ECON 7335 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO LECTURE 1: BASICS. 1. Bayes Rule. p(b j A)p(A) p(b)

Size: px
Start display at page:

Download "ECON 7335 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO LECTURE 1: BASICS. 1. Bayes Rule. p(b j A)p(A) p(b)"

Transcription

1 ECON 7335 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO LECTURE : BASICS KRISTOFFER P. NIMARK. Bayes Rule De nition. Bayes Rule. The probability of event A occurring conditional on the event B having occurred is given by p(a j B) = p(b j A)p(A) p(b) (.) as long as p(b) 6= 0. It can be derived from the de nition of conditional probability p(a j B) p (A \ B) p(b) (.) and that the probability of A and B occurring is the same as the probability of B and A occurring implying p(a j B)p(B) = p(b j A)p(A) (.3) which can be rearranged to yield Bayes Rule. Bayes Rule is general and applies whether A and B are discrete or continuous random variables. It can be used to update a prior belief p(x) about the latent variable x conditional on the signal y: Bayes Rule then gives the posterior belief p (x j y) = p(y j x)p(x) p(y) (.4) Date: January 7, 06.

2 KRISTOFFER P. NIMARK.. Example with binary variables and signals (adapted from O Hara 995). Consider a market maker that holds inventory of an asset that can have either a High or Low value. The market maker s prior belief that the value of the asset is high is denoted p(h) = : There are two types of traders, informed and uninformed and the market maker is equally likely to meet either type. An informed trader always buys when the value is high and always sells when the value is low. An uninformed trader is equally likely to buy or sell. What is the posterior probability that the value is high if the rst trade is a sale (S)? Bayes Rule states that p(h j S) = p(s j H)p(H) p(s) Start by nding the probability of a sale conditional on the value being high p(s j H) = 0 + = 4 (.5) and low p(s j L) = + = 3 4 We also need to nd the (unconditional) probability of sale (.6) p(s) = p(s j H)p(H) + p(s j L)p(L) (.7) Plug into Bayes Rule to get the posterior conditional on a sale p (H j S) = = p(s j H)p(H) p(s j H)p(H) + p(s j L)p(L) = 4 (.8) (.9)

3 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO 3 The same steps can be used to nd the posterior probability that the value is high if the rst transaction is a buy (B) p (H j B) = = p(b j H)p(H) p(b j H)p(H) + p(b j L)p(L) = 3 4 (.0) (.)... Updating beliefs when new information arrives. If the arrival of traders is independent over time, it is straighforward to update the posterior after a second transaction takes place by simply using the posterior after the rst observation as the prior in the update. If both the rst and second transaction are sales, the posterior probability is then given by p (H j S; S) = = 0 (.) However, if the rst transaction is a sale and the second a buy, we get p (H j S; B) = = (.3) i.e. the second signal cancels the rst and psoterior equals the original prior belief. Useful fact: Under quite general conditions, beliefs that are updated using Bayes Rule converge almost surely to the truth... Bayes Rule and jointly normally distributed variables. To illustrate the usefulness of Bayes Rule, we can apply it to a simple bivariate setting. Let the prior about the latent variable x be normally distributed x N(0; x) (.4) and the signal y be the sum of the true x plus a normally distributed noise term so that y = x + : N(0; ) (.5)

4 4 KRISTOFFER P. NIMARK We then have all the ingredients need to apply Bayes Rule to nd the posterior p(x j y): p(x) = p(y) = p e x x (.6) x p p x + e (x+) ( x + ) (.7) p(y j x) = p e (y x) (.8) Plugging these expressions into Bayes Rule gives p(x j y) = p e (y x) p p e x + p x e x x (x+) ( x + ) (.9) which can be simpli ed to p(x j y) = p x + e x! x ( x + ) y + x! (.0) The posterior distribution p(x j y) is thus normally distributed with mean x y and variance + : This illustrates two points: First, normally distributed priors combined ( x+ ) x with normally distributed noise in the signal result in normally distributed posteriors. This is an extremely useful property of normal distributions. Second, the posterior variance of x is lower than the prior variance, i.e. x + More information thus reduces uncertainty about x. < x (.)

5 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO 5. The Projection Theorem This section explains how orthogonal projections can be used to nd least squares predictions of random variables. We start by de ning some concepts needed for stating the projection theorem. For more details about the projection theorem, see for instance Chapter of Brockwell and Davis (006) or Chapter 3 in Luenberger (969). De nition. (Inner Product Space) A real vector space H is said to be an inner product space if for each pair of elements x and y in H there is a number hx; yi called the inner product of x and y such that hx; yi = hy; xi (.) hx + y; zi = hx; zi + hy; zi for all x; y; z H (.) hx; yi = hx; yi for all x; y H and R (.3) hx; xi 0 for all x H (.4) hx; xi = 0 if and only if x = 0 (.5) De nition 3. (Norm) The norm of an element x of an inner product space is de ned to be kxk = p hx; xi (.6) De nition 4. (Cauchy Sequence) A sequence fx n ; n = ; ; :::g of elements of an inner product space is said to be Cauchy sequence if kx n x m k! 0 as m; n! i.e. for every " > 0 there exists a positive integer N(") such that kx n x m k < " as m; n > N(")

6 6 KRISTOFFER P. NIMARK De nition 5. (Hilbert Space) A Hilbert space H is an inner product space which is complete, i.e. every Cauchy sequence fx n g converges in norm to some element x H: Theorem. (The Projection Theorem) If M is a closed subspace of the Hilbert Space H and x H; then (i) there is a unique element bx M such that kx bxk = inf ym kx yk and (ii) bx M and kx bxk = inf ym kx yk if and only if bx M and (x bx) M? where M? is the orthogonal complement to M in H: The element bx is called the orthogonal projection of x onto M: Proof. We rst show that if bx is a minimizing vector then x bx must be orthogonal to M: Suppose to the contrary that there is an element m M which is not orthogonal to the error x bx: Without loss of generality we may assume that kmk = and that hx bx; mi = 6= 0: De ne the vector m M m bx + m (.7) We then have that kx m k = kx bx mk (.8) = kx bxk hx bx; mi hm; x bxi + jj (.9) = kx bxk jj (.0) < kx bxk (.) where the second line follows from (.) and the de nition of the norm, the third line comes from the fact that hx bx; mi = hm; x bxi = jj : The inequality on the last line follows

7 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO 7 from the fact that jj > 0: We then have a contradiction: bx cannot be the element in M that minimizes the norm of the error if 6= 0 since kx m k then is smaller than kx bxk : We now show that if x bx is orthogonal to M then it is the unique minimizing vector. For any m M we have that kx mk = kx bx + bx mk (.) = kx bxk + kbx mk (.3) > kx bxk for bx 6= m (.4) Properties of Projection Mappings. Let H be a Hilbert space and and let P M be a projection mapping onto a closed subspace M: Then (i) each x H has a unique representation as a sum of an element in M and an element in M? ; i.e. x = P M x + (I P M )x (.5) (ii) x M if and only if P M x = x (iii) x M? if and only if P M x = 0 (iv) M M if and only if P M P M x = P M (v) kxk = kp M xk + k(i P M ) xk The de nitions and the proofs above refer to Hilbert spaces in general. We now de ne the space relevant for most of time series analysis. De nition 6. (The space L (; F; P ) ) We can de ne the space L (; F; P ) as the space consisting of all collections C of random variables X de ned on the probability space (; F; P ) satisfying the condition Z EX = X(!)P (d!) < (.6)

8 8 KRISTOFFER P. NIMARK and de ne the inner product of this space as hx; Y i = E (XY ) for any X; Y C (.7) Least squares estimation via the projection theorem. The inner product space L satis es all of the axioms above. Noting that the inner product de nition (.7) corresponds to a covariance means that we can use the projection theorem to nd the minimum variance estimate of a vector of random variables with nite variances as a function of some other random variables with nite variances. That is, both the information set and the variables we are trying to predict must be elements of the relevant space and since hx; Y i = E (XY ) implies that an estimate bx that minimizes the norm of the estimation error kx bxk also minimizes the variance since kx bxk = q E (x bx) (x bx) 0 (.8) To nd the estimate bx as a linear function of y simply use that hx y; yi = E [(x y) y 0 ] (.9) = 0 and solve for = E (xy 0 ) [E (yy 0 )] (.0) The advantage of this approach is that once you have made sure that the variables y and x are in a well de ned inner product space, there is no need to minimize the variance directly. The projection theorem ensures that an estimate with orthogonal errors is the (linear) minimum variance estimate. Two useful properties of linear projections.

9 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO 9 If two random variables X and Y are Gaussian, then the projection of Y onto X coincides withe the conditional expectation E(Y j X): If X and Y are not Gaussian, the linear projection of Y onto X is the minimum variance linear prediction of Y given X. References [] Brockwell, P.J. and R.A. Davis, 006, Time Series: Theory and Methods, Springer-Verlag. [] Luenberger, D., (969), Optimization by Vector Space Methods, John Wiley and Sons, Inc., New York. [3] O Hara, M., 995. Market microstructure theory, Blackwell, Cambridge, MA.

Math 413/513 Chapter 6 (from Friedberg, Insel, & Spence)

Math 413/513 Chapter 6 (from Friedberg, Insel, & Spence) Math 413/513 Chapter 6 (from Friedberg, Insel, & Spence) David Glickenstein December 7, 2015 1 Inner product spaces In this chapter, we will only consider the elds R and C. De nition 1 Let V be a vector

More information

INTRODUCTION TO INFORMATION THEORY

INTRODUCTION TO INFORMATION THEORY INTRODUCTION TO INFORMATION THEORY KRISTOFFER P. NIMARK These notes introduce the machinery of information theory which is a eld within applied mathematics. The material can be found in most textbooks

More information

Projection Theorem 1

Projection Theorem 1 Projection Theorem 1 Cauchy-Schwarz Inequality Lemma. (Cauchy-Schwarz Inequality) For all x, y in an inner product space, [ xy, ] x y. Equality holds if and only if x y or y θ. Proof. If y θ, the inequality

More information

Functional Analysis: Assignment Set # 3 Spring 2009 Professor: Fengbo Hang February 25, 2009

Functional Analysis: Assignment Set # 3 Spring 2009 Professor: Fengbo Hang February 25, 2009 duardo Corona Functional Analysis: Assignment Set # 3 Spring 9 Professor: Fengbo Hang February 5, 9 C6. Show that a norm that satis es the parallelogram identity: comes from a scalar product. kx + yk +

More information

Math 702 Problem Set 10 Solutions

Math 702 Problem Set 10 Solutions Math 70 Problem Set 0 Solutions Unless otherwise stated, X is a complex Hilbert space with the inner product h; i the induced norm k k. The null-space range of a linear map T W X! X are denoted by N.T

More information

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Evan Kwiatkowski, Jan Mandel University of Colorado Denver December 11, 2014 OUTLINE 2 Data Assimilation Bayesian Estimation

More information

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER KRISTOFFER P. NIMARK The Kalman Filter We will be concerned with state space systems of the form X t = A t X t 1 + C t u t 0.1 Z t

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

SIGNALS, BELIEFS AND UNUSUAL EVENTS ERID LECTURE DUKE UNIVERSITY

SIGNALS, BELIEFS AND UNUSUAL EVENTS ERID LECTURE DUKE UNIVERSITY SIGNALS, BELIEFS AND UNUSUAL EVENTS ERID LECTURE DUKE UNIVERSITY KRISTOFFER P. NIMARK These notes presents and discusses ideas related to the modeling framework in my paper Man-bites-dog Business Cycles

More information

Measure-theoretic probability

Measure-theoretic probability Measure-theoretic probability Koltay L. VEGTMAM144B November 28, 2012 (VEGTMAM144B) Measure-theoretic probability November 28, 2012 1 / 27 The probability space De nition The (Ω, A, P) measure space is

More information

Intro to Probability. Andrei Barbu

Intro to Probability. Andrei Barbu Intro to Probability Andrei Barbu Some problems Some problems A means to capture uncertainty Some problems A means to capture uncertainty You have data from two sources, are they different? Some problems

More information

CS 630 Basic Probability and Information Theory. Tim Campbell

CS 630 Basic Probability and Information Theory. Tim Campbell CS 630 Basic Probability and Information Theory Tim Campbell 21 January 2003 Probability Theory Probability Theory is the study of how best to predict outcomes of events. An experiment (or trial or event)

More information

Stochastic Processes

Stochastic Processes Introduction and Techniques Lecture 4 in Financial Mathematics UiO-STK4510 Autumn 2015 Teacher: S. Ortiz-Latorre Stochastic Processes 1 Stochastic Processes De nition 1 Let (E; E) be a measurable space

More information

Metric Spaces. DEF. If (X; d) is a metric space and E is a nonempty subset, then (E; d) is also a metric space, called a subspace of X:

Metric Spaces. DEF. If (X; d) is a metric space and E is a nonempty subset, then (E; d) is also a metric space, called a subspace of X: Metric Spaces DEF. A metric space X or (X; d) is a nonempty set X together with a function d : X X! [0; 1) such that for all x; y; and z in X : 1. d (x; y) 0 with equality i x = y 2. d (x; y) = d (y; x)

More information

Bayesian Methods for DSGE models Lecture 1 Macro models as data generating processes

Bayesian Methods for DSGE models Lecture 1 Macro models as data generating processes Bayesian Methods for DSGE models Lecture 1 Macro models as data generating processes Kristoffer Nimark CREI, Universitat Pompeu Fabra and Barcelona GSE June 30, 2014 Bayesian Methods for DSGE models Course

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

Review (Probability & Linear Algebra)

Review (Probability & Linear Algebra) Review (Probability & Linear Algebra) CE-725 : Statistical Pattern Recognition Sharif University of Technology Spring 2013 M. Soleymani Outline Axioms of probability theory Conditional probability, Joint

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

2 Interval-valued Probability Measures

2 Interval-valued Probability Measures Interval-Valued Probability Measures K. David Jamison 1, Weldon A. Lodwick 2 1. Watson Wyatt & Company, 950 17th Street,Suite 1400, Denver, CO 80202, U.S.A 2. Department of Mathematics, Campus Box 170,

More information

Statistical Learning Theory

Statistical Learning Theory Statistical Learning Theory Part I : Mathematical Learning Theory (1-8) By Sumio Watanabe, Evaluation : Report Part II : Information Statistical Mechanics (9-15) By Yoshiyuki Kabashima, Evaluation : Report

More information

Mean-Variance Utility

Mean-Variance Utility Mean-Variance Utility Yutaka Nakamura University of Tsukuba Graduate School of Systems and Information Engineering Division of Social Systems and Management -- Tennnoudai, Tsukuba, Ibaraki 305-8573, Japan

More information

4 Derivations of the Discrete-Time Kalman Filter

4 Derivations of the Discrete-Time Kalman Filter Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof N Shimkin 4 Derivations of the Discrete-Time

More information

The Geometric Meaning of the Notion of Joint Unpredictability of a Bivariate VAR(1) Stochastic Process

The Geometric Meaning of the Notion of Joint Unpredictability of a Bivariate VAR(1) Stochastic Process Econometrics 2013, 3, 207-216; doi:10.3390/econometrics1030207 OPEN ACCESS econometrics ISSN 2225-1146 www.mdpi.com/journal/econometrics Article The Geometric Meaning of the Notion of Joint Unpredictability

More information

Probability. Paul Schrimpf. January 23, UBC Economics 326. Probability. Paul Schrimpf. Definitions. Properties. Random variables.

Probability. Paul Schrimpf. January 23, UBC Economics 326. Probability. Paul Schrimpf. Definitions. Properties. Random variables. Probability UBC Economics 326 January 23, 2018 1 2 3 Wooldridge (2013) appendix B Stock and Watson (2009) chapter 2 Linton (2017) chapters 1-5 Abbring (2001) sections 2.1-2.3 Diez, Barr, and Cetinkaya-Rundel

More information

ECON 4117/5111 Mathematical Economics

ECON 4117/5111 Mathematical Economics Test 1 September 23, 2016 1. Suppose that p and q are logical statements. The exclusive or, denoted by p Y q, is true when only one of p and q is true. (a) Construct the truth table of p Y q. (b) Prove

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

UNIT-2: MULTIPLE RANDOM VARIABLES & OPERATIONS

UNIT-2: MULTIPLE RANDOM VARIABLES & OPERATIONS UNIT-2: MULTIPLE RANDOM VARIABLES & OPERATIONS In many practical situations, multiple random variables are required for analysis than a single random variable. The analysis of two random variables especially

More information

Probability theory. References:

Probability theory. References: Reasoning Under Uncertainty References: Probability theory Mathematical methods in artificial intelligence, Bender, Chapter 7. Expert systems: Principles and programming, g, Giarratano and Riley, pag.

More information

Probability Theory Review Reading Assignments

Probability Theory Review Reading Assignments Probability Theory Review Reading Assignments R. Duda, P. Hart, and D. Stork, Pattern Classification, John-Wiley, 2nd edition, 2001 (appendix A.4, hard-copy). "Everything I need to know about Probability"

More information

Introduction to Linear Algebra. Tyrone L. Vincent

Introduction to Linear Algebra. Tyrone L. Vincent Introduction to Linear Algebra Tyrone L. Vincent Engineering Division, Colorado School of Mines, Golden, CO E-mail address: tvincent@mines.edu URL: http://egweb.mines.edu/~tvincent Contents Chapter. Revew

More information

Stochastic integral. Introduction. Ito integral. References. Appendices Stochastic Calculus I. Geneviève Gauthier.

Stochastic integral. Introduction. Ito integral. References. Appendices Stochastic Calculus I. Geneviève Gauthier. Ito 8-646-8 Calculus I Geneviève Gauthier HEC Montréal Riemann Ito The Ito The theories of stochastic and stochastic di erential equations have initially been developed by Kiyosi Ito around 194 (one of

More information

Lecture 22: Variance and Covariance

Lecture 22: Variance and Covariance EE5110 : Probability Foundations for Electrical Engineers July-November 2015 Lecture 22: Variance and Covariance Lecturer: Dr. Krishna Jagannathan Scribes: R.Ravi Kiran In this lecture we will introduce

More information

Near convexity, metric convexity, and convexity

Near convexity, metric convexity, and convexity Near convexity, metric convexity, and convexity Fred Richman Florida Atlantic University Boca Raton, FL 33431 28 February 2005 Abstract It is shown that a subset of a uniformly convex normed space is nearly

More information

Introduction to Probability and Stocastic Processes - Part I

Introduction to Probability and Stocastic Processes - Part I Introduction to Probability and Stocastic Processes - Part I Lecture 1 Henrik Vie Christensen vie@control.auc.dk Department of Control Engineering Institute of Electronic Systems Aalborg University Denmark

More information

Fall TMA4145 Linear Methods. Exercise set 10

Fall TMA4145 Linear Methods. Exercise set 10 Norwegian University of Science and Technology Department of Mathematical Sciences TMA445 Linear Methods Fall 207 Exercise set 0 Please justify your answers! The most important part is how you arrive at

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Probability. Paul Schrimpf. January 23, Definitions 2. 2 Properties 3

Probability. Paul Schrimpf. January 23, Definitions 2. 2 Properties 3 Probability Paul Schrimpf January 23, 2018 Contents 1 Definitions 2 2 Properties 3 3 Random variables 4 3.1 Discrete........................................... 4 3.2 Continuous.........................................

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Introduction to Bayesian Learning. Machine Learning Fall 2018

Introduction to Bayesian Learning. Machine Learning Fall 2018 Introduction to Bayesian Learning Machine Learning Fall 2018 1 What we have seen so far What does it mean to learn? Mistake-driven learning Learning by counting (and bounding) number of mistakes PAC learnability

More information

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space.

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space. Chapter 1 Preliminaries The purpose of this chapter is to provide some basic background information. Linear Space Hilbert Space Basic Principles 1 2 Preliminaries Linear Space The notion of linear space

More information

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner Fundamentals CS 281A: Statistical Learning Theory Yangqing Jia Based on tutorial slides by Lester Mackey and Ariel Kleiner August, 2011 Outline 1 Probability 2 Statistics 3 Linear Algebra 4 Optimization

More information

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Some slides have been adopted from Prof. H.R. Rabiee s and also Prof. R. Gutierrez-Osuna

More information

RSMG Working Paper Series. TITLE: The value of information and the value of awareness. Author: John Quiggin. Working Paper: R13_2

RSMG Working Paper Series. TITLE: The value of information and the value of awareness. Author: John Quiggin. Working Paper: R13_2 2013 TITLE: The value of information and the value of awareness 2011 RSMG Working Paper Series Risk and Uncertainty Program Author: John Quiggin Working Paper: R13_2 Schools of Economics and Political

More information

Topics in Mathematical Economics. Atsushi Kajii Kyoto University

Topics in Mathematical Economics. Atsushi Kajii Kyoto University Topics in Mathematical Economics Atsushi Kajii Kyoto University 26 June 2018 2 Contents 1 Preliminary Mathematics 5 1.1 Topology.................................. 5 1.2 Linear Algebra..............................

More information

Math Real Analysis II

Math Real Analysis II Math 4 - Real Analysis II Solutions to Homework due May Recall that a function f is called even if f( x) = f(x) and called odd if f( x) = f(x) for all x. We saw that these classes of functions had a particularly

More information

Economics 620, Lecture 9: Asymptotics III: Maximum Likelihood Estimation

Economics 620, Lecture 9: Asymptotics III: Maximum Likelihood Estimation Economics 620, Lecture 9: Asymptotics III: Maximum Likelihood Estimation Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 9: Asymptotics III(MLE) 1 / 20 Jensen

More information

4.3 - Linear Combinations and Independence of Vectors

4.3 - Linear Combinations and Independence of Vectors - Linear Combinations and Independence of Vectors De nitions, Theorems, and Examples De nition 1 A vector v in a vector space V is called a linear combination of the vectors u 1, u,,u k in V if v can be

More information

Stable Process. 2. Multivariate Stable Distributions. July, 2006

Stable Process. 2. Multivariate Stable Distributions. July, 2006 Stable Process 2. Multivariate Stable Distributions July, 2006 1. Stable random vectors. 2. Characteristic functions. 3. Strictly stable and symmetric stable random vectors. 4. Sub-Gaussian random vectors.

More information

DEPARTMENT OF COMPUTER SCIENCE AUTUMN SEMESTER MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE AUTUMN SEMESTER MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE AUTUMN SEMESTER 204 205 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE hour Please note that the rubric of this paper is made different from many other papers.

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

Implicit Function Theorem: One Equation

Implicit Function Theorem: One Equation Natalia Lazzati Mathematics for Economics (Part I) Note 3: The Implicit Function Theorem Note 3 is based on postol (975, h 3), de la Fuente (2, h5) and Simon and Blume (994, h 5) This note discusses the

More information

ECSE B Solutions to Assignment 8 Fall 2008

ECSE B Solutions to Assignment 8 Fall 2008 ECSE 34-35B Solutions to Assignment 8 Fall 28 Problem 8.1 A manufacturing system is governed by a Poisson counting process {N t ; t < } with rate parameter λ >. If a counting event occurs at an instant

More information

Topics in Mathematical Economics. Atsushi Kajii Kyoto University

Topics in Mathematical Economics. Atsushi Kajii Kyoto University Topics in Mathematical Economics Atsushi Kajii Kyoto University 25 November 2018 2 Contents 1 Preliminary Mathematics 5 1.1 Topology.................................. 5 1.2 Linear Algebra..............................

More information

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) Contents 1 Vector Spaces 1 1.1 The Formal Denition of a Vector Space.................................. 1 1.2 Subspaces...................................................

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Revisiting independence and stochastic dominance for compound lotteries

Revisiting independence and stochastic dominance for compound lotteries Revisiting independence and stochastic dominance for compound lotteries Alexander Zimper Working Paper Number 97 Department of Economics and Econometrics, University of Johannesburg Revisiting independence

More information

Theorem (4.11). Let M be a closed subspace of a Hilbert space H. For any x, y E, the parallelogram law applied to x/2 and y/2 gives.

Theorem (4.11). Let M be a closed subspace of a Hilbert space H. For any x, y E, the parallelogram law applied to x/2 and y/2 gives. Math 641 Lecture #19 4.11, 4.12, 4.13 Inner Products and Linear Functionals (Continued) Theorem (4.10). Every closed, convex set E in a Hilbert space H contains a unique element of smallest norm, i.e.,

More information

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e.,

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e., Abstract Hilbert Space Results We have learned a little about the Hilbert spaces L U and and we have at least defined H 1 U and the scale of Hilbert spaces H p U. Now we are going to develop additional

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. There are situations where one might be interested

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Computational Genomics

Computational Genomics Computational Genomics http://www.cs.cmu.edu/~02710 Introduction to probability, statistics and algorithms (brief) intro to probability Basic notations Random variable - referring to an element / event

More information

Bayesian Approaches Data Mining Selected Technique

Bayesian Approaches Data Mining Selected Technique Bayesian Approaches Data Mining Selected Technique Henry Xiao xiao@cs.queensu.ca School of Computing Queen s University Henry Xiao CISC 873 Data Mining p. 1/17 Probabilistic Bases Review the fundamentals

More information

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept Computational Biology Lecture #3: Probability and Statistics Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept 26 2005 L2-1 Basic Probabilities L2-2 1 Random Variables L2-3 Examples

More information

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s.

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s. 20 6. CONDITIONAL EXPECTATION Having discussed at length the limit theory for sums of independent random variables we will now move on to deal with dependent random variables. An important tool in this

More information

Economics 620, Lecture 8: Asymptotics I

Economics 620, Lecture 8: Asymptotics I Economics 620, Lecture 8: Asymptotics I Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 8: Asymptotics I 1 / 17 We are interested in the properties of estimators

More information

a b = a T b = a i b i (1) i=1 (Geometric definition) The dot product of two Euclidean vectors a and b is defined by a b = a b cos(θ a,b ) (2)

a b = a T b = a i b i (1) i=1 (Geometric definition) The dot product of two Euclidean vectors a and b is defined by a b = a b cos(θ a,b ) (2) This is my preperation notes for teaching in sections during the winter 2018 quarter for course CSE 446. Useful for myself to review the concepts as well. More Linear Algebra Definition 1.1 (Dot Product).

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Lecture 4 Bayes Theorem

Lecture 4 Bayes Theorem 1 / 24 Lecture 4 Bayes Theorem September 09, 2010 2 / 24 Lesson Plan 1. Bayes Theorem 2. Simpson s Paradox 3. More worked problems 3 / 24 Why Study Probability? A probability model describes the random

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 89 Part II

More information

Lecture 4 Bayes Theorem

Lecture 4 Bayes Theorem Lecture 4 Bayes Theorem Thais Paiva STA 111 - Summer 2013 Term II July 5, 2013 Lecture Plan 1 Probability Review 2 Bayes Theorem 3 More worked problems Why Study Probability? A probability model describes

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

LECTURE 12 UNIT ROOT, WEAK CONVERGENCE, FUNCTIONAL CLT

LECTURE 12 UNIT ROOT, WEAK CONVERGENCE, FUNCTIONAL CLT MARCH 29, 26 LECTURE 2 UNIT ROOT, WEAK CONVERGENCE, FUNCTIONAL CLT (Davidson (2), Chapter 4; Phillips Lectures on Unit Roots, Cointegration and Nonstationarity; White (999), Chapter 7) Unit root processes

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part X Factor analysis When we have data x (i) R n that comes from a mixture of several Gaussians, the EM algorithm can be applied to fit a mixture model. In this setting,

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 2 - Spring 2017 Lecture 4 Jan-Willem van de Meent (credit: Yijun Zhao, Arthur Gretton Rasmussen & Williams, Percy Liang) Kernel Regression Basis function regression

More information

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior The plan Estimate simple regression model using Bayesian methods

More information

Bayesian RL Seminar. Chris Mansley September 9, 2008

Bayesian RL Seminar. Chris Mansley September 9, 2008 Bayesian RL Seminar Chris Mansley September 9, 2008 Bayes Basic Probability One of the basic principles of probability theory, the chain rule, will allow us to derive most of the background material in

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Notes on Time Series Modeling

Notes on Time Series Modeling Notes on Time Series Modeling Garey Ramey University of California, San Diego January 17 1 Stationary processes De nition A stochastic process is any set of random variables y t indexed by t T : fy t g

More information

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21 CS 70 Discrete Mathematics and Probability Theory Fall 205 Lecture 2 Inference In this note we revisit the problem of inference: Given some data or observations from the world, what can we infer about

More information

The main purpose of this chapter is to prove the rst and second fundamental theorem of asset pricing in a so called nite market model.

The main purpose of this chapter is to prove the rst and second fundamental theorem of asset pricing in a so called nite market model. 1 2. Option pricing in a nite market model (February 14, 2012) 1 Introduction The main purpose of this chapter is to prove the rst and second fundamental theorem of asset pricing in a so called nite market

More information

5. Conditional Distributions

5. Conditional Distributions 1 of 12 7/16/2009 5:36 AM Virtual Laboratories > 3. Distributions > 1 2 3 4 5 6 7 8 5. Conditional Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an

More information

Hilbert Spaces: Infinite-Dimensional Vector Spaces

Hilbert Spaces: Infinite-Dimensional Vector Spaces Hilbert Spaces: Infinite-Dimensional Vector Spaces PHYS 500 - Southern Illinois University October 27, 2016 PHYS 500 - Southern Illinois University Hilbert Spaces: Infinite-Dimensional Vector Spaces October

More information

Lecture 11. Probability Theory: an Overveiw

Lecture 11. Probability Theory: an Overveiw Math 408 - Mathematical Statistics Lecture 11. Probability Theory: an Overveiw February 11, 2013 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, 2013 1 / 24 The starting point in developing the

More information

Corrections to Theory of Asset Pricing (2008), Pearson, Boston, MA

Corrections to Theory of Asset Pricing (2008), Pearson, Boston, MA Theory of Asset Pricing George Pennacchi Corrections to Theory of Asset Pricing (8), Pearson, Boston, MA. Page 7. Revise the Independence Axiom to read: For any two lotteries P and P, P P if and only if

More information

Gaussian Processes. 1. Basic Notions

Gaussian Processes. 1. Basic Notions Gaussian Processes 1. Basic Notions Let T be a set, and X : {X } T a stochastic process, defined on a suitable probability space (Ω P), that is indexed by T. Definition 1.1. We say that X is a Gaussian

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

Topics in Probability and Statistics

Topics in Probability and Statistics Topics in Probability and tatistics A Fundamental Construction uppose {, P } is a sample space (with probability P), and suppose X : R is a random variable. The distribution of X is the probability P X

More information

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows.

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows. Chapter 5 Two Random Variables In a practical engineering problem, there is almost always causal relationship between different events. Some relationships are determined by physical laws, e.g., voltage

More information

Definition and basic properties of heat kernels I, An introduction

Definition and basic properties of heat kernels I, An introduction Definition and basic properties of heat kernels I, An introduction Zhiqin Lu, Department of Mathematics, UC Irvine, Irvine CA 92697 April 23, 2010 In this lecture, we will answer the following questions:

More information

Chapter 2. Probability

Chapter 2. Probability 2-1 Chapter 2 Probability 2-2 Section 2.1: Basic Ideas Definition: An experiment is a process that results in an outcome that cannot be predicted in advance with certainty. Examples: rolling a die tossing

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 17: Continuous random variables: conditional PDF Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2017 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields

More information