Weak Three Dimensionality of a Flow Around a Slender Cylinder: the Ginzburg-Landau Equation

Size: px
Start display at page:

Download "Weak Three Dimensionality of a Flow Around a Slender Cylinder: the Ginzburg-Landau Equation"

Transcription

1 Weak Thee Dimeninaliy f a Flw Aund a J.A.P.Aanha DF, Mech. Eng, EPUSP S. P, Bazil apaan@up.b Weak Thee Dimeninaliy f a Flw Aund a Slende Cylinde: he Ginzbug-Landau Equain In hi pape a weak hee-dimeninaliy f he flw aund a lende cylinde i cnideed and he elaed mdel, he -called Ginzbug-Landau equain, i hee bained a an aympic luin f he 3D (dicee) avie-ske equain. The deivain i in line wih exiing lende bdie heie, a he Lifing Line They, f example, whee he baic D flw, leading Landau equain, i influenced nw by a idewah ha mdifie bi-dimeninally he iginal flw hugh ma cnevain. The hey i aympically cnien and e n an aumpin ha hld in he viciniy f he Hpf bifucain (ec 45) fuheme, i lead a well-eablihed way deemine numeically bh he Landau cefficien and Ginzbug cefficien. Agumen ae given uggeing ha hi aumpin huld hld fa beynd Hpf bifucain (e >> ec) and, wih i, exend he Ginzbug-Landau equain alm he bde f he aniin egin e 05. In hi wk nly he heeical develpmen i addeed numeical eul will be peened in a fhcming pape. Keywd:Hyddynamic abiliy, Ginzbug-Landau equain, lende cylinde Inducin Vicu flw aund a D cicula cylinde i knwn pduce pnaneu hamnic cillain f he wake f eynld numbe abve a ciical value e c 45, he cillaing pa f he peue giving ie an hamnic anvee fce n he cylinde ha ha impance in eveal engineeing applicain. I eem be nw well eablihed ha hi i eenially a abiliy pblem, ee Huee & Mnkewiz (990), and ha he cillay wake can be idenified wih Hpf bifucain in he language f he dynamic yem hey: hi idea wa fi advanced, in a me peainal way, by Bihp & Haan (964) and i ha been veified expeimenally, amng he, by Pvanal e. al. (987) in hei udy in he viciniy f he ciical eynld numbe. Empiical evidence hw ha bh he hedding fequency (Suhal numbe) and he whle phenmenn f he vex induced vibain, a lea in i me maccpic appeaance, ae eenially invaian wih eynld numbe up he aniin zne (e 0 5 ). Thi bevain ha led me auh (Iwan & Blevin (975), f example) ppe (heuiic) phenmenlgical mdel, baed n Van de Pl equain, pedic he hyd-elaic ineacin, wih eul ha ae impeive given he mewha le fluid dynamic backgund n which hey ae baed ineeingly enugh, he pedicin fm uch mdel ae, in me apec, in much bee ageemen wih expeimen han he ne bained fm diec CFD cmpuain. Being heuiic a hey ae, hweve, hey can be ued nly a inepla and hadly exaplae eul iuain much beynd he empiical daa n which hey ae baed fuheme, me hyeic behavi beved in he expeimen ae n ecveed by hee mdel and, bviuly, he diec link wih he avie-ske equain i lacking in uch appach. The final pupe f he n-ging eeach i deive a fluidelaic cilla mdel diecly fm avie-ske equain, endeing i n nly whle pedicive bu al making i pible be ued in diffeen iuain fm he ne beved in he exiing expeimenal faciliie in paicula, he cae whee he inciden cuen change bh in diecin and ineniy alng he cylinde pan i paiculaly elevan f ffhe applicain. ice al Peened a ECIT004 0h Bazilian Cnge f Themal Science and Engineeing, v Dec. 03, 004, i de Janei, J, Bazil. Technical Edi: Aila P. Silva Feie. ha he link wih he me fundamenal avie-ske equain ha hee an even geae mivain, ince diec cmpuain wih CFD did n pduce ye a eliable eul. In he peen pape nly he fi ep wad hi final gal i addeed, namely, deive he fluid cilla mdel by cnideing he cylinde fixed in he flw. The mdel i epeened by he -called Ginzbug-Landau Equain, ee (3.a), fi pped by Albaède e al (990) in he cnex f VIV, wih a baic diffeence, hweve, in elain he uual appach: nw hi equain i n fied exenally he pblem bu i eul fm a cnien aympic appximain f he 3D (dicee) avie-ske Equain (SE). In paicula, he cefficien f hi equain he Landau cefficien and he Ginzbug cefficien ae n infeed fm he expeimen bu hey ae diecly cmpued by well eablihed numeical pcedue baed n he Finie Elemen Mehd (FEM) applied he D c-flw pblem: a uual in lende bdie heie, ne ha hu an eenially D eff cmpue a 3D eul. The dicee FEM mdel i deived, a alway, in a finie fluid egin and ne ha ceainly a difficuly define he dicee fluid flw pea in due he lely knwn fm f he ppe bunday cndiin a he ule f. By cnideing he flw equain in he wake i ha been pible expe he eiance ffeed by he wake n he flw wihin, named hee he wake impedance, by an explici expein ha depend lely n he velciy and acceleain f he flw n he bdeline ha define he ineface beween and he wake. Thi deivain i elabaed elewhee and i may have an impance ha ancend he pecific applicain aimed in hi wk. The final dicee SE emulae he cninuum SE wih a lcal ineia, a cnvecive ineia and a vicu diipain ha incpae he cnibuin fm bh he finie fluid egin, ha i acually diceized, and he wake. Thi dicee e f equain ae hu peced in he lenidal and gadien ub-pace and andad eul in Linea Algeba ae ued hw he inne cniency f hee pecin in paicula, he pecin n he lenidal ub-pace, ha deemine he velciy field, lead a nmal quadaic dynamic yem which he uual aympic pcedue can be applied, deemine fi Landau Equain in he D cnex and afe he 3D Ginzbug-Landau Equain. A i i knwn, a myiad f ineeing mall cale feaue, me f hem uncveed by a deailed numeical analyi, appea cncmianly wih he g maccpic deed behavi f he wake ha eally mae in he udy f he hyd-elaic phenmenn (VIV): he pupe in hi wk i i n, hu, J. f he Baz. Sc. f Mech. Sci. & Eng. Cpyigh 004 by ABCM Ocbe-Decembe 004, Vl. XXVI,. 4 / 355

2 J.A.P.Aanha peen a axnmy f he cha bu ahe capue he undelying de. T achieve hi gal a f blindne i needed, avid a deailed picue, and he aympic hey i u a echnical file ha pvide i. Thi hey e n a well defined aumpin, ee (.), ha can be diecly veified by he numeical eul fuheme, alhugh icly uified nly in he viciniy f Hpf bifucain (e e c ), i eem hld in a much bade ange f eynld numbe, wha make pible exend Ginzbug-Landau equain hi ange. Incidenally, hi ye peculaive eul can funih a heeical backgund f he called phenmenlgical mdel ha ae in fac applied, wih a elaive ucce in he pedicin f VIV, in a ange f eynld numbe fa beynd he Hpf bifucain (e >> e c ). The pape i ganized a fllw: in ecin he wdimeninal pblem i addeed, leading Landau equain, and in ecin 3 a weak hee dimeninaliy f he flw i cnideed and Ginzbug-Landau equain i bained. Sme me echnical eul, including he deivain f he wake impedance, ae deived elewhee and numeical eul will be peened in a fhcming pape. Tw-Dimeninal Sluin: Landau Equain In hi ecin he w dimeninal c-flw aund a cylinde i cnideed. Pin in he c ecin plane ae deignaed by he vec x = xi + y, he fluid velciy by he vec field u(x,) = u(x,)i + v(x,), he peue by he funcin p(x,) while he diffeenial pea i defined by he expein = i/x + /y hee nain will be kep all hugh he wk, even in he nex ecin whee he hee dimeninal cecin will be addeed. Le d = be he ypical dimenin f he cylinde c ecin (he cylinde diamee in he cae f a cicula cylinde) and U = be he inciden velciy alng he x-axi a he infinie bviuly, he nn-dimeninal fequency d/u cincide numeically wih and bh fm will be ued hee, depending n he cnvenience. The fluid deniy will be al aumed uniay ( = ) and hu v = v /Ud = /e, whee v i he fluid viciy and e he eynld numbe. I i deiable wk hee wih a velciy field u(x,) ha aifie hmgeneu bunday cndiin bh a he infinie and a he c ecin cnu line B. Wih hi pupe in mind ne induce hee an auxiliay vec field u p (x) uch ha up 0 up( x) 0 lim u ( x) i, x xb p (.a) wih he ubidiay cndiin ha u p (x) appache i limi value i fa enugh, namely: u p (x) i f x > 5d, f example. In he cae f a cicula c ecin hi field can be deemined wih he help f he eam funcin in in ( x) in a a a / / ( ½), p c a c c (.b) whee u p (x) i f x > 5d wih an e malle han 0.05% f = 5. If he c ecin i abiay hi funcin u p (x) can be deemined numeically, f inance, bu nce hi i dne he acual velciy field u T (x,) can be wien a u ( x,) u ( x) u( x,). (.c) T p Inducing nw he (vlume) fce vec fp( x) upup u, (.a) p e he flw pblem i educed deemine he field {u(x,) p(x,)} uch ha u e u 0, p p u u u u u u u p f () x (.b) p ubeced he hmgeneu bunday cndiin ux (,) lim ux (,) 0 x xb x lim p( x,) 0. The dicee vein f (.) will be addeed nex. (.c) Bunday Cndiin and Wake Impedance In de deal wih (.) ne mu pecify, fi f all, a finie fluid egin, a hwn in Fig.(), whee he flw vaiable will be diceized by Finie Elemen. Bunday cndiin mu be imped n he bde f : nly wih hem he fluid flw pea can be ppely defined wihin. Figue. Finie fluid egin ( = Bilw) and wake. (u T (x,) = u p (x) + u(x,) u p (x) i f x b). The bunday i made by he c ecin cnu line B, by he inle i a he veical line x = b, by he laeal ide l a y = b and by he ule w a x = l ha define he ineface beween and he wake egin x > l ( = B i l w ). The velciy field u(x,) i ceainly null a B and if b i lage enugh (b 5d) and l i n much lage han b (l 0d) i eem eanable aume ha u(x,) i al null a i l : he peence f he cylinde huld n peub he incming flw a ufficien diance bh upwind and laeally. The fllwing eenial bunday cndiin i hu aumed n hi pa f : ux (,) 0. (.3a) x B i l The ame hmgeneu bunday cndiin cann be exended he ule w unle he diance l i vey lage (and i mu be b). In fac, he viciy geneaed a he cylinde die u vey lwly dwneam, ypically in a diance f de l e f he lage wavelengh, and ince b inceae ughly wih l / he 356 / Vl. XXVI,. 4, Ocbe-Decembe 004 ABCM

3 Weak Thee Dimeninaliy f a Flw Aund a cndiin (.3a) culd be puhed w nly if he finie egin becme vey lage. The velciy field a w huld hu emain unpecified while he ppe bunday cndiin a he ule f will be defined belw in hi ecin. If nw he dynamic equain in (.b) i muliplied by a viual velciy u(x) ha aifie, a uual, he ame eenial bunday cndiin (.3a), and he cninuiy equain in (.b) i muliplied by p(x) and bh expein ae fuhe inegaed in ne bain, afe paial inegain, ha u u d u p u u u p u u ( u) v ( v) d e u uud p( u)d f ( x) ud I( u (y) u (y)) p w w p( u)d 0. (.3b) In (.3b) he nain {(u w (y,) u w (y)) (u(l,y,) u(l,y)) y b} wa ued define he velciy and he viual velciy ve w and I(u w (y) u w (y)) i he wake impedance, namely, b u v I( uw(y) uw(y)) p u w(y) v w(y) dy e x w e x b w, (.3c) whee, auming cninuiy, () w and f he e field in he wake a x = l: he wake impedance i hu he viual pwe dne by hi e field n he viual velciy u w (y) and i epeen he eiance ffeed by he wake f he flw wihin he finie fluid egin. The wake egin i bunded n he lef by w and by w emiinfinie line, a indicaed in Fig.(). Since u(x,) wa aumed null a he laeal ide l i i ceainly cnien wih hi aumpin ake u(x,) 0 n, ince he peubain caued by he cylinde huld be even malle ve han ve l. I un u hen ha he flw in he wake i fced lely by he field u w (y,) and hu u p F Xuw e x w v F Yuw, e x w (.4a) whee he funcinal X,Y () can be deemined by lving he flw pblem in he wake. If bh he velciy and viual velciy {u w (y,) u w (y)} a he ule ae diceized a w uw (y,) U w,k() U w,k () w i h uw(y) k U w,k Uw,kw k,w (y), (.4b) whee {h k,w (y) k =,,, w } ae he ineplain funcin f he velciy field eiced w and {U w () U w } ae he ndal value vec, i can be hwn ha I( uw(y) uw(y)) Uw I( Uw) IU ( w) Mw U w Kw Uw w( Uw) U w, (.4c) he maice {M w K w w (U w )} being cmpued fm explicily defined Fuie eie 3. Wihin he dicee velciy and peue field can be expeed a ux (,) U () iu () h ( x) k e p( x,) P () ( x), k k k (.5a) wih {h k (x) k =,,...,} and { (x) =,,,e} being, epecively, he ineplaing funcin f he velciy and peue field. The funcin {h k (x)} ae neceaily cninuu bu he { (x)} may may n be in ealiy, he peue field de wk n u and i eem eanable che he { (x)} in cnfmiy wih he dicee field u bained fm he {h k (x)}. Placing (.5a) in he inegal ha appea in (.3b) and defining he maice d ( ) d ( ) d u ( u) v ( v) d e p, p p u u U M U u u u U U U u u u u u U K U p( u)d U P p( u)d P U fp() x ud U Fp, (.5b) he dicee fm f he flw equain in weak fm ead (ee (.3b) and (.4c)) U M U Kp, U ( U) U P Uw Mw Uw Kw Uw w( Uw) Uw U Fp U0. (.5c) Obeving ha {U w U w } ae, in fac, he pa f {U U} defined in w, ne can ake he wake impedance n he lef ide f (.5c) and um bh cnibuin bain U M U Kp U U U P U Fp U0. ( ) (.6) The dynamic pacel f (.6), ppinal {M K p (U)}, cme bh fm he finie fluid egin, whee he flw vaiable ae diceized, and he wake egin dwneam: M i he lcal ineia maix, K p epeen, a indicaed in (.5b), he influence f he vicu e and he cnvecive acceleain due he auxiliay field u p (x) and (U)U i he cnvecive ineia fce. The pacel { U P} ae due ma cnevain and he elaed cnain fce (peue) defined in he finie egin : he maix Thi eem be ue even f a mall eynld numbe: f e = 4 he wake ha aleady begun cillae inuidally fa dwneam, ee Van Dyke (98), plae 46. The exiing numeical eul pedic, a a ule, a ciical eynld numbe abve 40 (ec 45) alhugh he expeced value huld be belw (ec 35). 3 F he Fuie eie expanin ne mu impe a finie beadh W f he wake, wih W being abiaily lage (W >> b). I can be hwn ha he numbe f em nl in hee eie inceae bh wih W and e ypically, nl O(W(e)/). J. f he Baz. Sc. f Mech. Sci. & Eng. Cpyigh 004 by ABCM Ocbe-Decembe 004, Vl. XXVI,. 4 / 357

4 J.A.P.Aanha epeen he (dicee) gadien pea and he (dicee) divegence pea. Obviuly, ma i aleady cneved in he wake luin (.4c) and hi cnain huld n appea again a (.6). The (dicee) avie-ske equain (.6) emulae hu he ucue f he iginal equain (.b) and i will be analyzed nex: in hi dicee fm he mahemaical analyi i much imple, nce i baed nly n me geneal eul in Linea Algeba, and, fuheme, i ucme ha an peainal appeal given i diec link he final numeical eul. The Slenidal and Gadien Sub-Space Le W be he -dimeninal linea pace f he dicee velciy vec U and L e be he e-dimeninal linea pace f he dicee peue vec P in bh pace i will be aumed he andad inne pduc <UV> = U V and he elaed nm U = <UU> = U U. Le al {J G } be he -dimeninal and -dimeninal ubpace f W defined by he elain J VW : V0Le G VW : V L. e (.7a) Elemen f G ae gadien f cala field L e and f hi ean G i called he gadien ub-pace f W nice ha G i geneaed by he linea cmbinain f he clumn vec f. Elemen f J have null divegence and J i called he lenidal ub-pace by definiin, hei elemen ae hgnal he clumn vec f and hu J i he hgnal cmplemen f G ( + = ) ee Ladyzenkaa (969). One induce hee he pea W J, (.7b) G e :L L e :W W, (.8) whee i he (dicee) Laplacian pea and will be named he cnugaed Laplacian. Bh and ae epeened by ymmeic, piive emi-definie pae maice, he paene being a cnequence f he lcal chaace f he Finie Elemen diceizain. By definiin V = 0 if V J and V = 0 J ull (). In ealiy, i can be hwn ha J ull (). Le {T =,,,} be an hnmal bai f ull () J and {G =,,,} be he hnmal eigenvec cepnding he piive pecum { >0 =,,,} f, namely: T 0,,..., G G,,...,. (.9a) Obviuly {G G G } i a bai f G while {T T T } i a bai f J auming ha 0 < cnide he maix. (.9b) I Ceainly i a ymmeic, piive emi-definie pae maix wih a pecum in he ineval [0] fuheme T T, (.9c) a elain ha can be ued deemine an hnmal bai f he lenidal ub-pace 4. The Laplacian pea may have a nn-empy null ub-pace (ull () ) bu i ceainly ha a piive pecum in fac, if ˆ, (.0a) G G hen ne can eaily check ha Gˆ = wih Obeving nw he cnugaed elain Gˆ G ˆ. (.0b) G ˆ G, (.0c) he fllwing eul can be deived: he piive pecum f mu cincide, neceaily, wih he piive pecum { >0 =,,,} f. In fac, if wee a piive eigenvalue f wih eigenvec Ĝ hen GGhuld ˆ be an eigenvec f wih he ame eigenvalue and { >0 =,,,} nce, by definiin, hi i he e f all piive eigenvalue f. The pea {} eablih, hu, a dualiy beween he ub-pace Ĝ Le, geneaed by he vec { Gˆ, and he Gˆ ˆ... G } gadien ub-pace G W : if Ĝ hen G and if V G hen V he ub-pace ull () i he hgnal cmplemen f Ĝ Ĝ and L ˆ e ull( ) G W ull( ) G. (.a) Le {S =,,,e-} be an hnmal bai f ull (), named he puiu peue mde in he pecialized lieaue, ee Gunzbuge (985) hey aify he elain S 0,,...,e (.b) and, a i will be een in he nex iem, hee mde play in he dicee pblem he ame le played by he cnan peue field in he cninuum pblem, namely: hey d n inefee wih he dynamic f he flw. In accdance wih (.9b) ne induce hee he maix I, (.c) whee, again, i a ymmeic, piive emi-definie pae maix wih pecum in he ineval [0] hi maix will be ued in he nex iem in he cnex f he Pin equain f he (dicee) peue field. I eem whwhile finih hi ecin wih a me echnical emak abu he Finie Elemen diceizain, elaed he called div-abiliy cndiin (Ladyzhenkaya Babuka Bezzi 4 The APACK algihm i pecially uied deal wih eigenvalue pblem f a lage pae maice, ee Lehucq & Senen & Yang(997). 358 / Vl. XXVI,. 4, Ocbe-Decembe 004 ABCM

5 Weak Thee Dimeninaliy f a Flw Aund a cndiin). The pin i ha f me clae f Finie Elemen (FE) he malle eigenvalue becme mall a he meh ize h ge ze, indicaing ha elemen f he gadien ubpace G end lip in he lenidal ub-pace J a h 0. In hi cae he lenidal ub-pace J becme aefied nce a lea me f he lenidal field ae, in fac, lipping mde f G hi pblem i paiculaly acue f he imple FE diceizain, whee he velciy field i linea piecewie cninuu and he peue i cnan in each elemen, ee Gunzbuge (985) and Bahe (996), f example. Hweve, a hwn in Aanha (003), if he acual lenidal ub-pace i enlaged by hee lipping mde in a way dicaed by he divabiliy cndiin hi pblem can be vecme wihu impaiing he andad Finie Elemen cnvegence ae. In he peen cnex me f he eigenvalue-eigenmde in G ae naually cmpued in he eff deemine he bai {T =,,,} f J and hi enlaging pce can hen be wked u eaily, in h, quein elaed he div-abiliy cndiin ae f n pecial cncen hee. The Slenidal Velciy Field and Pin Equain The luin f he (dicee) avie-ske equain (.6) will be deal in w age: fi, he pecin f (.6) in J will eul in a andad nnlinea diffeenial equain f he velciy ecnd, Pin equain f he peue will be deived by pecing (.6) in G. The imple ucue f he dynamic equain in J allw ne develp andad aympic analyi f he undelying nnlinea yem and bain, in hi way, Landau equain in he viciniy f he Hpf bifucain in he he ide, i i pible hw, wih he help f iem (.), ha Pin equain ha a luin and ha hi luin i unique. Wih hi pupe in mind ne induce he maice T[ T T... T] M T MT Kp, T Kp T Fp, T Fp, ( q) T ( Tq) T (.a) whee T = 0 ince T J al, given abiay -dimeninal vec {q()q} ne ha F D d, T d, G () f () f () f () F () T f () F () G. d, D d, D (.4b) By placing nw U = G in (.6) ne bain, wih he help f (.8) and (.0a), he fllwing Pin equain f he peue P P F Gˆ D() f d,() ˆ, (.4c) G ince T 0 (T J ). Bu P L e and {S =,,..,e}{ G ˆ } i an hnmal bai f L,,.., e : expeing P in hi bai and uing (.0b) i i eay check ha he geneal luin f (.4c) i given by (ecall ha S = 0) P f () e d, ˆ a S G, P whee {a =,,,e-} ae abiay cefficien. The puiu mde P = a S play hee he ame le played by he cnan peue field in he cninuum pblem: in fac, i (dicee) gadien P and i i in hi way ha he peue appea in he dicee flw equain (.6) i null ince P 0 (ecall ha S = 0) and P P P P P 0. (.5a) The luin P f he Pin equain i hu uniquely defined by he expein f () d, P() ˆ G, (.5b) and i i impan pin u ha P() can be al bained by epeaed muliplicain f he pae maix in fac, fm (.c) i fllw ha G ˆ G ˆ, U() J U() Tq() UJ U Tq. (.b) and fm he cnvegence f he gemeic eie ( ) n = /( ) ne bain The viual velciy U W in (.6) belng eihe J G auming fi U = Tq J and ecalling ha T = ( T) = 0 ne bain, wih he help f (.b), he fllwing equain f he vaiable q() (ee (.a)): M q K q ( q) qf. (.3) p, p, The aympic luin f (.3), leading Landau equain, will be addeed in iem (.5). Inducing he dynamic fce vec (ee (.6)) F () MU K U( U) UF W, (.4a) D p p n P() F D(). (.5c) n0 The eie (.5c) ha an alm gemeic ucue and i cnvegence can be hu acceleaed by Shank Tanfmain, ee Bende & Ozag (978). The Seady Sae Sluin (Ue) Le q e,p be he eady luin f (.3), namely K q ( q ) q F, (.6a) p, e,p e,p e,p p, ne can wie D () in he fm ({T }{G } i an hnmal bai f W ) whee bh K p, and F p, ae funcin f he eynld numbe (K p, = K p, (e) F p, = F p, (e)) and i i he eady luin: q e,p = J. f he Baz. Sc. f Mech. Sci. & Eng. Cpyigh 004 by ABCM Ocbe-Decembe 004, Vl. XXVI,. 4 / 359

6 J.A.P.Aanha q e,p (e). If (.6a) i diffeeniaed wih epec e and he maix K = K (q e,p ) i defined by he ideniy ( f and f he deivaive wih epec e) K ( q ) q K q ( q ) q ( q ) q e,p e,p p, e,p e,p e,p e,p e,p e,p p, e,p p,, (.6b) ne bain f qe,p he fllwing nnlinea (K = K (q e,p )) diffeenial equain: a K q K q F. (.6c) The luin f (.6c) bviuly exi and i i unique a lng de K ( q ) 0, (.6d) and if hi lae cndiin i fulfilled ne i able, by inegaing (.6c), mach he f (.6a) a he eynld numbe inceae: equain (.6c,a) define a pedic-cec mehd deemine he eady luin. In he he hand, if de K (q e,p ) = 0 ne wuld have a claic bifucain f he equilibium: he eady luin culd hen be mached u in e by defining a ppe ( aically able ) banch afe he bifucain. A i will be een in he nex iem, he undelying aumpin behind he aympic hey be develped in hi wk implie in a cndiin nge han (.6d): wihin hi cnex i can be aken hee ha a eady luin exi and i i uniquely defined. If {x k k =,,,} ae he nde f he Finie Elemen meh hen, given any cninuu field u(x,), he ndal ineplae u h (x,) i defined by he expein h k k k k k k k u ( x,) u( x,) i v( x,) h ( x ) U () i U () h ( x ), e,p k (.7a) and, wihin he cnex f he dicee mdel, ne can igne he diffeence beween u(x,) and i ndal ineplae u h (x,): hee i hu a ne--ne elain beween he field u(x,) and he ndal value vec U() (u(x,)u()). If nw U p i he ndal value vec f he auxiliay field u p (x) (u p (x)u p ), he eady luin u e (x)u e i defined by he expein Ue Up Tq e,p, (.7b) and he glbal luin u T (x,)u T () can be hu wien a U () U U () U () Tq (). (.7c) T e Keeping in mind hee definiin and inducing al he field u (x,)u (), i i an eay ak hw ha he maix K can be expeed in he fm (ee (.5b)) u e u u u e u d u ( u) v ( v) d e U K U K T KT. (.7d) The pacel [(u e )u + (u )u e ] f he cnvecive acceleain induce, a uual, a nn-ymmey in K ha play a le in abiliy hey be addeed nex. Hpf Bifucain and Aympic Sluin f Fluid Equain The diffeenial equain f he peubain U () = Tq () n he eady luin U e can be eaily deived by uing he definiin q() = q e,p + q () in (.3) ne bain hen, wih he help f (.6a), he hmgeneu nnlinea equain M q K q ( q ) q 0, (.8a) he nn-ymmeic maix K being defined in iem (.4). The eigenvalue f K ae hu cmplex, in geneal, and hey will be defined a fllw: i i 3 3i 3... i (.8c) The fi mde, he ne ha becme fi unable ince, i f he fm () e q E, (.9a) whee he mde E i uch ha ((*) and f he cmplex cnugae) M K E0 ( E ) M E. * (.9b) ice ha (e) = (e) + i(e) whee, fm (.9b), i fllw ha (e) * ½( E) K K E * ½( TE) K K ( TE) i (e) * ½( E ) K K E * ½( T E ) K K ( T E). (.9c) elain (.9c) can be ued in cnuncin (.7d) pvide me explici expein f {(e) (e)} indeed, if e(x)te ne bain * * e * e e * e * * (e) ½ u( e x) e ev( e x) e e e( x)ee x y ee x y d x x y y b (e) ue ve ½ e x e y d e x e y d x y e * * e * e e * e * * i (e) ½ u e( x) e ev( e x) e e e( x)ee x y ee x yd, x x y y (.0a) whee e (x) = ½(v e /x + u e /y) i he hea ae f defmain f he eady luin u e (x) and e (x) = ½(v e /x u e /y) i viciy. The abve expein ugge wie (e) a (e) = a (e) b (e)/e, wih b (e) > 0. The Suhal numbe S(e) 5 (e)/ i knwn change weakly wih e and fm he ucue f (.0a) ne huld expec ha bh {a (e) b (e)} al d if nw ne wie {a (e) = a(e)s(e) b (e) = b(e)a(e)s(e)} and aume ha {a S b } ae ypical value f he lwing vaying funcin {a(e) S(e) b(e)} ne bain b(e) b (e) a(e) S(e) S e a, (.0b) e 5 The acual Suhal fequency (e) diffe lighly fm (e), ee (.3b). 360 / Vl. XXVI,. 4, Ocbe-Decembe 004 ABCM

7 Weak Thee Dimeninaliy f a Flw Aund a an expein ha ha me empiical upp, a dicued in iem (.6) belw. I fllw ha (e) i (ughly) mnnically inceaing wih e, whee (e) < 0 f e < b = e c and (e) > 0 f e > b = e c. The value f e c infeed fm numeical imulain eem calece aund 45 (e c 45) alhugh hee ae expeimenal evidence hwing ha hi hehld value i a bi malle (e c 35). Obviuly, f e belw e c he eady luin i able ((e) < 0) while i becme unable f e > e c ((e) < 0) fuheme, (e c ) 0 and ne ha hu a ypical Hpf bifucain. F e abve e c bu cle i ne ha 0 < (e) <<, ince (e c ) = 0 fuheme, he expeimen ugge and he numeical eul cnfim ha nly ne mde i unable in hi ange f eynld numbe ( < 0 3). The aympic luin be develped i baed n he fllwing aumpin i)0 (e) (e) O() ii) (e) 0 f 3,...,, (.) ha huld be icly aified in he viciniy f Hpf bifucain nice ha (.) implie, neceaily, ha { (e) 0 (e) 0}, ince {(e) 0 (e) < 0}, and de K (e) 0. The adin eigenvalue pblem (K K ) play a le, a i will be een, in he deivain f he aympic hey. Thi pblem ha he ame eigenvalue (.8c) bu he eigenvec ae diinc in paicula, he unable eigenvalue i i aciaed he adin unable mde E a whee M K E 0. (.a) a Fm (.) i fllw ha he unable eigenvalue = + i i a ingle f he elaed chaaceiic equain: if i wee n, me f he wuld be equal and he cndiin (ii) in (.) wuld be n fulfilled. Unde he cndiin ha i a ingle i i pible hw ha E M E, (.b) a 0 and hu E a can be nmalized by he cndiin E M E, (.c) a a elain ha i will be ued belw in hi ecin. The agumen nw i claic and i will be u keched hee: f 0 < (e) << he ampliude A()e i f he unable mde E = E + ie I inceae (iniially) expnenially wih ime (A() e da/d = A) and he luin f he dynamic yem (.8a) i aaced, ince < 0 f 3, he (unable) w dimeninal manifld angen he plane geneaed by {E E I } he expnenial gwh in hi manifld i haled by he nnlinea em and expanding (q )q in pwe eie in he ampliude nly he cubic em A() A()e i can mach he em A()e i ha caue he expnenial gwh. The equain f he ampliude A() namely, Landau equain i hu given by 6 da A A A0 = i, (.3a) I d he eady luin (limi cycle) A c exp(i ) being given by A c I. (.3b) The fmal aympic luin f he (dicee) avie-ske equain will be deived nex. In fac, wiing he luin f (.3) in he fm q() q q (), (.4a) e,p wih he peubain q () aifying (.8a), ne mu have, leading de, ha q () [A()E + (*)], ince he luin f (.8a) huld fllw, a lea iniially, he unable mde E. The ampliude A(), hweve, i uch ha (ee (.3)) da O( A), d / A() O( ) and expanding q () in he mall paamee A() O( / ) ne bain, wih an e in (.4a) f he fm [ + O( )], ha / O( ) O( ) i 3 3i 3 33 O( ) 3/ (.4b) i i q() A() e (*) A() 0 A () e (*) E + A() A() e A () e (*) O( ). The nnlinea em in (.8a) can, accdingly, be wien a (.5a) i i 3i ( q ) q 0 e (*) 3e 33e (*) O( ) (.5b) wih * * 0 E E ( E ) E ( E) E (.5c) * * 3 ( E) 0 ( 0) E( ) E ( E ) ( E) ( ) E. 33 Placing (.5) in (.8a) ne bain ( = + i) da i A ME A A 3( M K) 3 e d i A K0 0A i M K e (.6a) 3 3i A 3iM K e O( ) 0, 6 I ha been implicily aumed hee ha ne ha a upe-ciical Hpf bifucain wih = eal > 0. Thi aumpin ha an expeimenal upp, ee Pvanal & Mahi & Bye (987) and Leweke & Pvanal (994) amng he, and i ha been al veified numeically by ack & Eckelmann (994). Sme peliminay numeical cmpuain, be publihed n, cbae hi eul. J. f he Baz. Sc. f Mech. Sci. & Eng. Cpyigh 004 by ABCM Ocbe-Decembe 004, Vl. XXVI,. 4 / 36

8 J.A.P.Aanha whee he em A A(M 3 )e i O( 5/ ) ha been added u f cnvenience if nw { 0 33 } ae luin f he (nningula 7 ) linea yem K i M K 0 3i M K 0, (.6a) educe da A ME A A 3( M K) d a (.6b). (.6c) Muliplying (.6c) n he lef by he adin unable mde E a and uing (.a,c) Landau equain (.3a) i bained wih E. (.7) Summaizing: lving he eigenvalue pblem (.9b) and (.a,c) he vec { 0 } can be cmpued fm (.5c) and he luin { 0 } f he linea yem (.6b) can be deemined wih hem he vec 3 can be bained fm (.5c) and Landau cefficien i hu given by (.7). Wiing nw 3 in he fm M E E (a) 3 3, (a) a 3, 0, and placing (.8a) in (.6c) ne bain, wih he help f (.3a), he equaliy (a) 3 3, (.8a) q M K 0 all q J. (.8b) Inducing he ( )-dimeninal ub-pace {J J a, } f J by he definiin J q : q E 0 q S x J q : q E 0 q S x, a, a, a, a a, a, wih x being an abiay ( )-dimeninal vec, and he maice M S M S K S K S, a,, a,, he vec 3 can be bained fm he luin f he (nn ingula 8 ) linea yem (a) M, K, x3sa, 3, 0 S x. 3 3 (.8c) (.8d) (.8e) eveing he ndal value vec U() = T(q e,p + q ()), ee (.c), (.7), ne ha 7 ice ha (.) ule u {0 i 3i} a pible eigenvalue f K nce < 0 f 3 and 0 he maice {K (im + K) (3iM + K)}in (.6b) ae hu nn-ingula. 8 ecall ha (.) implie ha i a ingle f he chaaceiic plynmial f K and he maix M + K, eiced he ub-pace hgnal he eigenvec {E Ea}, mu be nn-ingula. U() U A() E e (*) A() A () e (*) wih e,p U i i 0,U,U / O( ) O( ) i 3 3i 3,U 33,U ( ), 3/ O( ) + A() A() e A () e (*) O (.9a) Ue,p EU 0,U,U 3,U 33,U T qe,p E , (.9b) and placing (.9a) in (.4a) ne bain F () F A() e (*) A() A () e (*) F F F i i D 00 0 / O( ) O( ) i 3 3i + A() A() F 3 e A () F 33 e (*) O( ), O( ) 3/ wih (ee (.7d) and (.3a) wih = + i) F 00 Kp Ue,p ( Ue,p) Ue,p Fp F MKEU F 0 K 0,U 0,U F i MK,U,U F MK ME F 3i MK, 3 3,U U 3,U 33 33,U 33,U (.30a) (.30b) whee { 0,U,U 3,U 33,U } ae defined a in (.5c) wih { k k,u EE U 0 0,U,U }. Cnideing nw he luin f he Pin equain (ee (.4c)) P F (k) {(00)()(0)()(3)(33)}, (.30c) k k he (dicee) peue field i given by (P e = P 00 i he peue elaed u e (x)u e ) i i P() Pe A() e (*) A() 0 A () e (*) P P P / O( ) O( ) i 3 3i P3 P 33 O( ) 3/ + A() A() e A () e (*) O( ), (.30d) wih he ame e fac [ + O( )] f he velciy field appximain. Expein (.9a) and (.30d) ynheize he aympic luin f he (dicee) avie-ske equain in he viciniy f Hpf bifucain (e e c ) in he nex iem, he pibiliy exend hi luin he ange e >> e c i dicued. Exenin f Landau Equain Beynd Hpf Bifucain The aympic luin f he (dicee) avie-ske wa deived auming (.), w cndiin ha hld in he viciniy f he Hpf bifucain bu n neceaily nly hee. The pupe hee i give agumen ha ugge ha (.) and, wih i, he given aympic luin can be exended fa beynd Hpf bifucain, ha i, he ange e >> e c. 36 / Vl. XXVI,. 4, Ocbe-Decembe 004 ABCM

9 Weak Thee Dimeninaliy f a Flw Aund a In fac, numeical eul by ack & Eckelmann (994) indicae ha (.) emain eenially cec in he ange e c 45 < e < 300 and Henden (997), afe a deailed numeical wk, affim ha up e = 000 n he bifucain, beide he ne a e c, culd be beved in he w dimeninal mdel, in he wd, ha { < 0 3} in hi ange. Fm he expeimenal ide, Pvanal & Mahi & Bye (987) have beved ha he infeed value f (e) culd be fied he expein (e) d e (e) 0.0 c, (.3) U e while Leweke & Pvanal aumed (.3) in he ange e c 45 < e < 300. A aleady dicued, he empiical elain (.3) eem have a f n he me baic e f equain ha decibe he fluid flw, ince a imila expein can be deived exacly, ee (.0b) fuheme, i indicae ha (e) can be cnideed a mall paamee f de 0.0 ( le). All gehe, hee evidence ugge ha (.) culd be puhed a lea up e 000 ince, fllwing Henden, n he bifucain (in D) culd be fund in hi ange while (.3), gehe wih (.0b), eem indicae ha (e) emain in fac mall a aeed in (.). Expeimenal eul n VIV ae mly in he ange 0 3 < e < 0 4, ee Khalak & Wiliamn (996), and hey d n eem depend vey much n e. The beved hamnic paen i vey nea and hi, undubedly, wa he mivain behind a bld aumpin induced by Bihp & Haan (964) decibe he flw aund a cicula cylinde: hey pped epeen he flw by an ne degee f feedm wake cilla mdel baed n Van de Pl equain ha lead, f a mall enugh, Landau equain (.3a) hi idea wa fuhe develped and i i he bai f he -called phenmenlgical mdel ued pedic VIV, ee Iwan & Blevin (975). In depie f he le link wih he me baic flw equain he pedicin fm hee mdel have me accuacy, hwing ha he deed cillay behavi in he wake can be appaenly decibed by mean f an ne degee f feedm yem elaed he unable mde f he pblem. The mallne f, a cmmn feaue in all wake cilla mdel, cupled he flw epeenain by nly ne unable mde, can be anlaed in he fllwing wd: he baic aumpin (.) i, appaenly, cec in he ange 0 3 < e < 0 4 f eynld numbe f he VIV expeimen. Hweve, fm e 0 4 unil he aniin egin e 0 5 nhing vey much diffeen ccu and ne can pibly puh (.) up he aniin egin e 0 5. F e > 0 6 he bunday laye i fully ubulen bu a (elaively) well defined Suhal fequency can be deeced again: in line wih he veall view aken hee, ne peculae ha he ame cndiin (.) can hld if ne eache f he abiliy f he ime aveaged (ubulen 9 ) ymmeic luin f he flw aund he cicula cylinde. Thee exenin huld be bviuly cnfimed numeically bu ceainly he peen hey ha a ange f applicain much bade han feeen a pii me han ha, (.) can be ued deemine peciely hi ange. Weak Thee-Dimeninaliy: Ginzbug-Landau Equain The peubain u (x,) n he D eady luin u e (x) i, leading de, given by u (x,) A()e(x) whee e(x)te i he 9 Bunday laye ubulence i likely due he cncmian inabiliie f eveal ymmeic mde, a elabaed in a fhcming pape i will be al dicued hee a pible cenai f he aniin egin 05 < e < 06. unable mde and A() i cmplex ampliude: A() = A() exp(()). I i knwn f a lng ime ee, f inance, Tebe (969) ha he vice ae n hed in phae alng he pan f a fixed cylinde, and in fac he celain amng he vice emied in diinc ecin end ze vey fa 0, in a lengh f de f 0d. The phae huld hen change in he lngiudinal z-diecin and i de he ampliude A and he peubain u (x,) {A = A(z,) u = u (x,z,)}, whee x = xi + y cninue epeen he piin vec in he c ecin plane and u (x,z,) = u (x,z,)i + v (x,z,) he peubed velciy field in hi plane a he z-level. The lngiudinal cmpnen f he peubed velciy field will be deignaed by w (x,z,). The vaiain f A(z,) in he lngiudinal z-diecin huld be expeed by an even deivaive wih epec z, ince hee i n pefeed diecin, and beving ha he vicu diffuin in hi diecin, given by (/e) u /z, implie leading de in a em ppinal A/z, he fllwing 3D cecin i pped f Landau equain (.3a): A A z A A A 0. (3.a) Thi i he Ginzbug-Landau Equain (GLE), fi pped by Ginzbug me han fify yea ag in hi udy n upecnduciviy, ee Ginzbug & Landau (950) nice ha, in geneal, bh Landau cefficien and Ginzbug cefficien ae cmplex numbe: { = + i I = + i I }. Auming, a befe, << (ee (.)) and ecalling ha A O( / ), a ppe balance f he em in (3.a) indicae ha he lengh cale l z f he lngiudinal vaiain f A(z,) mu be uch ha d lz O d, (3.b), in h: (3.a) deal wih a weak hee-dimeninal vaiain f he flw field. A i i dicued in he la iem f he peen ecin, GLE can be eaily exended he cae whee bh he gemey and he inciden flw change in he lngiudinal diecin if he ae f change i weake han (3.b). In wha fllw, (3.a) will be bained a a cnien aympic appximain f he SE and, in deiving i, a pcedue deemine Ginzbug cefficien will be defined. Aympic Appximain f 3D Field Equain Le u (3d) (x,z,) = u e (x) + [u (x,z,) + w (x,z,)k] be he 3D velciy field f he flw aund a lende cylinde, wih u e (x) being he D eady luin and [u (x,z,) + w (x,z,)k] he peubain n i if, a defined in ecin (), = i/x + /y, he 3D SE f he peubain [u (x,z,) + w (x,z,)k] i given by u u u ueu uue uu up w e e z z 3/ O( ) w p w w ue w w u w w e z z e z w u, z O(w ) O( ) / O( w ) / O( w ) O( w ) / O( w ) O( w ) (3.a) 0 Vey fa in he elain he lngiudinal lengh f he lende cylinde in fac, vey lwly in he naual lengh cale d f he c flw pblem. J. f he Baz. Sc. f Mech. Sci. & Eng. Cpyigh 004 by ABCM Ocbe-Decembe 004, Vl. XXVI,. 4 / 363

10 J.A.P.Aanha whee (3.b) wa ued eimae he de f magniude f he z- deivaive and {u p } O( / ), ee ecin (). Fm he w - equain ne bain, a nce, ha w O( ), (3.b) hwing ha he lngiudinal peubed velciy w i, a expeced, f malle de han he peubed c-flw u. Fuheme, if em f de ae diegaded, a befe, i i pible check fm (3.a) ha he lngiudinal velciy w de n affec he (dynamic) u -equain: he lngiudinal flw affec he D luin u nly hugh he ma cnevain equain, wih a em f de O( 3/ ), he ame de f magniude f he lngiudinal diffuin in he u -equain. One i lef, hu, wih he equain u ueu uue uu u w p uew w e z u O( ) w, z 3/ O( ) O( ) u p e e z 3/ O( ) (3.c) ha define, wih an e fac [ + O( )], an aympic appximain f u (3d) (x,z,). Equain (3.c) i, in me ene, andad in exiing lende bdie heie : he D ucue, epeened by he dynamic u - equain, i n piled by he lngiudinal velciy w, he influence f hi pacel appeaing nly in an blique way in he pblem. In fac, a pnaneu 3D peubain n he c-flw induce a peue gadien ha fce a lngiudinal flw w and nly hen, hugh ma cnevain, he 3D peubain feed back he D iginal equain: a in he well knwn Lifing Line They, he hee-dimeninaliy, epeened by he idewah w, affec eenially he kinemaic f he D flw. Fuheme, he peue gadien, and he idewah, i ppinal A/z and hen u A/z : hi cecin n he c-flw i added he aigh diffuin em, ppinal u /z, pduce he Ginzbug cefficien = + i I. The influence f he idewah n he final equain i hu wfld: fi, i give ie a lngiudinal diffuin, ppinal w, ha gehe wih he c-flw diffuin u /z deemine ecnd, he lngiudinal flw w induce a kind f cmpeibiliy f he c-flw u (u A/z ) and an acuic wave equain mu be expeced hen, decibed hee by he lngiudinal wave pea A/ i I A/z = 0 wih a dipein elain + I k = 0. If he nnlinea em i I A A i added hi wave pea ne bain he cubic Schödinge equain ia/ + I A/z I A A = 0, a cnpicuu peence in he udy f nnlinea dipeive wave yem, ee Whiham (974). In wha fllw he dicee luin f (3.c) will be defined and dicued. The Sidewah and Ma Cnevain One a by cnideing he w -equain, fced by he em p /z leading de ne ha (ee (.30d) uing p (x)p ) p z x A z, i 3/ p ( ) e (*) O( ) and hu wiing w (x,z,) in he fm A i w(,z,) x w () x e (*), (3.3a) z he fllwing equain f w (x) can be bained : i w ( x) ( ue )w ( x) w ( x) p ( x ). (3.3b) e Taking he ame meh ued diceize bh he velciy and peue field in ecin (), namely, auming x, x W, e x, x P, w ( ) W h ( ) W p ( ) P ( ) P, and inducing he maice {m k w } by he expein (3.3c) w ( x) w( x)d W mw p ( x) w( x)d W P w uew ( x) w( x) w ( x) ( w( x)) d, e W k W (3.3d) he fllwing algebaic equain i bained f he ndal value vec W, i w mk W P, (3.4a) he nn-ingulaiy f (3.4a) being ganed by he fac ha all eigenvalue { =,,..,} f he maix k have neceaily negaive eal pa and { i all }. The cninuiy equain in i weak fm ead A i p( x) u w ( x) e (*) d 0, z and he dicee fm f hi equain i given by A i w e U W (*). (3.4b) z If (3.4b) i muliplied n he lef by and he definiin f he cnugaed Laplacian = i ued, ne bain f U () he equain A i U ( ww) e ( *), (3.5a) z whe geneal luin can be wien a (ecall ha ull() = J ) F impliciy, hmgeneu bunday cndiin i aumed n. Ohe bunday cndiin culd be ued inead bu hi imple ne i eanable and eaie fm a me echnical pin f view. The pacel ppinal ue in (3.3d) lead an ani-ymmeic maix while he ne ppinal /e lead a ymmeic piive definie maix. Fm hi i fllw a nce ha eal < 0 if (m + k)x = / Vl. XXVI,. 4, Ocbe-Decembe 004 ABCM

11 Weak Thee Dimeninaliy f a Flw Aund a A U Tq C z i () (z,) e (*) wih C G being he unique (wihin G ) luin f, (3.5b) C ( w W) G. (3.5c) ice ha C can be defined by he um f he eie (ee (.9b)) C W, (3.5d) n ( w ) n0 whee (3.5d) ha again an alm gemeic ucue and i cnvegence can be hu acceleaed by Shank Tanfmain, ee (.5c). The Ginzbug-Landau Equain (GLE) The dicee fm f he u -equain in (3.c) i given by A U MUKU U UP U MTE i (3.6a) ( ) e (*) e z whee he leading de em U i / (z,) T E A(z,)e (*) O( ) (3.6b) wa ued in he igh ide f (3.c). Placing nw (3.5b) in (3.6a) ne bain, afe pecing in he lenidal ub-pace, he equain A i e M q K q C M E (*) ( q ) q 0 e z C T i MKC, (3.6c) whe aympic luin (.5a) ha an ampliude A(z,) ha aifie he GLE (3.a) wih ii Ea C, (3.7) e ince E a ME =. The emaining em f he velciy and peue field ae given by (.9a)(.30b,c,d), adding he peue pacel ppinal A/z. The aenin will be uned nex a me deailed analyi f GLE. GLE: Bunday Cndiin and Wave-Like Limi Cycle If he cylinde pan i defined in he ineval l z l bunday cndiin mu be imped a he cylinde end z = l, ne in each exemiy. Uing again he nain {e(x)te w (x)w } he velciy field can be wien, leading de, in he fm u A x u x ex xk i (3D) (,z,) e() A(z,) () (z,)w() e (*) z u (,z,) x w(,z,) x, (3.8a) and w cndiin can be naually imped n A(z,), namely: A i) ( l,) 0 w ( x l, ) 0 (3.8b) z ii) A( l, ) 0 u ( x l, ) 0. Bunday cndiin (i) i appaenly me apppiaed f he cae whee he cylinde end eihe a he fee-uface in a wae channel ele if he end-cylinde echnique 3 i ued a i bm end: in hee iuain ne expec ha he peubain n he D eady luin huld be, by fa, dminaed by he cflw u (x,z,). Bunday cndiin (ii) i me awkwad be inepeed hugh i eem be adequae epeen a cylinde ending in he inei f he fluid, whee hen he flw peubain w (x,z,) in he lngiudinal diecin huld be nge han he peubed c-flw u (x,z,) nea hi fee end. Pibly linea cmbinain f (3.8b), including peidic bunday cndiin, ee (3.3b) belw, culd al be imped. The GLE (3.a) depend n hee cefficien, { = + i I = + i I }, and i i impan undeand hw he qualiaive behavi f hem affec he luin. The eal paamee { } huld be all piive: > 0 i a negaive diipain ha caue he inabiliy, > 0 i a nn-linea diffuin due he D c flw and > 0 i eenially a linea vicu diffuin caued bh by he vicu e /e( w ) f he lngiudinal velciy in he c-ecin plane and by he c-flw vicu e /e( u /z ) nice ha he inequaliy > 0 he upeciicaliy f he Hpf bifucain wa dicued in ecin () while he elain > 0 can be infeed fm he Pinciple f he Viual Pwe. The GLE (3.a) ha wave-like luin f he fm i(k 0 z 0 A(z,) ) 0 0e / k0 0 0 k0i I 0, (3.9a) he abiliy cndiin f hee wave-like luin being given by he cndiin { 0 (,, )}. (3.9b) I I 0 0,L ice ha beide a eicin n he cupled effec f dipein ( I I ) and diffuin ( ), cndiin (3.3) ffe al a eicin n he wave ampliude 0 : hi ampliude huld be, in geneal, lage han a lwe bund 0,L = 0,L (,,) f, hewie, he wave luin (3.) i pibly wihin he epulin bain f he unable null luin A(z,) 0. In he he hand, he exience f a cninuum f able luin (3.9c) in he ange 0,L 0 (/ ) / ( in he ange 0 k 0 k 0,L ) eem be in line wih he diveiy f hedding mde (blique, paallel, ec) fund in he expeimen wih fixed cylinde, ee Khalak & Williamn (996). ice, in paicula, ha (3.9c) aifie he fllwing bunday cndiin a he cylinde end z = l, A ( l,) ik 0A( l,) 0, (3.9c) z 3 amely, a lage cylinde i mhly fied he bm end, inceaing lcally he c-flw and ceaing a bm end cndiin imila he ne fund a he fee uface ee Khalak & Williamn (996) J. f he Baz. Sc. f Mech. Sci. & Eng. Cpyigh 004 by ABCM Ocbe-Decembe 004, Vl. XXVI,. 4 / 365

12 J.A.P.Aanha ha educe he cndiin (i) in (3.8b) when k 0 = 0 (D luin): a a mae f fac, he end-cylinde echnique wa induced u ceae cndiin fav he paallel hedding n a cylinde in a wae channel, ee again Khalak & Williamn (996), ince i fce, appaenly, he cndiin A/z 0 a he bm end. Obviuly, me aeive aemen abu me feaue f he luin can nly be dne by diec numeical imulain f (3.a) bu i i fel ha hi imple abiliy analyi help fcu me elevan iue. Spanwie Vaiain f Gemey and Cuen S fa he analyze wa eiced he imple unifm flw alng a cylinde being me pecie, all empiical and numeical evidence cmmened hee ae elaed pecifically he flw aund cicula cylinde alhugh ne huld be cncened, fm a me pacical pin f view, wih pblem whee he c ecin gemey and he inciden cuen change alng he pan, bh in ineniy and in diecin. elevan example ae he flw aund a apeed cylinde, ued emulae a cuen vaiain alng he pan, he flw aund a cicula cylinde wih ake, vey impan fm a pacical pin f view, ele he change f he f he inciden flw diecin alng deph, a iuain uually encuneed in Ocean Engineeing. In all hee example he unable mde E U change in he z-diecin and i de he ecinal peue field P ha fce he lngiudinal flw w (x,z,), ee (.30b,c,d) wiing, a befe, p (x,z)p (z), ne ha ha p /z O(p /l g,c ), whee l g,c i he lengh cale f he lngiudinal vaiain f bh he gemey and he cuen, and he quein ne inend anwe i he fllwing: hw mall can be l g,c in de he GLE (3.a) emain valid, wih he ame e fac f he fm [ + O( )], even in he peence f hee vaiain? Obviuly, he baic paamee huld hen change (weakly) wih z namely, { = (z) = (z) = (z) = (z)} bu he ucue f (3.a) wuld emain he ame and he D expein ued cmpue hem. T anwe uch quein ne mu ecall ha he heedimeninaliy wa fced by he peue gadien ha, leading de, i given by p A p x z z z i 3/ (,z,) p A e (*) O( ), (3.4a) and beving ha eain he final e O( ) nly he em f de O() mu be kep in (3.4a), he vaiain p /z culd be igned if i i f de O() malle: in hi cae he em Ap /z wuld be f de O( 3/ ) malle, ince A O( / ), and he vaiain f he gemey and/ he inciden flw diecin wuld appea a m a he de O( ) and can, hu, be diegaded. I un u ha (3.a) emain cec, wih he ecinal paamee {(z) (z) (z) (z)}, wheneve he lengh cale l g,c i lage ha (p /z O(p /l g,c )) p O( ) g,c O d l. (3.4b) z A een in (.3), empiical evidence ugge ha 0.0 and l g,c O(5d), he fae change in z-diecin wihin he cnex f GLE being defined by he elain l g,c 5d. I i a mae f cuiiy beve ha 5d i a ypical lengh cale f m f he uppein device ued miigae ( eliminae) VIV f inance, hi i a ypical value f he helicidal pich f he ake f he wavelengh f he wavy cylinde analyzed by Beaman (000). Cncluin In he peen pape a cnien aympic appximain f he flw aund a lende cylinde wa develped, leading he Ginzbug-Landau equain. The hey i baed n an aumpin cncening he behavi f he eigenvalue elaed a D peubain n he eady D luin u e (x) i ae ha hee exi nly ne unable mde wih eigenvalue = + i and, fuheme, ha { 0 0 < << }, ee (.). Bh cndiin ae aified in he viciniy f he Hpf bifucain a e e c 45 bu bain he deied appximain me me echnical eul wee needed. Fi, he wake impedance wa induced, by cnideing ppely he flw in he wake and deemining hen hw he wake ei he flw wihin he finie fluid egin ha i acually diceized ecnd, by pecing he dicee flw equain in he lenidal and gadien ub-pace i ha been pible, uing me andad eul in Linea Algeba, hw n nly he inne cniency f he mdel bu al bain he cefficien f he Ginzbug-Landau equain. In paicula, he Ginzbug cefficien = + i I wa analyzed, whee he diffuive feaue f he eal pa wa elabaed and al he wave feaue f I wa eablihed, nce i i elaed he cmpeibiliy f he c-flw, namely, he wk dne by he c-flw peue field n he divegence f he c-flw velciy field. The final gal f he n-ging eeach i adde he VIV pblem, f cnideable impance in me Ocean Engineeing applicain, mainly in he analyi f he ie f a flaing pducin yem. Thi pblem ha been enaively addeed, wih a elaive ucce, by he -called phenmenlgical mdel, whee he flw i imply decibed by a Van de Pl cilla wih cefficien infeed fm me expeimenal eul. The iuain hee i n vey much diffeen, a lea fm he peainal pin f view, he uual appach elaed Ginzbug- Landau equain (GLE), nce hi mdel i fied exenally he pblem and he cefficien ae hen infeed al by me expeimenal ( numeical) eul. Bu hee i a cncepual diffeence, a lea in i igin, in bh appache: GLE wa hugh be valid nly in he viciniy f e c (alhugh i ha been ued fa beynd i, a lea up he ange e 300) while he Van de Pl mdel wa aimed, fm i vey fi mivain, deal wih he expeimen n VIV, whee 0 3 < e < 0 4 ughly peaking. Obeving ha he Van de Pl mdel aume, implicily, ha nly ne mde i unable wih a negaive damping <<, ne may be emped cnclude, baed n he elaively gd pedicive abiliy f hee phenmenlgical mdel and al n he aleady pped exenin f GLE he ange e 300, ha he undelying aumpin f he peen aympic hey hld, in fac, in a much bade ange f eynld numbe han feeen a pii. Thi cnecue can be aied he au f a hyphei in he mahemaical develpmen and, wih i, exend cnienly he GLE he whle ange f e afewad, by lking he acual numeical eul ne can cnfim ( n) hi hyphei. The peen hey de n eem be a dd, hu, wih adiin in phyical cience: indeed, given a e f a mewha dipee eul and bevain, all f hem elaed hweve he cnpicuu cillay behavi f he phenmenn, hey can be gaheed by mean f an aumpin, ynheized by (.), ha place all hem in an unique famewk, namely, he GLE in a wide ange f eynld numbe. Fuheme, a aed abve, hi hey bing in i lay u he pibiliy be efued, nce he baic aumpin can be checked diecly by mean f (numeical) expeimen, fm a me pacical pin f view, i allw ne 366 / Vl. XXVI,. 4, Ocbe-Decembe 004 ABCM

13 Weak Thee Dimeninaliy f a Flw Aund a deemine peciely hw wide can be he ange f eynld numbe cveed by i. The ue be fllwed nex, in hi n-ging eeach, i hu clea: fi, bain numeical eul ha culd pibly cnfim aumpin (.) in a ceain ange f e ecnd, bain an exenin f he GLE equain ha can deal al wih an cillaing cylinde hid, cmpae he VIV pedicin bained fm hi exended mdel wih he exiing expeimenal eul. The hpe i ha hey will pvide cnien eul bu, anyway, ne ha hee a lea a cnien hey in a elaively lage viciniy f e c, wha may have an inee in ielf. efeence Albaède,P. & Pvanal,M. & Bye,L. (990): Mdéliain pa l équain Ginzbug-Landau du illage idimeninnel d un bacle allngé, C..Acad.Sci.Pai Sé.II 30,459 Albaède,P. & Mnkewiz,P.A. (99): A mdel f he fmain f blique hedding and chevn paen in cylinde wake, Phy. Fluid A, Vl.4,.4, pp Albaède, P. & Pvanal,M. (995): Quae-peidic cyinde wake and he Ginzbug-Landau mdel, J. Fluid Mech., vl. 9, pp.9- Aanha, J.A.P. (003): On he div-abiliy cndiin in dicee avie-ske equain, ubmied Bahe,K.J. (996): Finie Elemen Pcedue, Penice Hall Beaman,P.W. (000): Pivae Cmmunicain Bende,C.M. & Ozag,S.A. (978): Advanced Mahemaical Mehd f Scieni and Enginee, McGaw-Hill Bk Cmpany Benamin,T.B. & Fei, J.E. (967): The deinegain f wave ain n deep wae, J. Fluid Mech. 7, 47 Bihp,.E.D. & Haan,A.Y. (964): The lif and dag fce n a cicula cylinde in a flwing field, Pc. y. Sc. (Lndn), Se.A, 77,pp Ginzbug,V.L. & Landau,D. (950): On he hey f upecnduciviy, Zh. Ekp. Te. Fiz. 0,064 Gunzbuge,M.D. (985): Finie Elemen Mehd f Vicu Incmpeible Flw, Academic Pe Inc. Henden,.D. (997): nlinea dynamic and paen fmain in ubuln wake aniin, J. f Fluid Mech., vl.35, pp.65- Huee,P. & Mnkewiz,P.A. (990): Lcal and glbal inabiliie in paially develping flw, Ann. Ve. Fluid Mech., 3, pp Khalak,A. & Wiliamn,H.K. (996): Dynamic f a hydelaic cylinde wih vey lw ma and damping, J. f Fluid and Sucue, vl. 0, pp Iwan,W.D. & Blevin,.D. (975): A mdel f vex-induced cillain f ucue, J. Appl. Mech., 4, pp Ladyzenkaa,O.A. (969): The Mahemaical They f Vicu Incmpeible Flw, Gdn and Beach Science Publihe Lehucq,.B. & Senen,D.C. & Yang,C. (997): APACK Ue Guide: Sluin f Lage Scale Eigenvalue Pblem wih Implici eaed Anldi Mehd, apack@caam.ice.edu Leweke,T. & Pvanal,M. (994): Mdel f aniin in bluff bdy wake, Phyical eview Lee, V.7,.0, pp Mnkewiz,P.A. (996): Mdeling f elf-excied wake cillain by ampliude equain, Expeimenal Themal and Fluid Science,, pp Mnkewiz,P.A. & Williamn,C.H.K. & Mille,G.D. (996): Phae dynamic f Kámán vice in cylinde wake, Phy. Fluid 8(),pp.9-96 ack,b.. & Eckelmann,H. (994): A glbal abiliy f he eady and peidic cykinde wake, J. Fluid Mech., vl.70, pp Pvanal,M. & Mahi,C. & Bye,L. (987): Bénad-vn Káman inabiliy: anien and fced egime, J. Fluid Mech., 8, pp. - Tebe,G.H. (969): The uneady flw and wake nea an cillaing cylinde, J.Baic Eng., 9,493 Van Dyke,M. (98): An Album f Fluid Min, The Paablic Pe Whiham,G.B. (974): Linea and nlinea Wave, Jhn Wiley & Sn,.Y. Zakhav,V.E. & Shaba,A.B. (97): Exac hey f w-dimeninal elf fcuing and ne dimeninal elf mdulain f wave in nnlinea media, Svie Phyic J.E.T.P. 34, pp J. f he Baz. Sc. f Mech. Sci. & Eng. Cpyigh 004 by ABCM Ocbe-Decembe 004, Vl. XXVI,. 4 / 367

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work MÜHENDİSLİK MEKNİĞİ. HFT İş-Eneji Pwe f a fce: Pwe in he abiliy f a fce d wk F: The fce applied n paicle Q P = F v = Fv cs( θ ) F Q v θ Pah f Q v: The velciy f Q ÖRNEK: İŞ-ENERJİ ω µ k v Calculae he pwe

More information

2. The units in which the rate of a chemical reaction in solution is measured are (could be); 4rate. sec L.sec

2. The units in which the rate of a chemical reaction in solution is measured are (could be); 4rate. sec L.sec Kineic Pblem Fm Ramnd F. X. Williams. Accding he equain, NO(g + B (g NOB(g In a ceain eacin miue he ae f fmain f NOB(g was fund be 4.50 0-4 ml L - s -. Wha is he ae f cnsumpin f B (g, als in ml L - s -?

More information

MEAN GRAVITY ALONG PLUMBLINE. University of New Brunswick, Department of Geodesy and Geomatics Engineering, Fredericton, N.B.

MEAN GRAVITY ALONG PLUMBLINE. University of New Brunswick, Department of Geodesy and Geomatics Engineering, Fredericton, N.B. MEA GRAVITY ALG PLUMBLIE Beh-Anne Main 1, Chis MacPhee, Rbe Tenze 1, Pe Vaníek 1 and Macel Sans 1 1. Inducin 1 Univesiy f ew Bunswick, Depamen f Gedesy and Gemaics Engineeing, Fedeicn,.B., E3B 5A3, Canada

More information

11 June Physics Letters B D. Delepine, J.-M. Gerard, J. Pestieau, J. Weyers

11 June Physics Letters B D. Delepine, J.-M. Gerard, J. Pestieau, J. Weyers June 998 hyic Lee B 49 998 6 Final ae ineacin hae in B K D Deleine, J-M Gead, J eieau, J Weye decay amliude Iniu de hyique Theique, UniÕeie cahlique de LuÕain, B-348 LuÕain-la-NeuÕe, Belgium Received Mach

More information

Maxwell Equations. Dr. Ray Kwok sjsu

Maxwell Equations. Dr. Ray Kwok sjsu Maxwell quains. Ray Kwk sjsu eeence: lecmagneic Fields and Waves, Lain & Csn (Feeman) Inducin lecdynamics,.. Giihs (Penice Hall) Fundamenals ngineeing lecmagneics,.k. Cheng (Addisn Wesley) Maxwell quains.

More information

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion.

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion. Chpe Kinemic in One Dimenin Kinemic del wih he cncep h e needed decibe min. Dynmic del wih he effec h fce he n min. Tgehe, kinemic nd dynmic fm he bnch f phyic knwn Mechnic.. Diplcemen. Diplcemen.0 m 5.0

More information

a. (1) Assume T = 20 ºC = 293 K. Apply Equation 2.22 to find the resistivity of the brass in the disk with

a. (1) Assume T = 20 ºC = 293 K. Apply Equation 2.22 to find the resistivity of the brass in the disk with Aignmen #5 EE7 / Fall 0 / Aignmen Sluin.7 hermal cnducin Cnider bra ally wih an X amic fracin f Zn. Since Zn addiin increae he number f cnducin elecrn, we have cale he final ally reiiviy calculaed frm

More information

Yield Estimation for a Single Purpose Multi-Reservoir System Using LP Based Yield Model

Yield Estimation for a Single Purpose Multi-Reservoir System Using LP Based Yield Model Junal f Wae Reuce and Pecin, 013, 5, 8-34 hp://dx.di.g/10.436/ap.013.57a005 Publihed Online July 013 (hp://.cip.g/unal/ap) Yield Eimain f a Single Pupe Muli-Reevi Syem Uing LP Baed Yield Mdel Deepak V.

More information

Lecture 4. Electrons and Holes in Semiconductors

Lecture 4. Electrons and Holes in Semiconductors ecue 4 lec ad Hle i Semicduc I hi lecue yu will lea: eeai-ecmbiai i emicduc i me deail The baic e f euai gveig he behavi f elec ad hle i emicduc Shcley uai Quai-eualiy i cducive maeial C 35 Sig 2005 Faha

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

Lecture 3. Electrostatics

Lecture 3. Electrostatics Lecue lecsics In his lecue yu will len: Thee wys slve pblems in elecsics: ) Applicin f he Supepsiin Pinciple (SP) b) Applicin f Guss Lw in Inegl Fm (GLIF) c) Applicin f Guss Lw in Diffeenil Fm (GLDF) C

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lecue 6: Leape and Ceepe Scibe: Geain Jone (and Main Z. Bazan) Depamen of Economic, MIT May, 5 Inoducion Thi lecue conide he analyi of he non-epaable CTRW in which he diibuion of ep ize and ime beween

More information

Transient Radial Flow Toward a Well Aquifer Equation, based on assumptions becomes a 1D PDE for h(r,t) : Transient Radial Flow Toward a Well

Transient Radial Flow Toward a Well Aquifer Equation, based on assumptions becomes a 1D PDE for h(r,t) : Transient Radial Flow Toward a Well ansien Radial Flw wad a Well Aqife Eqain, based n assmpins becmes a D PDE f h(,) : -ansien flw in a hmgenes, ispic aqife -flly peneaing pmping well & infinie, hiznal, cnfined aqife f nifm hickness, hs

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

Introduction. If there are no physical guides, the motion is said to be unconstrained. Example 2. - Airplane, rocket

Introduction. If there are no physical guides, the motion is said to be unconstrained. Example 2. - Airplane, rocket Kinemaic f Paricle Chaper Inrducin Kinemaic: i he branch f dynamic which decribe he min f bdie wihu reference he frce ha eiher caue he min r are generaed a a reul f he min. Kinemaic i fen referred a he

More information

Lecture 4. Electrons and Holes in Semiconductors

Lecture 4. Electrons and Holes in Semiconductors Lecue 4 lec ad Hle i Semicduc I hi lecue yu will lea: Geeai-ecmbiai i emicduc i me deail The baic e f euai gveig he behavi f elec ad hle i emicduc Shckley uai Quai-eualiy i cducive maeial C 35 Sig 2005

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

( t) Steady Shear Flow Material Functions. Material function definitions. How do we predict material functions?

( t) Steady Shear Flow Material Functions. Material function definitions. How do we predict material functions? Rle f aeial Funins in Rhelgial Analysis Rle f aeial Funins in Rhelgial Analysis QUALIY CONROL QUALIAIVE ANALYSIS QUALIY CONROL QUALIAIVE ANALYSIS mpae wih he in-huse daa n qualiaive basis unknwn maeial

More information

Support Vector Machines

Support Vector Machines Suppo Veco Machine CSL 3 ARIFICIAL INELLIGENCE SPRING 4 Suppo Veco Machine O, Kenel Machine Diciminan-baed mehod olean cla boundaie Suppo veco coni of eample cloe o bounday Kenel compue imilaiy beeen eample

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 15 10/30/2013. Ito integral for simple processes

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 15 10/30/2013. Ito integral for simple processes MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.7J Fall 13 Lecure 15 1/3/13 I inegral fr simple prcesses Cnen. 1. Simple prcesses. I ismery. Firs 3 seps in cnsrucing I inegral fr general prcesses 1 I inegral

More information

Part 2 KINEMATICS Motion in One and Two Dimensions Projectile Motion Circular Motion Kinematics Problems

Part 2 KINEMATICS Motion in One and Two Dimensions Projectile Motion Circular Motion Kinematics Problems Pa 2 KINEMATICS Min in One and Tw Dimensins Pjecile Min Cicula Min Kinemaics Pblems KINEMATICS The Descipin f Min Physics is much me han jus he descipin f min. Bu being able descibe he min f an bjec mahemaically

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Maximum Cross Section Reduction Ratio of Billet in a Single Wire Forming Pass Based on Unified Strength Theory. Xiaowei Li1,2, a

Maximum Cross Section Reduction Ratio of Billet in a Single Wire Forming Pass Based on Unified Strength Theory. Xiaowei Li1,2, a Inenainal Fum n Enegy, Envinmen and Susainable evelpmen (IFEES 06 Maximum Css Sein Reduin Rai f Bille in a Single Wie Fming Pass Based n Unified Sengh They Xiawei Li,, a Shl f Civil Engineeing, Panzhihua

More information

Section 4.2 Radians, Arc Length, and Area of a Sector

Section 4.2 Radians, Arc Length, and Area of a Sector Sectin 4.2 Radian, Ac Length, and Aea f a Sect An angle i fmed by tw ay that have a cmmn endpint (vetex). One ay i the initial ide and the the i the teminal ide. We typically will daw angle in the cdinate

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

CHAPTER 17. Solutions for Exercises. Using the expressions given in the Exercise statement for the currents, we have

CHAPTER 17. Solutions for Exercises. Using the expressions given in the Exercise statement for the currents, we have CHATER 7 Slutin f Execie E7. F Equatin 7.5, we have B gap Ki ( t ) c( θ) + Ki ( t ) c( θ 0 ) + Ki ( t ) c( θ 40 a b c ) Uing the expein given in the Execie tateent f the cuent, we have B gap K c( ωt )c(

More information

(V 1. (T i. )- FrC p. ))= 0 = FrC p (T 1. (T 1s. )+ UA(T os. (T is

(V 1. (T i. )- FrC p. ))= 0 = FrC p (T 1. (T 1s. )+ UA(T os. (T is . Yu are repnible fr a reacr in which an exhermic liqui-phae reacin ccur. The fee mu be preheae he hrehl acivain emperaure f he caaly, bu he pruc ream mu be cle. T reuce uiliy c, yu are cniering inalling

More information

The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components

The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components Upcming eens in PY05 Due ASAP: PY05 prees n WebCT. Submiing i ges yu pin ward yur 5-pin Lecure grade. Please ake i seriusly, bu wha cuns is wheher r n yu submi i, n wheher yu ge hings righ r wrng. Due

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

which represents a straight line whose slope is C 1.

which represents a straight line whose slope is C 1. hapte, Slutin 5. Ye, thi claim i eanable ince in the abence any heat eatin the ate heat tane thugh a plain wall in teady peatin mut be cntant. But the value thi cntant mut be ze ince ne ide the wall i

More information

Total Deformation and its Role in Heavy Precipitation Events Associated with Deformation-Dominant Flow Patterns

Total Deformation and its Role in Heavy Precipitation Events Associated with Deformation-Dominant Flow Patterns ADVANCES IN ATMOSPHERIC SCIENCES VOL. 25 NO. 1 2008 11 23 Tal Defmain and is Rle in Heavy Pecipiain Evens Assciaed wih Defmain-Dminan Flw Paens GAO Shuing 1 (påë) YANG Shuai 12 (fl R) XUE Ming 3 (Å ) and

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series IAENG Inenaional Jounal of Applied Mahemaic, 4:, IJAM_4 7 Degee of Appoximaion of a Cla of Funcion by C, E, q Mean of Fouie Seie Hae Kihna Nigam and Kuum Shama Abac In hi pape, fo he fi ime, we inoduce

More information

Example

Example hapte Exaple.6-3. ---------------------------------------------------------------------------------- 5 A single hllw fibe is placed within a vey lage glass tube. he hllw fibe is 0 c in length and has a

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

Chem. 6C Midterm 1 Version B October 19, 2007

Chem. 6C Midterm 1 Version B October 19, 2007 hem. 6 Miderm Verin Ocber 9, 007 Name Suden Number ll wr mu be hwn n he exam fr parial credi. Pin will be aen ff fr incrrec r n uni. Nn graphing calcular and ne hand wrien 5 ne card are allwed. Prblem

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Cntl Systems Fequency Dmain Analysis The fequency espnse f a system is defined as the steady-state espnse f the system t a sinusidal (hamnic) input. F linea systems, the esulting utput is itself

More information

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t Lecue 6: Fiis Tansmission Equaion and Rada Range Equaion (Fiis equaion. Maximum ange of a wieless link. Rada coss secion. Rada equaion. Maximum ange of a ada. 1. Fiis ansmission equaion Fiis ansmission

More information

AIR FORCE RESEARCH LABORATORY

AIR FORCE RESEARCH LABORATORY AIR FORC RSARCH LABORATORY The xtinctin Theem as an xample f Reseach Vistas in Mathematical Optics Mach Richad A. Albanese Infmatin Opeatins and Applied Mathematics Human ffectiveness Diectate Bks City-Base

More information

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set WYSE Academic Challenge Sectinal 006 Slutin Set. Cect answe: e. mph is 76 feet pe minute, and 4 mph is 35 feet pe minute. The tip up the hill takes 600/76, 3.4 minutes, and the tip dwn takes 600/35,.70

More information

On the Stability and Boundedness of Solutions of Certain Non-Autonomous Delay Differential Equation of Third Order

On the Stability and Boundedness of Solutions of Certain Non-Autonomous Delay Differential Equation of Third Order Applie Mahemaic, 6, 7, 457-467 Publihe Online March 6 in SciRe. hp://www.cirp.rg/jurnal/am hp://.i.rg/.436/am.6.764 On he Sabili an Bunene f Sluin f Cerain Nn-Aunmu Dela Differenial Equain f Thir Orer

More information

The sudden release of a large amount of energy E into a background fluid of density

The sudden release of a large amount of energy E into a background fluid of density 10 Poin explosion The sudden elease of a lage amoun of enegy E ino a backgound fluid of densiy ceaes a song explosion, chaaceized by a song shock wave (a blas wave ) emanaing fom he poin whee he enegy

More information

PHYS GENERAL RELATIVITY AND COSMOLOGY PROBLEM SET 7 - SOLUTIONS

PHYS GENERAL RELATIVITY AND COSMOLOGY PROBLEM SET 7 - SOLUTIONS PHYS 54 - GENERAL RELATIVITY AND COSMOLOGY - 07 - PROBLEM SET 7 - SOLUTIONS TA: Jeome Quinin Mach, 07 Noe ha houghou hee oluion, we wok in uni whee c, and we chooe he meic ignaue (,,, ) a ou convenion..

More information

The Production of Polarization

The Production of Polarization Physics 36: Waves Lecue 13 3/31/211 The Poducion of Polaizaion Today we will alk abou he poducion of polaized ligh. We aleady inoduced he concep of he polaizaion of ligh, a ansvese EM wave. To biefly eview

More information

Process performance cast iron motors Totally enclosed squirrel cage three phase low voltage motors Sizes 71 to 450, 0.

Process performance cast iron motors Totally enclosed squirrel cage three phase low voltage motors Sizes 71 to 450, 0. Pce pefmance ca in m ally encled quiel cage hee phae lw vlage m Size 0, 0. 00 kw > >> / Odeing infmain When placing an de, pleae ae he fllwing minimum daa in he de, a in example. he pduc cde f he m i cmped

More information

Heat transfer between shell and rigid body through the thin heat-conducting layer taking into account mechanical contact

Heat transfer between shell and rigid body through the thin heat-conducting layer taking into account mechanical contact Advanced Cmpuainal Meds in Hea Tansfe X 8 Hea ansfe beween sell and igid bdy ug e in ea-cnducing laye aking in accun mecanical cnac V. V. Zzulya Cen de Invesigación Cienífica de Yucaán, Méida, Yucaán,

More information

Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics. The Interventional Centre

Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics. The Interventional Centre Ch. : Invee Kinemati Ch. : Velity Kinemati The Inteventinal Cente eap: kinemati eupling Apppiate f ytem that have an am a wit Suh that the wit jint ae ae aligne at a pint F uh ytem, we an plit the invee

More information

Neutron Slowing Down Distances and Times in Hydrogenous Materials. Erin Boyd May 10, 2005

Neutron Slowing Down Distances and Times in Hydrogenous Materials. Erin Boyd May 10, 2005 Neu Slwig Dw Disaces ad Times i Hydgeus Maeials i Byd May 0 005 Oulie Backgud / Lecue Maeial Neu Slwig Dw quai Flux behavi i hydgeus medium Femi eame f calculaig slwig dw disaces ad imes. Bief deivai f

More information

Lecture 5 Emission and Low-NOx Combustors

Lecture 5 Emission and Low-NOx Combustors Lecue 5 Emiion and Low-NOx Combuo Emiion: CO, Nox, UHC, Soo Modeling equiemen vay due o diffeence in ime and lengh cale, a well a pocee In geneal, finie-ae ineic i needed o pedic emiion Flamele appoach

More information

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo Infeence fo A One Way Factoial Expeiment By Ed Stanek and Elaine Puleo. Intoduction We develop etimating equation fo Facto Level mean in a completely andomized one way factoial expeiment. Thi development

More information

CHAPTER 2 Describing Motion: Kinematics in One Dimension

CHAPTER 2 Describing Motion: Kinematics in One Dimension CHAPTER Decribing Min: Kinemaic in One Dimenin hp://www.phyicclarm.cm/cla/dkin/dkintoc.hml Reference Frame and Diplacemen Average Velciy Inananeu Velciy Accelerain Min a Cnan Accelerain Slving Prblem Falling

More information

Chapter 7. Interference

Chapter 7. Interference Chape 7 Inefeence Pa I Geneal Consideaions Pinciple of Supeposiion Pinciple of Supeposiion When wo o moe opical waves mee in he same locaion, hey follow supeposiion pinciple Mos opical sensos deec opical

More information

The Flatness Problem as A Natural Cosmological Phenomenon

The Flatness Problem as A Natural Cosmological Phenomenon Inenainal Junal f Pue and Applied Physics ISSN 0973-1776 Vlume 4, Numbe (008), pp. 161 169 Reseach India Publicains hp://www.ipublicain.cm/ijpap.hm The Flaness Pblem as A Naual Csmlgical Phenmenn 1 Maumba

More information

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch Two-dimensional Effecs on he CS Ineacion Foces fo an Enegy-Chiped Bunch ui Li, J. Bisognano,. Legg, and. Bosch Ouline 1. Inoducion 2. Pevious 1D and 2D esuls fo Effecive CS Foce 3. Bunch Disibuion Vaiaion

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

8.5 Circles and Lengths of Segments

8.5 Circles and Lengths of Segments LenghofSegmen20052006.nb 1 8.5 Cicle and Lengh of Segmen In hi ecion we will how (and in ome cae pove) ha lengh of chod, ecan, and angen ae elaed in ome nal way. We will look a hee heoem ha ae hee elaionhip

More information

( ) ( ) CHAPTER 8. Lai et al, Introduction to Continuum Mechanics. Copyright 2010, Elsevier Inc 8-1

( ) ( ) CHAPTER 8. Lai et al, Introduction to Continuum Mechanics. Copyright 2010, Elsevier Inc 8-1 CHAPER 8 81 Shw ha f an incmpessible Newnian fluid in Cuee flw he pessue a he ue cylinde ( R ) is always lage han ha a he inne cylinde ha is bain R i Ri ρ ω R R d B Ans In Cuee flw v vz and vθ A+ [see

More information

Identification of Fault Locations using Transient State Estimation

Identification of Fault Locations using Transient State Estimation denificaion of Faul Locaion uing Tanien Sae Eimaion K. K.C. Yu, Suden Membe, EEE and N. R. Waon, Senio Membe, EEE Abac n a lage cale elecical powe yem, idenificaion of yem faul can be a ediou ak. Unexpeced

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Theorem 2: Proof: Note 1: Proof: Note 2:

Theorem 2: Proof: Note 1: Proof: Note 2: A New 3-Dimenional Polynomial Intepolation Method: An Algoithmic Appoach Amitava Chattejee* and Rupak Bhattachayya** A new 3-dimenional intepolation method i intoduced in thi pape. Coeponding to the method

More information

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example C 188: Aificial Inelligence Fall 2007 epesening Knowledge ecue 17: ayes Nes III 10/25/2007 an Klein UC ekeley Popeies of Ns Independence? ayes nes: pecify complex join disibuions using simple local condiional

More information

Relative Positioning Method of Using Single-frequency Model for Formation Flying Missions

Relative Positioning Method of Using Single-frequency Model for Formation Flying Missions Inenaional Induial Infomaic and Compue Engineeing Confeence (IIICEC 205) Relaive Poiioning Mehod of Uing Single-fequency Model fo Fomaion Flying Miion Hanyi Shi, Qizi Huangpeng2,a, Yuanyuan Qiao3,4, Yong

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

β A Constant-G m Biasing

β A Constant-G m Biasing p 2002 EE 532 Anal IC Des II Pae 73 Cnsan-G Bas ecall ha us a PTAT cuen efeence (see p f p. 66 he nes) bas a bpla anss pes cnsan anscnucance e epeaue (an als epenen f supply lae an pcess). Hw h we achee

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003

Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003 avity David Bawacz 7778 Thonapple Bayou, and Rapid, MI 495 David Bawacz /3/3 http://membe.titon.net/daveb Uing the concept dicued in the peceding pape ( http://membe.titon.net/daveb ), I will now deive

More information

On orthonormal Bernstein polynomial of order eight

On orthonormal Bernstein polynomial of order eight Oen Science Junal f Mathematic and Alicatin 2014; 22): 15-19 Publihed nline Ail 20, 2014 htt://www.enciencenline.cm/junal/jma) On thnmal Bentein lynmial f de eight Suha N. Shihab, Tamaa N. Naif Alied Science

More information

1 st VS 2 nd Laws of Thermodynamics

1 st VS 2 nd Laws of Thermodynamics t VS nd Law f hemdynamic he fit Law Enegy cneatin Quantity pint f iew - In tem f Enegy Enegy cannt be ceated detyed, but it alway cnee - If nt, it ilate t law f themdynamic Enegy input Enegy utput Enegy

More information

GEOID-QUASIGEOID CORRECTION IN FORMULATION OF THE FUNDAMENTAL FORMULA OF PHYSICAL GEODESY. Robert Tenzer 1 Petr Vaníček 2

GEOID-QUASIGEOID CORRECTION IN FORMULATION OF THE FUNDAMENTAL FORMULA OF PHYSICAL GEODESY. Robert Tenzer 1 Petr Vaníček 2 GEID-QUASIGEID CECTI I FMULATI F TE FUDAMETAL FMULA F PYSICAL GEDESY be Tenze 1 Pe Vaníček 1 Depamen f Gedesy and Gemaics Enineein Univesiy f ew Bunswick P Bx 4400 Fedeicn ew Bunswick Canada E3B 5A3; Tel

More information

Six-Phase Matrix Converter Fed Double Star Induction Motor

Six-Phase Matrix Converter Fed Double Star Induction Motor Ac Plyechnic Hungic l. 7, N., ix-phe ix Cnvee Fed Duble Inducin Bchi Ghle, Bendibdellh Azeddine DEE lby, Univeiy f cience nd he echnlgy f On (UO BP E nue On, Algei, bchi@univ-u.dz Abc: w diffeen cnl egie

More information

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do Wed., /11 Thus., /1 Fi., /13 Mn., /16 Tues., /17 Wed., /18 Thus., /19 Fi., / 17.7-9 Magnetic Field F Distibutins Lab 5: Bit-Savat B fields f mving chages (n quiz) 17.1-11 Pemanent Magnets 18.1-3 Mic. View

More information

dm dt = 1 V The number of moles in any volume is M = CV, where C = concentration in M/L V = liters. dcv v

dm dt = 1 V The number of moles in any volume is M = CV, where C = concentration in M/L V = liters. dcv v Mg: Pcess Aalyss: Reac ae s defed as whee eac ae elcy lue M les ( ccea) e. dm he ube f les ay lue s M, whee ccea M/L les. he he eac ae beces f a hgeeus eac, ( ) d Usually s csa aqueus eeal pcesses eac,

More information

Scratch Ticket Game Closing Analysis SUMMARY REPORT

Scratch Ticket Game Closing Analysis SUMMARY REPORT TEXAS LTTERY ISSI Scach Tice Game lsig Aalysis SUARY REPRT Scach Tice Ifmai mpleed 1/ 3/ 216 Game# 16891 fimed Pacs 4, 613 Game ame Lucy Bucsl Acive Pacs 3, 29 Quaiy Pied 11, 21, 1 aehuse Pacs 1, 222 Pice

More information

Brace-Gatarek-Musiela model

Brace-Gatarek-Musiela model Chaper 34 Brace-Gaarek-Musiela mdel 34. Review f HJM under risk-neural IP where f ( T Frward rae a ime fr brrwing a ime T df ( T ( T ( T d + ( T dw ( ( T The ineres rae is r( f (. The bnd prices saisfy

More information

Algebra 2A. Algebra 2A- Unit 5

Algebra 2A. Algebra 2A- Unit 5 Algeba 2A Algeba 2A- Ui 5 ALGEBRA 2A Less: 5.1 Name: Dae: Plymial fis O b j e i! I a evalae plymial fis! I a ideify geeal shapes f gaphs f plymial fis Plymial Fi: ly e vaiable (x) V a b l a y a :, ze a

More information

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II Steady Heat ansfe ebuay, 7 Steady Heat ansfe wit Cnductin and Cnvectin ay Caett Mecanical Engineeing 375 Heat ansfe ebuay, 7 Outline eview last lectue Equivalent cicuit analyses eview basic cncept pplicatin

More information

Hotelling s Rule. Therefore arbitrage forces P(t) = P o e rt.

Hotelling s Rule. Therefore arbitrage forces P(t) = P o e rt. Htelling s Rule In what fllws I will use the tem pice t dente unit pfit. hat is, the nminal mney pice minus the aveage cst f pductin. We begin with cmpetitin. Suppse that a fim wns a small pa, a, f the

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Radiation Resistance of System G( Iron Torus is not used as we can see ) ( ) 2

Radiation Resistance of System G( Iron Torus is not used as we can see ) ( ) 2 THE FNAL NVESTGATON ON TORS EXPERMENT N AQNO S SET P n the llwing invetigatin, we ae ging t exaine the equatin Syte G, accding t Pe Aquin clai. THE EQATONS FOR THE TORS EXPERMENT ARE THE FOLLOW: Velcity

More information

Lecture 3: Resistive forces, and Energy

Lecture 3: Resistive forces, and Energy Lecure 3: Resisive frces, and Energy Las ie we fund he velciy f a prjecile ving wih air resisance: g g vx ( ) = vx, e vy ( ) = + v + e One re inegrain gives us he psiin as a funcin f ie: dx dy g g = vx,

More information

10.7 Temperature-dependent Viscoelastic Materials

10.7 Temperature-dependent Viscoelastic Materials Secin.7.7 Temperaure-dependen Viscelasic Maerials Many maerials, fr example plymeric maerials, have a respnse which is srngly emperaure-dependen. Temperaure effecs can be incrpraed in he hery discussed

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

CS 188: Artificial Intelligence Fall Probabilistic Models

CS 188: Artificial Intelligence Fall Probabilistic Models CS 188: Aificial Inelligence Fall 2007 Lecue 15: Bayes Nes 10/18/2007 Dan Klein UC Bekeley Pobabilisic Models A pobabilisic model is a join disibuion ove a se of vaiables Given a join disibuion, we can

More information

Consider a Binary antipodal system which produces data of δ (t)

Consider a Binary antipodal system which produces data of δ (t) Modulaion Polem PSK: (inay Phae-hi keying) Conide a inay anipodal yem whih podue daa o δ ( o + δ ( o inay and epeively. Thi daa i paed o pule haping ile and he oupu o he pule haping ile i muliplied y o(

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Australian Journal of Basic and Applied Sciences, 5(9): , 2011 ISSN

Australian Journal of Basic and Applied Sciences, 5(9): , 2011 ISSN Aualian Junal f Baic and Applied Science, 5(9): 77-83, ISSN 99-878 Relaive Financial Efficienc and I Relain wih Eaning pe Shae f Public-Jin Cpanie Acive in Auive Pa Indu: Evidence f Ian M. Dadkhah, A.

More information

Machine Learning for Signal Processing Prediction and Estimation, Part II

Machine Learning for Signal Processing Prediction and Estimation, Part II Machine Learning fr Signal Prceing Predicin and Eimain, Par II Bhikha Raj Cla 24. 2 Nv 203 2 Nv 203-755/8797 Adminirivia HW cre u Sme uden wh g really pr mark given chance upgrade Make i all he way he

More information

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions Inenaional Mahemaical Foum, Vol 8, 03, no 0, 463-47 HIKARI Ld, wwwm-hikaicom Combinaoial Appoach o M/M/ Queues Using Hypegeomeic Funcions Jagdish Saan and Kamal Nain Depamen of Saisics, Univesiy of Delhi,

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

CHAPTER 2 Describing Motion: Kinematics in One Dimension

CHAPTER 2 Describing Motion: Kinematics in One Dimension CHAPTER Decribing Min: Kinemaic in One Dimenin hp://www.phyicclarm.cm/cla/dkin/dkintoc.hml Reference Frame and Diplacemen Average Velciy Inananeu Velciy Accelerain Min a Cnan Accelerain Slving Prblem Falling

More information

Osakue. a) Square thread b) Acme (English) thread. c) Trapezoidal (Metric) thread d) Buttress thread. Fig. 1: Power screw types

Osakue. a) Square thread b) Acme (English) thread. c) Trapezoidal (Metric) thread d) Buttress thread. Fig. 1: Power screw types Oakue POWER SCREWS Inuin Pwe ew i a mehanial ew ue f we anmiin ahe han faening. A mehanial ew i a yline ne ha ha a helial ige alle a hea. A helix ha ne me un, a ew an have eveal un. Pwe ew vie high mehanial

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

Chapter 1 Electromagnetic Field Theory

Chapter 1 Electromagnetic Field Theory hpe ecgeic Fie The - ecic Fie ecic Dipe Gu w f : S iegece he ε = 6 fee pce. F q fie pi q q 9 F/ i he. ue e f icee chge: qk k k k ue uce ρ Sufce uce ρ S ie uce ρ qq qq g. Shw h u w F whee. q Pf F q S q

More information