaries Linear models: the perceptron and closest centroid algorithms Chapter 1, 7 Definition: The Euclidean dot product beteen to vectors is the expression d T x = i x i The dot product is also

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

1 Effects of Regularization For this problem, you are required to implement everything by yourself and submit code.

1 Effects of Regularization For this problem, you are required to implement everything by yourself and submit code. This set is due pm, January 9 th, via Moodle. You are free to collaborate on all of the problems, subject to the collaboration policy stated in the syllabus. Please include any code ith your submission.

More information

Geometry of Similarity Search

Geometry of Similarity Search Geometry of Similarity Search Alex Andoni (Columbia University) Find pairs of similar images how should we measure similarity? Naïvely: about n 2 comparisons Can we do better? 2 Measuring similarity 000000

More information

16 Embeddings of the Euclidean metric

16 Embeddings of the Euclidean metric 16 Embeddings of the Euclidean metric In today s lecture, we will consider how well we can embed n points in the Euclidean metric (l 2 ) into other l p metrics. More formally, we ask the following question.

More information

MMSE Equalizer Design

MMSE Equalizer Design MMSE Equalizer Design Phil Schniter March 6, 2008 [k] a[m] P a [k] g[k] m[k] h[k] + ṽ[k] q[k] y [k] P y[m] For a trivial channel (i.e., h[k] = δ[k]), e kno that the use of square-root raisedcosine (SRRC)

More information

Introduction To Resonant. Circuits. Resonance in series & parallel RLC circuits

Introduction To Resonant. Circuits. Resonance in series & parallel RLC circuits Introduction To esonant Circuits esonance in series & parallel C circuits Basic Electrical Engineering (EE-0) esonance In Electric Circuits Any passive electric circuit ill resonate if it has an inductor

More information

Algorithms for Data Science: Lecture on Finding Similar Items

Algorithms for Data Science: Lecture on Finding Similar Items Algorithms for Data Science: Lecture on Finding Similar Items Barna Saha 1 Finding Similar Items Finding similar items is a fundamental data mining task. We may want to find whether two documents are similar

More information

Random Feature Maps for Dot Product Kernels Supplementary Material

Random Feature Maps for Dot Product Kernels Supplementary Material Random Feature Maps for Dot Product Kernels Supplementary Material Purushottam Kar and Harish Karnick Indian Institute of Technology Kanpur, INDIA {purushot,hk}@cse.iitk.ac.in Abstract This document contains

More information

Bucket handles and Solenoids Notes by Carl Eberhart, March 2004

Bucket handles and Solenoids Notes by Carl Eberhart, March 2004 Bucket handles and Solenoids Notes by Carl Eberhart, March 004 1. Introduction A continuum is a nonempty, compact, connected metric space. A nonempty compact connected subspace of a continuum X is called

More information

CS168: The Modern Algorithmic Toolbox Lecture #4: Dimensionality Reduction

CS168: The Modern Algorithmic Toolbox Lecture #4: Dimensionality Reduction CS168: The Modern Algorithmic Toolbox Lecture #4: Dimensionality Reduction Tim Roughgarden & Gregory Valiant April 12, 2017 1 The Curse of Dimensionality in the Nearest Neighbor Problem Lectures #1 and

More information

Preliminaries. Definition: The Euclidean dot product between two vectors is the expression. i=1

Preliminaries. Definition: The Euclidean dot product between two vectors is the expression. i=1 90 8 80 7 70 6 60 0 8/7/ Preliminaries Preliminaries Linear models and the perceptron algorithm Chapters, T x + b < 0 T x + b > 0 Definition: The Euclidean dot product beteen to vectors is the expression

More information

Problem 1. Possible Solution. Let f be the 2π-periodic functions defined by f(x) = cos ( )

Problem 1. Possible Solution. Let f be the 2π-periodic functions defined by f(x) = cos ( ) Problem Let f be the π-periodic functions defined by f() = cos ( ) hen [ π, π]. Make a draing of the function f for the interval [ 3π, 3π], and compute the Fourier series of f. Use the result to compute

More information

Early & Quick COSMIC-FFP Analysis using Analytic Hierarchy Process

Early & Quick COSMIC-FFP Analysis using Analytic Hierarchy Process Early & Quick COSMIC-FFP Analysis using Analytic Hierarchy Process uca Santillo (luca.santillo@gmail.com) Abstract COSMIC-FFP is a rigorous measurement method that makes possible to measure the functional

More information

Lecture 3 Frequency Moments, Heavy Hitters

Lecture 3 Frequency Moments, Heavy Hitters COMS E6998-9: Algorithmic Techniques for Massive Data Sep 15, 2015 Lecture 3 Frequency Moments, Heavy Hitters Instructor: Alex Andoni Scribes: Daniel Alabi, Wangda Zhang 1 Introduction This lecture is

More information

Homework 6 Solutions

Homework 6 Solutions Homeork 6 Solutions Igor Yanovsky (Math 151B TA) Section 114, Problem 1: For the boundary-value problem y (y ) y + log x, 1 x, y(1) 0, y() log, (1) rite the nonlinear system and formulas for Neton s method

More information

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013.

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013. The University of Texas at Austin Department of Electrical and Computer Engineering EE381V: Large Scale Learning Spring 2013 Assignment 1 Caramanis/Sanghavi Due: Thursday, Feb. 7, 2013. (Problems 1 and

More information

Neural Networks. Associative memory 12/30/2015. Associative memories. Associative memories

Neural Networks. Associative memory 12/30/2015. Associative memories. Associative memories //5 Neural Netors Associative memory Lecture Associative memories Associative memories The massively parallel models of associative or content associative memory have been developed. Some of these models

More information

An Algorithmist s Toolkit Nov. 10, Lecture 17

An Algorithmist s Toolkit Nov. 10, Lecture 17 8.409 An Algorithmist s Toolkit Nov. 0, 009 Lecturer: Jonathan Kelner Lecture 7 Johnson-Lindenstrauss Theorem. Recap We first recap a theorem (isoperimetric inequality) and a lemma (concentration) from

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review CS 4980/6980: Introduction to Data Science c Spring 2018 Lecture 2: Linear Algebra Review Instructor: Daniel L. Pimentel-Alarcón Scribed by: Anh Nguyen and Kira Jordan This is preliminary work and has

More information

Optimal Lower Bounds for Locality Sensitive Hashing (except when q is tiny)

Optimal Lower Bounds for Locality Sensitive Hashing (except when q is tiny) Innovations in Computer Science 20 Optimal Lower Bounds for Locality Sensitive Hashing (except when q is tiny Ryan O Donnell Yi Wu 3 Yuan Zhou 2 Computer Science Department, Carnegie Mellon University,

More information

These notes give a quick summary of the part of the theory of autonomous ordinary differential equations relevant to modeling zombie epidemics.

These notes give a quick summary of the part of the theory of autonomous ordinary differential equations relevant to modeling zombie epidemics. NOTES ON AUTONOMOUS ORDINARY DIFFERENTIAL EQUATIONS MARCH 2017 These notes give a quick summary of the part of the theory of autonomous ordinary differential equations relevant to modeling zombie epidemics.

More information

High Dimensional Geometry, Curse of Dimensionality, Dimension Reduction

High Dimensional Geometry, Curse of Dimensionality, Dimension Reduction Chapter 11 High Dimensional Geometry, Curse of Dimensionality, Dimension Reduction High-dimensional vectors are ubiquitous in applications (gene expression data, set of movies watched by Netflix customer,

More information

CS168: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA)

CS168: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA) CS68: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA) Tim Roughgarden & Gregory Valiant April 0, 05 Introduction. Lecture Goal Principal components analysis

More information

CS Topics in Cryptography January 28, Lecture 5

CS Topics in Cryptography January 28, Lecture 5 CS 4501-6501 Topics in Cryptography January 28, 2015 Lecture 5 Lecturer: Mohammad Mahmoody Scribe: Ameer Mohammed 1 Learning with Errors: Motivation An important goal in cryptography is to find problems

More information

reader is comfortable with the meaning of expressions such as # g, f (g) >, and their

reader is comfortable with the meaning of expressions such as # g, f (g) >, and their The Abelian Hidden Subgroup Problem Stephen McAdam Department of Mathematics University of Texas at Austin mcadam@math.utexas.edu Introduction: The general Hidden Subgroup Problem is as follos. Let G be

More information

Nearest Neighbor Preserving Embeddings

Nearest Neighbor Preserving Embeddings Nearest Neighbor Preserving Embeddings Piotr Indyk MIT Assaf Naor Microsoft Research Abstract In this paper we introduce the notion of nearest neighbor preserving embeddings. These are randomized embeddings

More information

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum 1997 19 CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION 3.0. Introduction

More information

Term Filtering with Bounded Error

Term Filtering with Bounded Error Term Filtering with Bounded Error Zi Yang, Wei Li, Jie Tang, and Juanzi Li Knowledge Engineering Group Department of Computer Science and Technology Tsinghua University, China {yangzi, tangjie, ljz}@keg.cs.tsinghua.edu.cn

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008 COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008 In the previous lecture, e ere introduced to the SVM algorithm and its basic motivation

More information

COS 424: Interacting with Data. Lecturer: Rob Schapire Lecture #15 Scribe: Haipeng Zheng April 5, 2007

COS 424: Interacting with Data. Lecturer: Rob Schapire Lecture #15 Scribe: Haipeng Zheng April 5, 2007 COS 424: Interacting ith Data Lecturer: Rob Schapire Lecture #15 Scribe: Haipeng Zheng April 5, 2007 Recapitulation of Last Lecture In linear regression, e need to avoid adding too much richness to the

More information

Lecture 1: 01/22/2014

Lecture 1: 01/22/2014 COMS 6998-3: Sub-Linear Algorithms in Learning and Testing Lecturer: Rocco Servedio Lecture 1: 01/22/2014 Spring 2014 Scribes: Clément Canonne and Richard Stark 1 Today High-level overview Administrative

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Linear models and the perceptron algorithm

Linear models and the perceptron algorithm 8/5/6 Preliminaries Linear models and the perceptron algorithm Chapters, 3 Definition: The Euclidean dot product beteen to vectors is the expression dx T x = i x i The dot product is also referred to as

More information

Bivariate Uniqueness in the Logistic Recursive Distributional Equation

Bivariate Uniqueness in the Logistic Recursive Distributional Equation Bivariate Uniqueness in the Logistic Recursive Distributional Equation Antar Bandyopadhyay Technical Report # 629 University of California Department of Statistics 367 Evans Hall # 3860 Berkeley CA 94720-3860

More information

On Symmetric and Asymmetric LSHs for Inner Product Search

On Symmetric and Asymmetric LSHs for Inner Product Search Behnam Neyshabur Nathan Srebro Toyota Technological Institute at Chicago, Chicago, IL 6637, USA BNEYSHABUR@TTIC.EDU NATI@TTIC.EDU Abstract We consider the problem of designing locality sensitive hashes

More information

Regression coefficients may even have a different sign from the expected.

Regression coefficients may even have a different sign from the expected. Multicolinearity Diagnostics : Some of the diagnostics e have just discussed are sensitive to multicolinearity. For example, e kno that ith multicolinearity, additions and deletions of data cause shifts

More information

Artificial Neural Networks. Part 2

Artificial Neural Networks. Part 2 Artificial Neural Netorks Part Artificial Neuron Model Folloing simplified model of real neurons is also knon as a Threshold Logic Unit x McCullouch-Pitts neuron (943) x x n n Body of neuron f out Biological

More information

A Generalization of a result of Catlin: 2-factors in line graphs

A Generalization of a result of Catlin: 2-factors in line graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 72(2) (2018), Pages 164 184 A Generalization of a result of Catlin: 2-factors in line graphs Ronald J. Gould Emory University Atlanta, Georgia U.S.A. rg@mathcs.emory.edu

More information

Enhancing Generalization Capability of SVM Classifiers with Feature Weight Adjustment

Enhancing Generalization Capability of SVM Classifiers with Feature Weight Adjustment Enhancing Generalization Capability of SVM Classifiers ith Feature Weight Adjustment Xizhao Wang and Qiang He College of Mathematics and Computer Science, Hebei University, Baoding 07002, Hebei, China

More information

Improved Consistent Sampling, Weighted Minhash and L1 Sketching

Improved Consistent Sampling, Weighted Minhash and L1 Sketching Improved Consistent Sampling, Weighted Minhash and L1 Sketching Sergey Ioffe Google Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043, sioffe@google.com Abstract We propose a new Consistent Weighted

More information

Approximate Nearest Neighbor (ANN) Search in High Dimensions

Approximate Nearest Neighbor (ANN) Search in High Dimensions Chapter 17 Approximate Nearest Neighbor (ANN) Search in High Dimensions By Sariel Har-Peled, February 4, 2010 1 17.1 ANN on the Hypercube 17.1.1 Hypercube and Hamming distance Definition 17.1.1 The set

More information

Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform

Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform Nir Ailon May 22, 2007 This writeup includes very basic background material for the talk on the Fast Johnson Lindenstrauss Transform

More information

Exercise 1a: Determine the dot product of each of the following pairs of vectors.

Exercise 1a: Determine the dot product of each of the following pairs of vectors. Bob Bron, CCBC Dundalk Math 53 Calculus 3, Chapter Section 3 Dot Product (Geometric Definition) Def.: The dot product of to vectors v and n in is given by here θ, satisfying 0, is the angle beteen v and.

More information

Stat 8112 Lecture Notes Weak Convergence in Metric Spaces Charles J. Geyer January 23, Metric Spaces

Stat 8112 Lecture Notes Weak Convergence in Metric Spaces Charles J. Geyer January 23, Metric Spaces Stat 8112 Lecture Notes Weak Convergence in Metric Spaces Charles J. Geyer January 23, 2013 1 Metric Spaces Let X be an arbitrary set. A function d : X X R is called a metric if it satisfies the folloing

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

CSE446: non-parametric methods Spring 2017

CSE446: non-parametric methods Spring 2017 CSE446: non-parametric methods Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Linear Regression: What can go wrong? What do we do if the bias is too strong? Might want

More information

Coding for Random Projections and Approximate Near Neighbor Search

Coding for Random Projections and Approximate Near Neighbor Search Coding for Random Projetions and Approximate Near Neighbor Searh Ping Li Department of Statistis & Biostatistis Department of Computer Siene Rutgers University Pisataay, NJ 8854, USA pingli@stat.rutgers.edu

More information

Optimal Data-Dependent Hashing for Approximate Near Neighbors

Optimal Data-Dependent Hashing for Approximate Near Neighbors Optimal Data-Dependent Hashing for Approximate Near Neighbors Alexandr Andoni 1 Ilya Razenshteyn 2 1 Simons Institute 2 MIT, CSAIL April 20, 2015 1 / 30 Nearest Neighbor Search (NNS) Let P be an n-point

More information

Lecture 15: Random Projections

Lecture 15: Random Projections Lecture 15: Random Projections Introduction to Learning and Analysis of Big Data Kontorovich and Sabato (BGU) Lecture 15 1 / 11 Review of PCA Unsupervised learning technique Performs dimensionality reduction

More information

An Analog Analogue of a Digital Quantum Computation

An Analog Analogue of a Digital Quantum Computation An Analog Analogue of a Digital Quantum Computation arxiv:quant-ph/9612026v1 6 Dec 1996 Edard Farhi Center for Theoretical Physics Massachusetts Institute of Technology Cambridge, MA 02139 Sam Gutmann

More information

3 - Vector Spaces Definition vector space linear space u, v,

3 - Vector Spaces Definition vector space linear space u, v, 3 - Vector Spaces Vectors in R and R 3 are essentially matrices. They can be vieed either as column vectors (matrices of size and 3, respectively) or ro vectors ( and 3 matrices). The addition and scalar

More information

COS 598D - Lattices. scribe: Srdjan Krstic

COS 598D - Lattices. scribe: Srdjan Krstic COS 598D - Lattices scribe: Srdjan Krstic Introduction In the first part we will give a brief introduction to lattices and their relevance in some topics in computer science. Then we show some specific

More information

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS MTH 35, SPRING 2017 NIKOS APOSTOLAKIS 1. Linear independence Example 1. Recall the set S = {a i : i = 1,...,5} R 4 of the last two lectures, where a 1 = (1,1,3,1) a 2 = (2,1,2, 1) a 3 = (7,3,5, 5) a 4

More information

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method CS 395T: Sublinear Algorithms Fall 2016 Prof. Eric Price Lecture 13 October 6, 2016 Scribe: Kiyeon Jeon and Loc Hoang 1 Overview In the last lecture we covered the lower bound for p th moment (p > 2) and

More information

Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices

Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices Jan Vybíral Austrian Academy of Sciences RICAM, Linz, Austria January 2011 MPI Leipzig, Germany joint work with Aicke

More information

25.2 Last Time: Matrix Multiplication in Streaming Model

25.2 Last Time: Matrix Multiplication in Streaming Model EE 381V: Large Scale Learning Fall 01 Lecture 5 April 18 Lecturer: Caramanis & Sanghavi Scribe: Kai-Yang Chiang 5.1 Review of Streaming Model Streaming model is a new model for presenting massive data.

More information

Non-Asymptotic Theory of Random Matrices Lecture 4: Dimension Reduction Date: January 16, 2007

Non-Asymptotic Theory of Random Matrices Lecture 4: Dimension Reduction Date: January 16, 2007 Non-Asymptotic Theory of Random Matrices Lecture 4: Dimension Reduction Date: January 16, 2007 Lecturer: Roman Vershynin Scribe: Matthew Herman 1 Introduction Consider the set X = {n points in R N } where

More information

1 :: Mathematical notation

1 :: Mathematical notation 1 :: Mathematical notation x A means x is a member of the set A. A B means the set A is contained in the set B. {a 1,..., a n } means the set hose elements are a 1,..., a n. {x A : P } means the set of

More information

Succinct Data Structures for Approximating Convex Functions with Applications

Succinct Data Structures for Approximating Convex Functions with Applications Succinct Data Structures for Approximating Convex Functions with Applications Prosenjit Bose, 1 Luc Devroye and Pat Morin 1 1 School of Computer Science, Carleton University, Ottawa, Canada, K1S 5B6, {jit,morin}@cs.carleton.ca

More information

Faster Johnson-Lindenstrauss style reductions

Faster Johnson-Lindenstrauss style reductions Faster Johnson-Lindenstrauss style reductions Aditya Menon August 23, 2007 Outline 1 Introduction Dimensionality reduction The Johnson-Lindenstrauss Lemma Speeding up computation 2 The Fast Johnson-Lindenstrauss

More information

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2 Nearest Neighbor Machine Learning CSE546 Kevin Jamieson University of Washington October 26, 2017 2017 Kevin Jamieson 2 Some data, Bayes Classifier Training data: True label: +1 True label: -1 Optimal

More information

Lecture 2: Streaming Algorithms

Lecture 2: Streaming Algorithms CS369G: Algorithmic Techniques for Big Data Spring 2015-2016 Lecture 2: Streaming Algorithms Prof. Moses Chariar Scribes: Stephen Mussmann 1 Overview In this lecture, we first derive a concentration inequality

More information

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components.

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components. Reynolds Averaging Reynolds Averaging We separate the dynamical fields into sloly varying mean fields and rapidly varying turbulent components. Reynolds Averaging We separate the dynamical fields into

More information

2.4 Hilbert Spaces. Outline

2.4 Hilbert Spaces. Outline 2.4 Hilbert Spaces Tom Lewis Spring Semester 2017 Outline Hilbert spaces L 2 ([a, b]) Orthogonality Approximations Definition A Hilbert space is an inner product space which is complete in the norm defined

More information

Econ 201: Problem Set 3 Answers

Econ 201: Problem Set 3 Answers Econ 20: Problem Set 3 Ansers Instructor: Alexandre Sollaci T.A.: Ryan Hughes Winter 208 Question a) The firm s fixed cost is F C = a and variable costs are T V Cq) = 2 bq2. b) As seen in class, the optimal

More information

Endogeny for the Logistic Recursive Distributional Equation

Endogeny for the Logistic Recursive Distributional Equation Zeitschrift für Analysis und ihre Anendungen Journal for Analysis and its Applications Volume 30 20, 237 25 DOI: 0.47/ZAA/433 c European Mathematical Society Endogeny for the Logistic Recursive Distributional

More information

Homework Set 2 Solutions

Homework Set 2 Solutions MATH 667-010 Introduction to Mathematical Finance Prof. D. A. Edards Due: Feb. 28, 2018 Homeork Set 2 Solutions 1. Consider the ruin problem. Suppose that a gambler starts ith ealth, and plays a game here

More information

and sinθ = cosb =, and we know a and b are acute angles, find cos( a+ b) Trigonometry Topics Accuplacer Review revised July 2016 sin.

and sinθ = cosb =, and we know a and b are acute angles, find cos( a+ b) Trigonometry Topics Accuplacer Review revised July 2016 sin. Trigonometry Topics Accuplacer Revie revised July 0 You ill not be alloed to use a calculator on the Accuplacer Trigonometry test For more information, see the JCCC Testing Services ebsite at http://jcccedu/testing/

More information

be a deterministic function that satisfies x( t) dt. Then its Fourier

be a deterministic function that satisfies x( t) dt. Then its Fourier Lecture Fourier ransforms and Applications Definition Let ( t) ; t (, ) be a deterministic function that satisfies ( t) dt hen its Fourier it ransform is defined as X ( ) ( t) e dt ( )( ) heorem he inverse

More information

NCG Group New Results and Open Problems

NCG Group New Results and Open Problems NCG Group Ne Results and Open Problems Table of Contents NP-Completeness 1 NP-Completeness 2 3 4 2 / 19 NP-Completeness 3 / 19 (P)NSP OPT - Problem Definition An instance I of (P)NSP opt : I = (G, F ),

More information

Lecture 10 September 27, 2016

Lecture 10 September 27, 2016 CS 395T: Sublinear Algorithms Fall 2016 Prof. Eric Price Lecture 10 September 27, 2016 Scribes: Quinten McNamara & William Hoza 1 Overview In this lecture, we focus on constructing coresets, which are

More information

Randomized Smoothing Networks

Randomized Smoothing Networks Randomized Smoothing Netorks Maurice Herlihy Computer Science Dept., Bron University, Providence, RI, USA Srikanta Tirthapura Dept. of Electrical and Computer Engg., Ioa State University, Ames, IA, USA

More information

ECON 7335 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO LECTURE 1: BASICS. 1. Bayes Rule. p(b j A)p(A) p(b)

ECON 7335 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO LECTURE 1: BASICS. 1. Bayes Rule. p(b j A)p(A) p(b) ECON 7335 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO LECTURE : BASICS KRISTOFFER P. NIMARK. Bayes Rule De nition. Bayes Rule. The probability of event A occurring conditional on the event B having

More information

How Long Does it Take to Catch a Wild Kangaroo?

How Long Does it Take to Catch a Wild Kangaroo? Ho Long Does it Take to Catch a Wild Kangaroo? Ravi Montenegro Prasad Tetali ABSTRACT The discrete logarithm problem asks to solve for the exponent x, given the generator g of a cyclic group G and an element

More information

Lecture 3: Lower bound on statistically secure encryption, extractors

Lecture 3: Lower bound on statistically secure encryption, extractors CS 7880 Graduate Cryptography September, 015 Lecture 3: Lower bound on statistically secure encryption, extractors Lecturer: Daniel Wichs Scribe: Giorgos Zirdelis 1 Topics Covered Statistical Secrecy Randomness

More information

ECE380 Digital Logic. Synchronous sequential circuits

ECE380 Digital Logic. Synchronous sequential circuits ECE38 Digital Logic Synchronous Sequential Circuits: State Diagrams, State Tables Dr. D. J. Jackson Lecture 27- Synchronous sequential circuits Circuits here a clock signal is used to control operation

More information

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c All rights reserved. Draft of August 7, 2017.

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c All rights reserved. Draft of August 7, 2017. Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c 2016. All rights reserved. Draft of August 7, 2017. CHAPTER 7 Logistic Regression Numquam ponenda est pluralitas sine necessitate

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Lecture 3 Sept. 4, 2014

Lecture 3 Sept. 4, 2014 CS 395T: Sublinear Algorithms Fall 2014 Prof. Eric Price Lecture 3 Sept. 4, 2014 Scribe: Zhao Song In today s lecture, we will discuss the following problems: 1. Distinct elements 2. Turnstile model 3.

More information

Why do Golf Balls have Dimples on Their Surfaces?

Why do Golf Balls have Dimples on Their Surfaces? Name: Partner(s): 1101 Section: Desk # Date: Why do Golf Balls have Dimples on Their Surfaces? Purpose: To study the drag force on objects ith different surfaces, ith the help of a ind tunnel. Overvie

More information

CS 229r: Algorithms for Big Data Fall Lecture 17 10/28

CS 229r: Algorithms for Big Data Fall Lecture 17 10/28 CS 229r: Algorithms for Big Data Fall 2015 Prof. Jelani Nelson Lecture 17 10/28 Scribe: Morris Yau 1 Overview In the last lecture we defined subspace embeddings a subspace embedding is a linear transformation

More information

392D: Coding for the AWGN Channel Wednesday, January 24, 2007 Stanford, Winter 2007 Handout #6. Problem Set 2 Solutions

392D: Coding for the AWGN Channel Wednesday, January 24, 2007 Stanford, Winter 2007 Handout #6. Problem Set 2 Solutions 392D: Coding for the AWGN Channel Wednesday, January 24, 2007 Stanford, Winter 2007 Handout #6 Problem Set 2 Solutions Problem 2.1 (Cartesian-product constellations) (a) Show that if A is a K-fold Cartesian

More information

Notes for Lecture 16

Notes for Lecture 16 COS 533: Advanced Cryptography Lecture 16 (11/13/2017) Lecturer: Mark Zhandry Princeton University Scribe: Boriana Gjura Notes for Lecture 16 1 Lattices (continued) 1.1 Last time. We defined lattices as

More information

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21 CS 70 Discrete Mathematics and Probability Theory Fall 205 Lecture 2 Inference In this note we revisit the problem of inference: Given some data or observations from the world, what can we infer about

More information

Outline of lectures 3-6

Outline of lectures 3-6 GENOME 453 J. Felsenstein Evolutionary Genetics Autumn, 013 Population genetics Outline of lectures 3-6 1. We ant to kno hat theory says about the reproduction of genotypes in a population. This results

More information