# EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

Size: px
Start display at page:

Download "EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion"

Transcription

1 EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

2 Introduction Stress and strain in components subjected to torque T Circular Cross-section shape Material Shaft design Non-circular Irregular shape Elastic Elastoplastic Solid Hollow

3 Introduction Component subject to twisting couples, or torques of T & T T is a vector and has two ways of representations Curved arrow Couple vector (right hand rule) Example: Transmission of torque in shafts

4 Stresses in a Shaft under Torsion (1) A shaft subjected to equal and opposite torques (or moments of force) of T and T at A and B In a normal cross-section at C, for an elementary area da, the element shearing force df and local stress τ satisfy: df = da Define as (local) lever arm, i.e., the perpendicular distance from the elemental area to the axis (center), total torque T is: df T

5 Stresses in a Shaft under Torsion (2) From previous df = da df T Therefore, (da) T Complications for torsion: Distributions of and the resulting, i.e., how they change over the cross-section plane is statically indeterminate. Unlike normal stress or simple shearing, distribution of for torsion is NOT uniform!

6 Axial Shearing Stress in Shaft under Torsion Consider a small element as illustrated. Based on previous considerations for shearing stress, if xz 0, axial shearing stress zx = xz 0 zx xz Implication: under torsion, shearing stress exists along longitude planes, and neighboring elements have tendency to slide against each other along axial direction! z y x

7 Axi-symmetric Property of a Circular Shaft For circular shaft under torsion Cross-sections remain planar Cross-section remain undistorted

8 Shearing Strain in Circular Shaft under Torsion Within each cross-section, NO change Along axial direction, there is strain (deformation) due to axial shear zx Define the following terms L Length along shaft axis Radial distance from the shaft axis Angle of twist for a cross-section Shearing strain (change in angle from 90 o ) Far away from location of loading & for small strain and angle L L

9 Shearing Strain in Circular Shaft under Torsion L For a given L, when = c, i.e., radius of the shaft max c L Additionally, for a given L max c c max

10 Shearing Stresses in Circular Shaft under Torsion Hooke s Law for shear G From previous page, torsion shearing strain L Therefore, G shearing stress L For given L and ϕ, when = c = radius of the shaft, shearing stress reaches maximum: The ratio between τ and τ max c max max G max Gc L Use when shaft twist angle, length, AND materials G are known Distribution of shearing stress is linear w.r.t. radius from the axis ρ

11 Shearing Stresses & Torque in Circular Shaft under Torsion c max Recall relationship of T and local shearing stress τ For a circular shaft with fixed radius c under torque T T Recall the definition for moment of inertia: We have Or (da) max T max da da 2 ( ) max da c c 2 max T c Tc and T da Use when shaft geometry AND applied torque known

12 Solid & Hollow Circular Shaft under Torsion For a solid cylinder T max 1 c 2 4 Tc For a hollow cylinder ( c 2 c 2 T min max ) c c 1 2

13 EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion Example Problem for Torsion 3.1 Shaft ABCD subject to torques as illustrated. Knowing section BC is hollow with ID = 90 mm and OD = 120 mm. Sections AB and CD are solid. Calculate (a) The maximum and minimum shearing stress in section BC; (b) The required minimal diameter for AB and CD if shearing stress should not exceed 65 MPa.

14 Example Problem for Torsion 3.1 Section AB, Net internal torque T AB = 6 knm Section BC, Net internal torque T BC = (6 +14) knm = 20 knm EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion

15 Example Problem for Torsion 3.1 For section BC, T BC = 20 knm section BC is hollow with ID = 90 mm and OD = 120 mm. Max stress in BC occurs at the outer surface BC BCc T N m0.06m outer max 1 BC Min stress in BC occurs at the inner surface min T c 2010 N m0.045m BC 3 BC inner BC EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion m m MPa MPa

16 Example Problem for Torsion 3.1 Section AB, T AB = 6 knm Section BC, T BC = 20 knm Section CD, T CD = 6 knm For both AB and CD, shearing stress should not exceed 65 MPa max T c c 2 Minimum radius for AB or CD: T MPa T c 1 2 max 1/3 1 2 Minimum diameter = 7.78 cm EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion 3 N m 6 N / m 2 1/ cm

17 Class Example A hollow cylinder shaft is 1 m long and has inner and outer diameter of 20 and 40 mm. (a) What is the largest torque that can be applied if shearing stress should not exceed 100 MPa? (b) What is the minimum shearing stress when maximum reaching 100 MPa? From geometry, moment of inertia 1 1 outer inner 2 2 shearing stress should not exceed 100 MPa : Largest torque that can be applied: c c m T 100MPa c out Min shearing stress when max is 100 MPa max outer EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion m m cinner min max c 6 Tc outer 100 MPa N / m N m MPa 50MPa 0.02

18 Normal Stress in Circular Shaft under Torsion For element a at shaft surface max Tc For half of a at 45 o, shear force along BC and BD are: F BC F BD max A 0 To balance, force on CD surface F CD must be normal force F CD Since A CD 2A0 Normal stress due to torsion F F A BC CD CD / cos 45 2 A max Tc max 0 F CD For torsion, significant normal stress still exists and may cause failure!

19 Failure of Material under Torsion For circular shaft under torsion Ductile materials are weaker in shear and fail with 90 o fracture (i.e., fracture surface perpendicular to axis) Brittle materials are weaker in tension and fail with 45 o fracture (i.e., fracture surface at 45 o from axis) Ductile torsion failure Brittle torsion failure Photo by eff Thomas, 11/1997

20 Angle of Twist within Elastic Range For torsion, based on geometry max c L Within elastic limit, Hooke s law max G max Max sharing stress due to torque max Tc max Tc G L T G TL G Angle of twist increases with Increasing T and L Decreasing and G

21 Angle of Twist for Multiple Cross-Section Shafts Overall twist of A w.r.t B i Ti Li G in which T i, i, and L i, G i are obtained and/or analyzed for each section Angle of Twist for Variable Cross-Section Shafts For element dx d Tdx G i i Overall Tdx L 0 G

22 Class Exercise A cylindrical shaft is 0.5 m long and has diameter of 20 mm fixed at one end. If a torque of 76 Nm is applied to its free end, and the measured angle of twist at the loading end is 1.8 o, please estimate the shear modulus knowing moment of inertia is Angle of twist Shear modulus G 1 c 2 TL G G TL 76N m0.5m GPa m EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion 4

23 Example of Statically Indeterminate Shaft (1) A cylindrical shaft AB with two sections is fixed between two rigid end support at A and B. Section AC is solid with A C B diameter of 1.0 in; 10 in 10 in Section CB is hollow with outside diameter of 1.0 in and inner diameter of 0.8 in. Both sections have length of 10 in. If an external torque of 100 lbft is applied at center C, please determine the reaction torque at A and B, assuming the deformation is within proportional limit.

24 Example of Statically Indeterminate Shaft (2) From statics, balance of torque T T T 100lb in A B One equation two variables Statically indeterminate Consider geometry/deformation: For section AC, angle of twist AC For section CB, angle of twist CB AC CB Therefore, TALAC TBLCB AC CB G G AC CB Two equations & two variables, problem could be solved 100 AC CB T A AC T B CB

25 Example of Statically Indeterminate Shaft (3) Therefore, T A T B 100 T A T B TA T B Solving these two T A T B 62. 9lb 37. 1lb ft ft

26 Design of Transmission Shafts (1) Two parameters in transmission shaft design: Power P Speed of rotation For power: P T is angular velocity, = 2, and has unit of radians/s is frequency in unit Hz or s -1 Therefore, power P 2fT has unit of Nm/s = W As a result, for given P and f, the resulting torque will be T P 2f

27 Design of Transmission Shafts (2) Relationship between power output P, angular speed (or frequency f), and torque T P 2f On the other hand, max shearing stress for a given shaft geometry and applied torque max Tc Example of a solid circular shaft, moment of inertia: T c c 3 2 c 2 c T c 2T T max max max_ allowable 1/3

28 Class Exercise What size of solid shaft should be used for motor of 592 hp (1 hp = 6600 lbin/s) operating at 3600 rpm (f = 60 Hz) if the shearing stress is not to exceed 6600 psi in the shaft? Power for the shaft P 2fT P lb in s Torque for the shaft T 2f s Maximum shearing stress Tc max Tc 2T lb / in c 4 c 3 2 Minimum shaft radius: c 2T max_ allowable EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion 1/ lb in lb / in 1 1 1/ lb in 1.00 in

29 Stress Concentrations in Circular Shafts Similar to normal stress, shearing stress may concentrate (i.e., show higher value) at certain locations Concentration factor K max_ actual K Tc / or Tc max_ actual K Local max stress increases with Sharper transition or joining Larger ratio of radius

30 Plastic Deformation in Circular Shafts (1) For a given shaft construction (geometry and material), when torque is low and within linear elastic region, linear stress distribution w.r.t. radius from axis T As torque increases further, shearing stress would reach yield strength Y, it will go into non-linear (e.g., ideal elasoplastic) distribution of w.r.t. radial from axis in certain region T

31 Plastic Deformation in Circular Shafts (2) For angle of twist When torque/shearing stress is low and within linear elastic region, increases linearly with torque T TL G T As torque increases further, shearing stress reaches yield strength Y, it will go into non-linear distribution of w.r.t. T

32 Torsion of Noncircular Members A rectangular or square shaft does not contain axi-symmetry The cross-sections generally do NOT remain flat or planar under torsion Shearing stress at the edge (corner) of the shaft is zero Maximum shearing stress occur in the middle of flat face

33 Thin-Walled Hollow Shafts For arbitrary shaped thin walled hollow tube subjected to torque T, the shearing stress can be approximated as τ = T 2ta a

34 EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion Homework 3.0 Read chapter 3 textbook sections 3.1 to 3.5 and give an honor statement confirm reading.

35 EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion Homework 3.1 Electric motor applies a torque of 2.8 kn m on shaft EF at E. Knowing each shaft section is solid. Based on the additional torques as depicted, please determine the maximum shearing stress in (a) shaft EF (radius c EF = 25 mm), (b) shaft FG (radius c FG =23 mm), and c) shaft GH (radius c GH =21 mm) E F G H E T F = 1.6 kn m T G = 0.8 kn m T H = 0.4 kn m

36 Homework 3.2 EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion A component with both solid rod EF and hollow tube with flange GH welded onto a flat end plate of GFI, and the rod EF and tube GH share the same longitude axis, as illustrated. The hollow tube GH is fixed at rigid flange of AA BB at H using bolts. The solid rod EF has a diameter d EF = 3.81 cm and is made of steel with allowable shearing stress of 82.7 MPa. Tube GH is made of copper alloy with OD d 2 =7.62 cm and ID d 1 =6.35 cm with allowable shearing stress of 48.3 MPa. Determine the largest torque T that can be applied at E. G T H E A A B B F I

37 Homework 3.3 EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion Two solid shafts GH and I are connected by gears K and L as illustrated. The radius for gear K is R K = 4 in, while radius for gear L is R L = 2.5 in. Both two shafts of GH and I are made of same steel with allowable shearing stress of 8 ksi. The radius for the shafts are c GH = 0.8 in and c I = in. Please determine the largest torque that can be applied at H. K L G R K = 4.0 in R L = 2.5 in I H

38 EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion Homework 3.4 Motor applies torque T = 500 N m on the HGFE shaft when it is rotating at a constant speed. Knowing shear modulus G = 27 GPa and the torques exerted on pulleys B and C are shown. Please calculate the angle of twist between (a) F and G, and (b) between F and H. Knowing shaft radius c GF = 2.2 cm; c HG = 2.4 cm; c EF = 2.0 cm; T = 500 N m 0.9 m 1.2 m H G F E Motor T G = 300 N m T F = 200 N m

39 EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion Homework 3.5 Solid aluminum rod (G Al =26 GPa) is bonded to solid copper alloy rod (G Al =39 GPa). The radius for both rods are 10 mm. Calculate the angle of twist with respect to base D at E point and at F point, respectively. D copper E aluminum F 0.2 m 0.4 m T F = 50 N m

40 EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion Homework 3.6 A 6 foot long composite shaft consists of 0.2 inch thick copper shell (G Cu = psi) bonded to 1.2 inch (G Steel = psi) diameter iron core. If the shaft is subject to 5000 lb in torque. Please calculate the maximum shearing stress in the steel core and the angle of twist of one end versus the other. T Cu shell Fe core 6 ft

41 EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion Homework 3.7 Determine maximum shearing stress in a solid shaft of 10 mm diameter as it transmits 2.4 kw at a frequency of (a) 30 Hz and (b) 60 Hz.

42 EMA 3702 Mechanics & Materials Science Zhe Cheng (2018) 3 Torsion Homework 3.8 Two solid shafts EF and I and gears G (R G = 3 inch) and H (R H = 5 inch) are used to transmit 16 hp (1 hp = 6600 lbin) from motor at E operating at 1200 rpm (f = 20 Hz) to machine tool at. Knowing the maximum allowable shearing stress is 7.5 ksi. Please calculate the required radius for shaft EF and shaft I, respectively. H I R H = 5.0 in R G = 3.0 in E F G

### MECHANICS OF MATERIALS

2009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes:

### [7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

[7] Torsion Page 1 of 21 [7] Torsion [7.1] Torsion [7.2] Statically Indeterminate Torsion [7] Torsion Page 2 of 21 [7.1] Torsion SHEAR STRAIN DUE TO TORSION 1) A shaft with a circular cross section is

### (48) CHAPTER 3: TORSION

(48) CHAPTER 3: TORSION Introduction: In this chapter structural members and machine parts that are in torsion will be considered. More specifically, you will analyze the stresses and strains in members

### MECHANICS OF MATERIALS

GE SI CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes: J. Walt Oler Texas Tech University Torsional Loads on Circular Shafts

### Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

### MECE 3321: MECHANICS OF SOLIDS CHAPTER 5

MECE 3321: MECHANICS OF SOLIDS CHAPTER 5 SAMANTHA RAMIREZ TORSION Torque A moment that tends to twist a member about its longitudinal axis 1 TORSIONAL DEFORMATION OF A CIRCULAR SHAFT Assumption If the

### The problem of transmitting a torque or rotary motion from one plane to another is frequently encountered in machine design.

CHAPER ORSION ORSION orsion refers to the twisting of a structural member when it is loaded by moments/torques that produce rotation about the longitudinal axis of the member he problem of transmitting

### Chapter 5: Torsion. 1. Torsional Deformation of a Circular Shaft 2. The Torsion Formula 3. Power Transmission 4. Angle of Twist CHAPTER OBJECTIVES

CHAPTER OBJECTIVES Chapter 5: Torsion Discuss effects of applying torsional loading to a long straight member (shaft or tube) Determine stress distribution within the member under torsional load Determine

### WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT STRESS ANALYSIS ES-2502, C 2012 Lecture 17: 10 February 2012 General information Instructor: Cosme Furlong HL-151 (508) 831-5126 cfurlong@wpi.edu

### Structural Analysis I Chapter 4 - Torsion TORSION

ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

### EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

### CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion

CIVL222 STRENGTH OF MATERIALS Chapter 6 Torsion Definition Torque is a moment that tends to twist a member about its longitudinal axis. Slender members subjected to a twisting load are said to be in torsion.

### [5] Stress and Strain

[5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

### Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson

STRUCTURAL MECHANICS: CE203 Chapter 5 Torsion Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson Dr B. Achour & Dr Eng. K. El-kashif Civil Engineering Department, University

### Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

### 3.5 STRESS AND STRAIN IN PURE SHEAR. The next element is in a state of pure shear.

3.5 STRESS AND STRAIN IN PURE SHEAR The next element is in a state of pure shear. Fig. 3-20 Stresses acting on a stress element cut from a bar in torsion (pure shear) Stresses on inclined planes Fig. 3-21

### Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

### Torsion of Shafts Learning objectives

Torsion of Shafts Shafts are structural members with length significantly greater than the largest cross-sectional dimension used in transmitting torque from one plane to another. Learning objectives Understand

### MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

### Torsion Stresses in Tubes and Rods

Torsion Stresses in Tubes and Rods This initial analysis is valid only for a restricted range of problem for which the assumptions are: Rod is initially straight. Rod twists without bending. Material is

### This chapter is devoted to the study of torsion and of the stresses and deformations it causes. In the jet engine shown here, the central shaft links

his chapter is devoted to the study of torsion and of the stresses and deformations it causes. In the jet engine shown here, the central shaft links the components of the engine to develop the thrust that

### The example of shafts; a) Rotating Machinery; Propeller shaft, Drive shaft b) Structural Systems; Landing gear strut, Flap drive mechanism

TORSION OBJECTIVES: This chapter starts with torsion theory in the circular cross section followed by the behaviour of torsion member. The calculation of the stress stress and the angle of twist will be

### QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

### Torsion. Torsion is a moment that twists/deforms a member about its longitudinal axis

Mehanis of Solids I Torsion Torsional loads on Cirular Shafts Torsion is a moment that twists/deforms a member about its longitudinal axis 1 Shearing Stresses due to Torque o Net of the internal shearing

### M. Vable Mechanics of Materials: Chapter 5. Torsion of Shafts

Torsion of Shafts Shafts are structural members with length significantly greater than the largest cross-sectional dimension used in transmitting torque from one plane to another. Learning objectives Understand

### 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

### NAME: Given Formulae: Law of Cosines: Law of Sines:

NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.

### Solution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is:

Problem 10.4 A prismatic bar with length L 6m and a circular cross section with diameter D 0.0 m is subjected to 0-kN compressive forces at its ends. The length and diameter of the deformed bar are measured

### MECHANICS OF MATERIALS

Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

### MECHANICS OF MATERIALS

CHAPER MECHANICS OF MAERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John. DeWolf orsion Leture Notes: J. Walt Oler exas eh University 006 he MGraw-Hill Companies, In. All rights reserved. Contents

### QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

### Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives To determine the torsional deformation of a perfectly elastic circular shaft. To determine the support reactions when these reactions cannot be determined solely from the moment equilibrium

### MECE 3321 MECHANICS OF SOLIDS CHAPTER 1

MECE 3321 MECHANICS O SOLIDS CHAPTER 1 Samantha Ramirez, MSE WHAT IS MECHANICS O MATERIALS? Rigid Bodies Statics Dynamics Mechanics Deformable Bodies Solids/Mech. Of Materials luids 1 WHAT IS MECHANICS

### CHAPTER 2 Failure/Fracture Criterion

(11) CHAPTER 2 Failure/Fracture Criterion (12) Failure (Yield) Criteria for Ductile Materials under Plane Stress Designer engineer: 1- Analysis of loading (for simple geometry using what you learn here

### Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

### The University of Melbourne Engineering Mechanics

The University of Melbourne 436-291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 9-22 from Hibbeler - Statics and Mechanics of Materials) A short

### PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

### Chapter 3. Load and Stress Analysis. Lecture Slides

Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.

### UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

### Aluminum shell. Brass core. 40 in

PROBLEM #1 (22 points) A solid brass core is connected to a hollow rod made of aluminum. Both are attached at each end to a rigid plate as shown in Fig. 1. The moduli of aluminum and brass are EA=11,000

PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

### EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

### R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

### Torsion of shafts with circular symmetry

orsion of shafts with circular symmetry Introduction Consider a uniform bar which is subject to a torque, eg through the action of two forces F separated by distance d, hence Fd orsion is the resultant

Torsion Torsion: Torsion refers to the twisting of a structural member that is loaded by couples (torque) that produce rotation about the member s longitudinal axis. In other words, the member is loaded

### Mechanical Properties of Materials

Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

### MECHANICS OF MATERIALS

CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced

### PES Institute of Technology

PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

### IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY

Spring 2006 Final Examination STUDENT S NAME (please print) STUDENT S SIGNATURE STUDENT NUMBER IDE 110 CLASS SECTION INSTRUCTOR S NAME Do not turn this page until instructed to start. Write your name on

### Free Body Diagram: Solution: The maximum load which can be safely supported by EACH of the support members is: ANS: A =0.217 in 2

Problem 10.9 The angle β of the system in Problem 10.8 is 60. The bars are made of a material that will safely support a tensile normal stress of 8 ksi. Based on this criterion, if you want to design the

### Sub. Code:

Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

### TORSION By Prof. Ahmed Amer

ORSION By Prof. Ahmed Amer orque wisting moments or torques are fores ating through distane so as to promote rotation. Example Using a wrenh to tighten a nut in a bolt. If the bolt, wrenh and fore are

### 4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

### Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 18 Torsion - I

Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 18 Torsion - I Welcome to the first lesson of Module 4 which is on Torsion

### PROBLEM 3.3 ( )(45 10 ) T 5.17 kn m. A c c. 2 J c, (2)( ) 2 ( ) mm ( )

0 mm PROEM..4 m 45 mm (a) Determine the torque that causes a maximum shearing stress of 45 MPa in the hollow cylindrical steel shaft shown. Determine the maximum shearing stress caused by the same torque

### INTRODUCTION TO STRAIN

SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,

### BME 207 Introduction to Biomechanics Spring 2017

April 7, 2017 UNIVERSITY OF RHODE ISAND Department of Electrical, Computer and Biomedical Engineering BE 207 Introduction to Biomechanics Spring 2017 Homework 7 Problem 14.3 in the textbook. In addition

### High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

### MECHANICS OF MATERIALS

Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal

### Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

### Symmetric Bending of Beams

Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications

### D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

### twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete

### If the solution does not follow a logical thought process, it will be assumed in error.

Please indicate your group number (If applicable) Circle Your Instructor s Name and Section: MWF 8:30-9:20 AM Prof. Kai Ming Li MWF 2:30-3:20 PM Prof. Fabio Semperlotti MWF 9:30-10:20 AM Prof. Jim Jones

### PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

### NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

### Strength of Materials (15CV 32)

Strength of Materials (15CV 32) Module 1 : Simple Stresses and Strains Dr. H. Ananthan, Professor, VVIET,MYSURU 8/21/2017 Introduction, Definition and concept and of stress and strain. Hooke s law, Stress-Strain

### EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns

EMA 370 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns Columns Introduction Columns are vertical prismatic members subjected to compressive forces Goals: 1. Study the stability

### Torsion.

Torsion mi@seu.edu.cn Contents Introduction to Torsion( 扭转简介 ) Examples of Torsion Shafts( 扭转轴示例 ) Sign Convention of Torque( 扭矩符号规则 ) Torque Diagram( 扭矩图 ) Power & Torque( 功率与扭矩 ) Internal Torque & Stress

### Chapter 4-b Axially Loaded Members

CIVL 222 STRENGTH OF MATERIALS Chapter 4-b Axially Loaded Members AXIAL LOADED MEMBERS Today s Objectives: Students will be able to: a) Determine the elastic deformation of axially loaded member b) Apply

### MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

### Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

### Solution: The moment of inertia for the cross-section is: ANS: ANS: Problem 15.6 The material of the beam in Problem

Problem 15.4 The beam consists of material with modulus of elasticity E 14x10 6 psi and is subjected to couples M 150, 000 in lb at its ends. (a) What is the resulting radius of curvature of the neutral

### Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

### Solid Mechanics Chapter 1: Tension, Compression and Shear

Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics

### EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending Homework Answers

EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Homework Answers 100 mm Homework 4.1 For pure bending moment of 5 kn m on hollow beam with uniform wall thickness of 10

### SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

### Mechanics of Materials

Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

### PROBLEM #1.1 (4 + 4 points, no partial credit)

PROBLEM #1.1 ( + points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length

### UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

### 5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

### MECHANICS OF SOLIDS TORSION - TUTORIAL 1. You should judge your progress by completing the self assessment exercises.

MECHANICS OF SOIS TORSION - TUTORIA 1 You should judge your progress by completing the self assessment exercises. On completion of this tutorial you should be able to do the following. erive the torsion

### 18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure.

CE6306 STREGNTH OF MATERIALS Question Bank Unit-I STRESS, STRAIN, DEFORMATION OF SOLIDS PART-A 1. Define Poison s Ratio May/June 2009 2. What is thermal stress? May/June 2009 3. Estimate the load carried

### MECHANICS OF MATERIALS

Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal

### Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th in-class Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on

### Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature

Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment Tinius-Olsen Lo-Torq Torsion Machine (figure

### 2. Polar moment of inertia As stated above, the polar second moment of area, J is defined as. Sample copy

GATE PATHSHALA - 91. Polar moment of inertia As stated above, the polar second moment of area, is defined as z π r dr 0 R r π R π D For a solid shaft π (6) QP 0 π d Solid shaft π d Hollow shaft, " ( do

### ME311 Machine Design

ME311 Machine Design Lecture : Materials; Stress & Strain; Power Transmission W Dornfeld 13Sep018 airfield University School of Engineering Stress-Strain Curve for Ductile Material Ultimate Tensile racture

Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

### EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 6 Shearing Stress in Beams & Thin-Walled Members

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 6 Shearing Stress in Beams & Thin-Walled Members Beams Bending & Shearing EMA 3702 Mechanics & Materials Science Zhe Cheng (2018)

### MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

### CHAPTER 4: BENDING OF BEAMS

(74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are

### Spherical Pressure Vessels

Spherical Pressure Vessels Pressure vessels are closed structures containing liquids or gases under essure. Examples include tanks, pipes, essurized cabins, etc. Shell structures : When essure vessels

### Lab Exercise #3: Torsion

Lab Exercise #3: Pre-lab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round

### SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling.

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. Find: Determine the value of the critical speed of rotation for the shaft. Schematic and

### σ = Eα(T T C PROBLEM #1.1 (4 + 4 points, no partial credit)

PROBLEM #1.1 (4 + 4 points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length

### I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

NAME: ME 270 Fall 2012 Examination No. 3 - Makeup Please review the following statement: Group No.: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.