( ) ( ) CHAPTER 8. Lai et al, Introduction to Continuum Mechanics. Copyright 2010, Elsevier Inc 8-1

Size: px
Start display at page:

Download "( ) ( ) CHAPTER 8. Lai et al, Introduction to Continuum Mechanics. Copyright 2010, Elsevier Inc 8-1"

Transcription

1 CHAPER 8 81 Shw ha f an incmpessible Newnian fluid in Cuee flw he pessue a he ue cylinde ( R ) is always lage han ha a he inne cylinde ha is bain R i Ri ρ ω R R d B Ans In Cuee flw v vz and vθ A+ [see Eq (6154) and (6157)] hus dvθ vθ θθ zz p z θ z and θ μ funcin f nly d 1 z hus he -equain f min θ θθ θ z ρ ω becmes: R R ρω Nw d ρ ω d Ri hus Ri ρ ω R R d R i he igh hand side f his las equain is always R i psiive 8 Shw ha he cnsiuive equain τ τ1+ τ + τ wih τn + n τ n / μnd n 1 is equivalen τ + a1 τ / + a τ / + a τ / bd+ b1 D/ + b D/ whee a + + a + + a b b ( μ μ μ ) b μ ( ) μ ( ) μ ( ) ( μ μ μ ) Ans τ τ j τ j i i j i i i 1 i 1 τ j 1 i 1 j 1 i 1 j 1 τ τ i j τ j i + i ( μid τ i) + i i 1 i 1 j 1 i 1 i 1 j 1 j i j i τ j D μi τ i i D μi τ + i 1 i 1 i 1 j 1 i 1 i 1 j 1 j i j i i + ha is τ j 8-1 Cpyigh 1 Elsevie Inc

2 τ τ τ τ1 τ τ1 τ i D μi i 1 τ (i) i 1 Nex we have + + τ / + + τ / τ / ( 1 1) ( 1 1) 1 ( 1 1) ( ) ( ) ( ) + τ / + ( + ) τ / + τ / 1 1 τ / 1 1 τ1/ τ1/ 1 τ / ie ( ) τ / μ1( + ) + μ( 1+ ) + μ( + 1) D / + τ / + τ / + τ / + τ / + τ / τ / + Finally we have τ τ1 τ τ D τ1 D τ D τ μ1 + 1 μ + 1 μ D D D τ τ τ 1 μ + μ + μ 1 ha is 1 τ μ D 1 μ D 1 1 μ D τ τ 1 τ (iii) hus (i) + (ii)+ (iii) gives τ τ / τ / + τ / ( 1 ) ( 1 1) 1 D( μ1 μ μ) μ1( ) μ( 1 ) μ( 1) ( μ μ μ ) D D/ / ha is τ τ τ D D τ + a1 + a + a b D + b1 + b whee a + + a + + a b b ( μ μ μ ) b μ ( ) μ ( ) μ ( ) ( μ μ μ ) Obain he fce-displacemen elainship f he Kelvin-Vig slid which cnsiss f a dashp (wih damping cefficien η ) and a sping (wih sping cnsan G ) cnneced in paallel Als bain is elaxain funcin Ans Since he sping and he dashp ae cnneced in paallel heefe he al fce is given by: S Ssp + Sdash and he al displacemen ε is given by ε εsp εdash Nw (ii) 8- Cpyigh 1 Elsevie Inc

3 dε dε Ssp Gε and Sdash η heefe S Gε + η find he elaxain funcin we le d d ε ε H () whee H is he Heaviside funcin hen S GεH() + ηεδ () hus he elaxain funcin is S / ε GH + ηδ 84 (a) Obain he fce-displacemen elainship f a dashp (damping cefficien η ) and a Kelvin-Vig slid (damping cefficien η and sping cnsan G see he pevius pblem) cnneced in seies (b) Obain is elaxain funcin Ans (a) Le Sv and Sd be he fce ansmied by he Kelvin-Vigh elemen and he dashp especively and le εv and εd be he elngain f he Kelvin-Vigh elemen and he dashp especively hen we have he al fce is given by S Sd Sv (i) and he al displacemen dεd dεv is given by ε εd + εv(ii) whee Sd η S Sv Gεv + η (iii) Fm (ii) and d d dε dεd dεv S 1 S S G (iii) we have + + ( S Gε v ) + ( ε εd ) (iv) hus d d d η η η η η d ε η η + ds G dε G dεd ηη d ε ( η + η ) ds dε + η + S d ηη d η d η d G d G d d hus he fce-displacemen elainship is given by: ( η + η ) ds dε ηη d ε S + η + (v) G d d G d (b) Le ε ε H () whee H is Heaviside funcin hen Eq (v) gives ds G G () d + S ε η δ + ε ηη δ (vi) d η + η η + η η + η d whee () hus δ is he Diac funcin he inegain fac f his ODE is exp G / ( η + η ) G G G d η G d Se + η εη η η εηη η η δ e δ () e d ( η η) + + ( η η) + and + + d G G G η + η G η η η η () + δ + η η ( η η) εη εηη dδ d Se e d e d εη G εηη G/( η η) / () G G η η e δ δe d ( η η) ( η η) η + η ha is G G G G G G Se η + η εη εηη e () e () η + η εη εηη δ η + η + + δ η + η η + η η + η η + η η + η G + S η G η η ηη hus he elaxain funcin is e + δ () ε ( η + η ) ( η + η) 8- Cpyigh 1 Elsevie Inc

4 85 A linea Maxwell fluid defined by Eq (81) is beween w paallel plaes which ae ne uni apa Saing fm es a ime he p plae is given a displacemen u v while he bm plae emains fixed Neglec ineia effecs bain he shea sess hisy Ans he velciy field f he fluid in his min is given by (ineia negleced) v1 vh() x v v whee H is he Heaviside Funcin he nly nn-ze ae f defmain cmpnen is D1 v H / hus fm he cnsiuive equain f he linea ds1 d Maxwell fluid we bain S1 + μvh() hus / / 1 v S e μ e H () ha is d d / v / v / v / / S1e μ e μ H() d e μ d e μv ( e 1) hus he shea sess hisy is: 1 ( 1 / S μv e ) 86 Obain Eq (81) ie ' ' ' / φ( ) ( ) d whee φ ( μ / ) e S D by slving ds he linea nn-hmgeneus dinay diffeenial equain S+ μd d exp / ha is he equain can be wien as; Ans he inegain fac f his ODE is [ ] d d ( e ) μ / / / / S e D hus S ( / ) D / / ( μ / ) ( ' )/ S e e D d ha is e μ e d φ S μ e ' d' ' ' d' D D 87 Shw ha f he linea Maxwell fluid defined by Eq (81) φ whee φ () is he elaxain funcin and J is he ceep cmpliance funcin ' J ' d' S S H be applied he p plae f a channel f uni deph in which is he linea Ans Le 1 Maxwell fluid [ H is he uni sep funcin ie Heaviside funcin] Neglecing ineia he velciy field is v( x ) v x v is he velciy f he p plae hen fm he whee cnsiuive equain d / d μ S+ S D we bain S + S δ μd μ v / μdu / d 1 du S whee u is he displacemen f he p plae Fm Sδ () d μ + μ we bain du S S S d d Sδ () u S ( ) d μ μ hus he ceep cmpliance μ μ μ funcin is: J () u / S ( + )/ μ / Since he elaxain funcin is φ() ( μ / ) e heefe 8-4 Cpyigh 1 Elsevie Inc

5 ( ) ( ) ( )/ ( )/ e d + (1 / ) e ( ) d ( )/ ( ) ' / Nw ' / / φ J d ( μ / ) e ( + )/ μd (1/ ) e ( + ) d e d [ e ] and 1 ' ' ' φ J d + + ( )/ / / / ' e d ( de )( ) d e e d hus 88 Obain he sage mdulus and lss mdulus f he linea Maxwell fluid wih a H ( ) / cninuus elaxain specum defined by Eq (841) ie φ () e d Ans Le he shea sain be: γ1 γe iω F his sain hisy he ae f defmain hisy is dγ1 given by D1 i e i ω ωγ hus fm he cnsiuive equain d φ d S D d i e i ω φ ωγ φ d S D we have 1 1 / Wih φ () H / e d we have / H ( )/ iω H e / iω S1 i e e d d i e e dd ' Nw / iω ( 1 + i ω) / e e d e d e ( 1 + i ω ) / hus 1+ iω 1 i S ω H i e d G e i ω ω ( ) γ whee G iω d + iω ( + iω) ωγ ωγ H 1 1 is he cmplex mdulus Nw H iω H G iω d iω d 1+ iω 1+ iω 1iω ( 1 ) ( iω+ ω ) H ω H ωh d d + i d (1 + ω) (1 + ω) (1 + ω) ωh ωh hus G d G d (1 + ω ) (1 + ω ) 89 Shw ha he viscsiy μ f a linea Maxwell fluid define by φ ( ) is elaed he elaxain funcin φ and he memy funcin f ( s) by he elain φ( s) ds sf ( s) ds μ S D d 8-5 Cpyigh 1 Elsevie Inc

6 S φ D d φ s D s ds φ s D s ds Ans s s F simple sheaing flw v 1 x v v D1 s ha S 1 φ( s ) ds μ S 1 / φ( s ) ds s Nw he memy funcin s elaxain funcin φ ( s) by he elain dφ ( s) / ds f( s) hus dφ() s μ φ( s) ds sφ( s) s ds sf ( s) ds ds f s is elaed he 81 Shw ha he elaxain funcin f he Jeffey mdel [Eq (87)] wih a is given by [ne: Refeence Eq(87) is missing in he pblem saemen in he ex] S1 b b1 a / b 1 1 φ() 1 e + δ() δ() Diac Funcin γ a1 ba1 b Ans Le he shea sain γ 1 be given by γ1 γ H () hen D1 dγ1 / d γδ whee δ () is Diac funcin Fm he cnsiuive equain we have S1 γ γ δ S1 1 γ b b1 δ S1 + a1 b δ + b1 + S1 δ + a1 a1 a1 a / 1 a / b 1 b1 δ ( S1e ) e γ δ + a1 a1 S1 a / b 1 a / b 1 1 a / dδ () e e δ d e 1 d γ a + 1 a 1 d b b1 a / b a / b 1 b1 a / b e δ() δ() e d + e δ() a 1 a 1 a 1 a1 a1 a1 a1 hus he elaxain funcin is: S1 b b () / a b1 b b 1 () / a b 1 φ 1 e + δ 1 e + δ () γ a1 ab 1 a1 a1 ab 1 b v1 v v x1 v Obain (a) he paicle pahline equains using he cuen ime as he efeence ime (b) he elaive igh Cauchy- Geen defmain ens and (c) he Rivlin-Eicsen enss using he equain C I+ τ - A1+ τ - A / + (d) he Rivlin-Eicsen ens A using he ecusive 811 Given he fllwing velciy field: equain [ ] [ D / D] + [ ][ ] + [ ] [ ] A A1 A1 v v A 1 ec Ans (a) Le x xi e ibe he psiin a ime τ f he paicle which is a x xieia ime hen x x x x x τ gives he pahline equain hus i i 1 dx1 dx dx v1 (i) v v( x1 ) (ii) (iii) dτ dτ dτ 8-6 Cpyigh 1 Elsevie Inc

7 wih he iniial cndiins: xi xi ( x1 x x ) Eq (i) gives x1 f ( x1 x x) x1 dx gives x g( x x x ) x Eq (ii) becmes v( x ) x v( x ) τ h( x x x ) Eq (iii) dτ x ' v x1 + h x1 x x h x1 x x x v x1 x x + v( x1)( τ ) hus x1 x1 x x + v( x1)( τ ) x x 1 1 (b) [ F] [ x ] ( dv / dx1)( τ ) 1 ( τ ) 1 dv / dx ( τ ) 1 1+ ( τ ) ( τ ) [ C] [ F] [ F] 1 ( τ ) 1 ( τ ) ( τ ) 1 + ( τ ) + 1 dv (c) [ A1] [ A ] dx1 DA1 (d) [ A] + [ 1][ ] + [ ] [ 1] D A v v A whee [ A 1] hus DA ( 1) 1 A1 DA1 A1 A + [ 1][ ] + v + D A v D x [ A1][ v] [ v] [ A 1] hus [ A] [ A1][ v] + [ v] [ A 1] 81 Given he fllwing velciy field: v 1 x 1 v x v Obain (a) he paicle pahline equains using he cuen ime as he efeence ime (b) he elaive igh Cauchy- Geen defmain ens and (c) he Rivlin-Eicsen enss using he equain C I+ τ - A1+ τ - A / + (d) he Rivlin-Eicsen ens A and A using he ecusive equain [ ] [ D / D] + [ ][ ] + [ ] [ ] A A1 A1 v v A 1 ec 8-7 Cpyigh 1 Elsevie Inc

8 Ans (a) (a) Le x hen x x ( x x x τ ) i i x ie ibe he psiin a ime τ f he paicle which is a i i gives he pahline equain hus 1 dx1 dx dx v1 x1 (i) v x (ii) (iii) dτ dτ dτ wih he iniial cndiins: xi xi ( x1 x x ) Nw dx1 x ' 1 ln x1 τ + g ( x1 x x) g ( x1 x x) ln x1+ dτ ln ln ln ln ( τ x τ + x + x x x x e ) ( τ ) dx Similaly ( τ ) dτ hus ( τ) ( τ x xe x x e ) x x x x xe and x f ( x1 x x) x 1 1 ( τ) ( e τ e ) ( τ) ( τ F ) x e [ C] [ F] [ F ] e 1 1 (b) [ ] [ ] x x e a ime m Since ( τ ) 4 8 e 1m ( τ ) + ( τ ) m ( τ ) + heefe! 4 8 ( τ ) ( τ ) [ C ] [] I + ( τ ) ! (d) wih v 1 x 1 v x v [ v] [ 1] A DA ( 1) 1 A1 DA1 A1 A + [ 1][ ] + v + D A v D x (c) [ A ] [ A ] [ A ] [ A ] [ A ][ v] + [ v] [ A ] Nex 8-8 Cpyigh 1 Elsevie Inc

9 4 4 [ A ][ v ] hus [ A] [ ] + [ A][ v] + [ v] [ A ] 8 81 Given he fllwing velciy field: v 1 x 1 v x v x Obain (a) he paicle pahline equains using he cuen ime as he efeence ime (b) he elaive igh Cauchy-Geen defmain ens and (c) he Rivlin-Eicsen enss using he equain C I+ τ - A1+ τ - A / + (d) he Rivlin-Eicsen ens A and A using he ecusive equain [ ] [ D / D] + [ ][ ] + [ ] [ ] A A1 A1 v v A 1 ec Ans (a) Le x xi e ibe he psiin a ime τ f he paicle which is a x xieia ime hen x x x x τ gives he pahline equain hus i 1 dx1 dx dx v1 x1 (i) v x (ii) x (iii) dτ dτ dτ wih he iniial cndiins: xi xi ( x1 x x ) Nw dx1 x1 ln x1 τ + g ( x1 x x) g ( x1 x x) lnx1 dτ ln ln ln ln ( x τ x x x x xe τ + ) ( τ ) dx Similaly ( τ x ) x xe and ( τ x ) xe hus dτ ( x ) 1 xe τ 1 x xe τ x xe τ (b) ( τ) ( e τ e ) [ ] ' τ τ F x e [ C] [ F] [ F ] e ( τ) 4 ( τ e e ) Since ( τ ) 4 8 e 1+ ( τ ) + ( τ ) + ( τ ) +! 4( τ ) e 14 ( τ ) + ( τ ) ( τ ) +! C I heefe [ ] [] 8-9 Cpyigh 1 Elsevie Inc

10 4 8 ( τ ) ( τ ) + ( τ ) ! (c) [ A1] [ A] 4 [ A ] (d) wih v 1 x 1 v x v x [ v] [ 1] A 4 DA ( 1) 1 A1 DA1 A1 A + [ 1][ ] + v + D A v D x [ A ] [ A ][ v] + [ v] [ A ] Nex 4 4 [ A ][ v ] hus [ A] [ ] + [ A][ v] + [ v] [ A ] 8 Ec Given he fllwing velciy field: v 1 x v x 1 v Obain (a) he paicle pahline equains using he cuen ime as he efeence ime (b) he elaive igh Cauchy- Geen defmain ens and (c) he Rivlin-Eicsen enss using he equain C I+ τ - A1+ τ - A / + (d) he Rivlin-Eicsen ens A and A using he ecusive equain [ ] [ D / D] + [ ][ ] + [ ] [ ] A A1 A1 v v A 1 ec Ans (a) Le x xi e ibe he psiin a ime τ f he paicle which is a x xieia ime hen x x x x x τ gives he pahline equain hus i i 1 dx1 dx dx v1 x (i) v x1 (ii) (iii) dτ dτ dτ 8-1 Cpyigh 1 Elsevie Inc

11 wih he iniial cndiins: x x ( x x x ) i i 1 Nw dx1 d x1 dx d x1 (i) x x 1 x 1 dτ dτ dτ dτ x1 Asinh τ + Bcsh τ x1 Asinh + Bcsh (iv) 1 dx1 (ii) x Acsh τ + Bsinh τ x Acsh + Bsinh (v) dτ (iv) and (v) gives A x1sinh + xcsh B x1csh xsinh x x csh csh τ sinh sinh τ + x csh sinh τ sinh csh τ ( csh sinh τ sinh csh τ) ( csh csh τ sinh sinh τ) 1 1 x x1 + x ha is x1 x1csh ( τ ) + xsinh ( τ ) x x1sinh ( τ ) + xcsh ( τ ) x x (b) Since [ F ] [ x ] ( τ ) ( τ ) ( τ ) ( τ ) csh sinh sinh csh 1 csh x+ sinh x csh xsinh x [ C ] [ F ] [ F ] csh xsinh x sinh x+ csh x x ( τ ) 1 4 x 5 x cshx 1+ + O( x ) sinhx x+ + O( x ) x 5 csh x 1+ x + O( x ) sinh x x + O( x ) sinh xcsh x x+ + O( x ) 4 1+ x + x+ x + 4 [ C ] x + x + 1+ x + [] I + ( τ ) ( τ ) ( τ ) hus (c) [ A ] [ A ] [ A ] 4 8 ec 8-11 Cpyigh 1 Elsevie Inc

12 (d) wih v 1 x v x 1 v [ v] [ 1] A DA ( 1) 1 A1 DA1 A1 A + [ 1][ ] + v + D A v D x [ A ] [ A ][ v] + [ v] [ A ] [ A ][ v] [ A ] Nex [ A ][ v ] hus [ A] [ ] + [ A][ v] + [ v] [ A ] 8 θ z bain he secnd Rivlin-Eicsen enss A N N using he ecusive fmula dv Ans [ v] [ A ] [ ] [ ] 1 v + v d 815 Given he velciy field in cylindical cdinaes: v v v v Since ( A 1) cnsan independen f ime and space heefe DA A A v [ ] D Cpyigh 1 Elsevie Inc

13 [ ] ( ) + ( ) A A1 v v A1 + [ A ] A v + v A + hus A N N Using he equains given in Appendix 81 f cylindical cdinaes veify ha he θ cmpnen f he hid de ens is given by: 1 θ + θ ( ) θ θ Ans Fm he equains ( ) hm + qjγ qmi + iqγqmj n sum n m sum n q m xm and h 1 h h 1; Γ 1 Γ 1 all he Γ θ z θθ θθ we have ( ) h q q q q θ + Γ θ + Γ θ + θ Γ θθ + θ θγθθ hus θ θ 1 θ + θ ( ) + ( 1) ( 1 ) ( ) θ θ + θ θ θ θ 817 Using he equains given in Appendix 81 f cylindical cdinaes veify ha he θθ cmpnen f he hid de ens is given by: 1 θ θθ ( ) + θθ θ Ans Fm he equains ( ) hm + qjγ qmi + iqγqmj n sum n m sum n q m xm and h 1 h h 1; Γ 1 Γ 1 all he Γ we have θ z θθ θθ 8-1 Cpyigh 1 Elsevie Inc

14 θ θ ( ) h + Γ + Γ ( ) h + Γ + Γ θθ θ θθ θ θ 1 θ θθ ( ) + ( 1) ( 1 ) ( ) θθ θθ + + θ θθ θ θ qθ qθ q qθθ θ θθ θθ θθ 818 Using he equains given in Appendix 81 f spheical cdinaes veify ha he φ cmpnen f he hid de ens is given by: ( φ + φ ) 1 ( ) φ sinθ φ Ans Fm he equains ( ) hm + qjγ qmi + iqγqmj n sum n m sum n q m xm and h 1 hθ hφ sin θ; Γ θθ 1 Γ φφ sin θ Γ φφ sin θ Γ φφθ cs θ Γ θθ 1 Γ θφφ cs θ all he Γ we have ( ) h + Γ + Γ ( ) h + φ φ φ φ Γ + Γ ( ) ( sin θ) + ( sin ) ( sin ) φ φ θ + φ θ φ 1 φ + φ ( ) φ sinθ φ φ q qφ q qφ φ φ φφ φ φφ 819 Using he equains given in Appendix 81 f spheical cdinaes veify ha he φφφ cmpnen f he hid de ens is given by: ( φ + φ) ( θφ + φθ )c 1 φφ θ + + sinθ φ Ans Fm he equains ( ) hm + qjγ qmi + iqγqmj n sum n m sum n q m xm h 1 hθ hφ sin θ; Γ θθ 1 Γ φφ sin θ Γ sin θ Γ cs θ Γ 1 Γ cs θ all he Γ φφ φφθ θθ θφφ we have 8-14 Cpyigh 1 Elsevie Inc

15 φφ ( ) hφ + qφγ qφφ + φqγ φφφ qφφ φ φφ ( ) hφ + φ Γ φφ + θφ Γ θφφ + φ Γ φφ + φθ Γ φφφ θφφ φ φφ ( ) hφ + ( φ + φ) Γ φφ + ( θφ + φθ ) Γ φφφ θφφ φ φφ + ( φ + φ)( sinθ) + ( θφ + φθ ) csθ φ 1 φφ ( φ + φ) ( θφ + φθ ) cθ ( ) + + φφφ sin θ φ v vθ v vz bain (a) he fis Rivlin-Eicsen ens A 1 (b) A 1 (c) he secnd Rivlin-Eicsen enss A using he ecusive fmula v 1 v v v v () θ θ z v θ 1 vθ v θ dv Ans [ v] v + θ z d v 1 z vz v z θ z dv v() [ A1] [ v] + [ v] d DA1 A 1 ( 1) v D + A ( A1) v ( 1) v ( 1) v θ θ A θθ θ A zθ θ ( A1) v ( 1) v ( 1) v ( 1) v A θ θ θ A θθθ θ A θ zθ θ ( A1) v z θ ( A1) v z θ ( A1) v θ θθ zzθ θ A can be bained fm Appendix 81 as: 8 Given he velciy field in cylindical cdinaes: he cmpnens f he hid de ens 1 1 A A + A 1 Aθ A Aθθ 1 θ θ 1 + θθ θ 1 Az Aθ z A 1 zθ θ 1 Aθ A Aθθ 1 Aθ z Az A 1 + ( A ) θθ 1 ( A ) θ θθθ 1 + θzθ θ θ θ ( A ) ( A ) 8-15 Cpyigh 1 Elsevie Inc

16 1 Az Azθ 1 Azθ Az 1 Azz ( A 1) zθ ( A 1) + θ zθθ ( A 1) θ zzθ θ / v/ DA1 hus v / θ v/ D v/ dv / d [ A1][ v] dv / d v / [ v] [ A ] 1 dv / d dv / d v ()/ v/ ( ) dv/ d v/ DA1 A [ 1][ ] [ ] [ 1] D + A v + v A D N 81 Deive Eq (811) ie N+ 1 A A N N D + A v + v A Ans We had {see Eq (8117)} N ( N+ 1 D D ) ( Ddx DAN Ddx ds dx A N Ndx ds N 1 ) ANdx+ dx dx+ dx A + N ha is D D D D D N + 1 DAN ( ) N N ( ) D ds v dx A dx+ dx dx+ dx A v dx N + 1 D D DAN dx ( v) ANdx+ dx AN ( v) dx+ dx dx D DAN dx ( v) A N +AN ( v ) + d d N+ 1d D x x A x D N hus N+ 1 A A N N D + A v + v A 8 Le S D/ D+ WW whee is an bjecive ens and W is he spin ens shw ha S is bjecive ie () () S Q SQ Ans Since is bjecive heefe () () W dq/ d Q () + Q() WQ () heefe Q Q and fm Eq (811) 8-16 Cpyigh 1 Elsevie Inc

17 S D + W -W D dq D dq dq Q + Q Q + Q + QQ Q + QQ QWQ d D d d dq Q QQ QWQ Q () Q () d dq dq Nw Q() Q () I Q () Q () heefe he abve equain becmes d d dq D dq dq S Q + Q Q + Q Q + QWQ d D d d dq () Q d QWQ ha is D S Q() + W W () () () D Q Q SQ 8 Obain he viscsiy funcin and he w nmal sess funcin f he nnlinea 1 viscelasic fluid defined by S f () s s I C ds Ans F v 1 x v v we have [see Secin 89 Eq(891)] 1 ( τ ) 1+ ( τ ) ( τ ) [ ] 1 C τ τ τ + 1 C ( τ) ( τ ) s s s s 1 ( s) 1 C s 1 hus IC ( s) s 1 S S sf s ds sf s ds 1 μ S11 S s f( s) ds σ S S S s f s ds S S σ 84 Deive he fllwing ansfmain laws [Eqs(818) and Eq (811)] unde a change f fame ( τ) ( τ) and ( τ) V Q VQ R Q R Q 8-17 Cpyigh 1 Elsevie Inc

18 Ans Since FVR and F VR heefe fm ( τ) ( τ) ( τ) V R Q( τ) VR Q Q( τ) VQ ( τ) Q( τ) RQ whee ( τ ) ( τ ) symmey ens and ( τ ) F Q F Q we ge Q VQ is a Q R Q is an hgnal ens heefe he uniqueness f he pla decmpsiin leads V Q( τ) VQ ( τ) and R Q( τ) RQ L DJ τ 85 Fm ( DF τ and v shw ha Dτ Dτ τ τ ( + D+D [ne mispin in he pblem in ex] Ans Fm JL ( τ ) F ( τ) ( τ) F ( τ) we have D J L( τ ) D ( τ) D ( τ) D ( τ) F ( τ) F( τ) + F ( τ) F( τ) + F ( τ) ( τ) F Dτ Dτ Dτ Dτ DJL( τ ) D hus ( v) + + () v [Ne () () F F I] Dτ D τ Nw vd+w heefe DJL( τ ) D D + D + W + D + W + D + D + W + W Dτ D D τ D + D + D + ( W W ) + D + D D 86 Cnside 1 J τ F ( τ) ( τ) F 1 ( τ) Shw ha (a) J ( τ) U D U / Dτ τ and (b) D D U ( τ) / Dτ τ Dτ J v v D+D is bjecive Ans (a) Given J ( τ ) F ( τ) ( τ)( F ) ( τ) and ( τ ) ( τ) ( τ)( ) ( τ) U J F F U In a change f fame (see Secin 81 Eq(816) ( τ) ( τ) ( τ) F Q F Q s ha ( τ) ( τ) ( τ) and ( ) ( τ) ( τ)( ) ( τ) F Q F Q F Q F Q Als () Q() () Q () hus 1 1 ( τ) ( τ) ( τ) τ τ τ ( τ) ( τ) JU Q F Q Q Q Q F Q 1 1 () ( τ) τ ( τ) Q F F Q ha is J ( τ) Q J ( τ) Q and U U ( U ) () N N N N D JU τ / Dτ Q D J τ / Dτ Q hus 8-18 Cpyigh 1 Elsevie Inc

19 N U τ D J τ U () () N D J Q Q N N Dτ Dτ τ 1 1 (b) + [ ] + () τ DJU τ / Dτ DF / Dτ D/ Dτ D / Dτ τ τ τ F F τ F τ I DF / Dτ F τ + F τ DF / Dτ DF ( τ) / Dτ F [ DF / Dτ] F () [ DF / Dτ] ( ) ( τ ) τ v F ( v) hus D D D U ( τ) / Dτ τ D J v v D D W D+W ha is he uppe cnveced deivaive f can be wien: ˆ DJU ( τ ) D + W W ( D + D) ( D + D ) Dτ D τ Nw [ ] τ τ τ τ 87 Given he velciy field f a plane Cuee flw: v 1 v x 1 (a) F a Newnian fluid find he sess field [ ] and he c-ainal sess ae (b) Cnside a change f fame (change f bseve) descibed by: x 1 csω sinω x1 csω sinω [ ] x sinω csω x Q sinω csω Find and v v D W (c) Find he c-ainal sess ae f he saed fame (d) Veify ha he w sess aes ae elaed by he bjecive ensial elain Ans / / (a) [ v ] [ ] [ ] D / W / hus sess ens is [ p / p μ ] + μ p / μ p p μ / / p μ μ [ W] [ W ] μ p / / μ p μ D μ μ C-ainal sess ae is: D + μ μ (b) Fm Eq (5561) f Chape 5 we have [ v( x) ] [ Qv ] + ( d / d) [ ] ( d / d) Q x Qv + Q Q x hus v 1 csω sinω sinω csω csω sinω x 1 ω sin cs v v ω ω + csω sinω sinω csω Since x 8-19 Cpyigh 1 Elsevie Inc

20 x1 csω sinω x1 x 1 csωx1 sinωx v ( csωx1 sinωx) x + + sinω csω x heefe v 1 vsin 1 x csωsinωx 1 1 sin ωx ω + x ω ω v v csω x ( cs ωx1 + sinω csωx) x1 fm which we ge ( sin ω) / sin ω 1 ( v ) + ω cs ω ( sin ω) / 1 ( sin ω) / ( cs ω) / [ D ] [ ( cs ω) / ( sin ω) / W 1/ 1 ] + ω 1/ 1 (c) F he Newnian fluid he sess field in he saed-fame is: pμ( sin ω) μcs ω [ ] μ( cs ω) p+ μ( sin ω) whee he indeeminae pessue p is ime independen hus D ( cs ω) ( sin ω) D μω and ( sin ω) ( cs ω) μcs ω p+ μsin ω μcs ω p+ μsin ω W + ω p+ μ( sin ω) μcs ω p + μsin ω μcsω μcs ω pμsin ω μcs ω pμsin ω W + ω p μsin ω μcsω pμsin ω μcs ω hus μcs ω μsin ω cs ω sin ω W W + μω μsin ω μcs ω sin ω csω cs ω sin ω hus D / D+ W W μ sin ω csω (d) [ Q] [ Q ] csω sinω μ csω sinω csω sin ω μ sinω csω μ sinω csω sin ω csω hus we have [ Q] [ Q ] 88 Given he velciy field: v 1 x 1 v x v Obain (a) he sess field f a secnd-de fluid (b) he c-ainal deivaive f he sess ens Cpyigh 1 Elsevie Inc

21 v D W Ans (a) [ ] [ ] [ ] [ ] 4 4 [ A ] [ D] [ A ] 1 1 [ ] D / D+ ( ) + ( ) ( ) + ( ) A A1 A1 v v A1 A1 v v A he secnd-de fluid is defined by Eq(8186): pi+ μ A + μ A + μ A [ ] [ I] p + μ 1 + μ 4 + μ 4 11 μ1 4( μ μ) μ1 4( μ μ) p + + p+ + + p bain he pessue p we fis calculae he acceleain: x1 x 1 [ a] [ v/ ] + [ v][ v ] x x Equains f min ρai hen give x ρ x1 ρ x 1 ρ ( 1 )/ j p p p hus x x x p x + x +C (b) he c-ainal deivaive f : D/ D+ W-W Since W 1 D p p v1 v v1 v 1 D + x1 x x1 x p p x1 x 1 ρ x1 x 1 ρ v v1 x1 x + I 1 1 [] 8-1 Cpyigh 1 Elsevie Inc

22 ( 89 Shw ha he Lwe Cnveced deivaive f A 1 is A ie A1 A Ans Fm Eq(819) ( A A + A D+ DA DA / D+ A W WA + A D+ DA DA1 D A1 W D D W A1 DA1 D A1 v v A 1 A / / he Reine-Rivlin fluid is defined by he cnsiuive equain: φ pi+s S φ1 I I D+ I I D whee Ii ae he scala invaians f D Obain he sess cmpnens f his fluid in a simple sheaing flw Ans In a simple sheaing flw v 1 x v v / /4 [ ] / D D /4 I I 4 / /4 [ ] p[ I ] + φ1( /4 ) / + φ( /4) /4 81 he expnenial f a ens A is defined as: exp [ ] ens is exp [ A ] als bjecive? Ans Yes Because () () () () () () () () N N ( A ) Q() A Q () A Q AQ A Q AQ Q AQ Q A Q N 1 n A I+ A If A is an bjecive n! ha is ( A ) N is bjecive f all N As a cnsequence exp [ A] is bjecive 8 Why is i ha he fllwing cnsiuive equain is n accepable: pi+s S α v whee v is velciy and α is a cnsan Ans Because v is n bjecive 1 8- Cpyigh 1 Elsevie Inc

23 8 Le da and da dene he diffeenial aea vecs a ime τ and ime especively F an incmpessible fluid shw ha N N N 1 N D da / Dτ da D C / Dτ da da MNdA τ τ whee da is he magniude f da and he enss MN ae nwn as he Whie-Mezne enss - Ans Fm Eq (71) we have [ne hee da is he efeence aea and da is he aea a he 1 unning ime τ ] d ( de ) d a F F da F an incmpessible fluid ( de F ) 1 s ha a F da ha is 1 A C 1 da da F da F da da F F da da F F da da d da hus N N 1 N 1 D da D C D C d d d Nd whee N A N A A M A M N N Dτ Dτ Dτ τ τ τ 84 (a) Veify ha Oldyd's lwe cnveced deivaives f he ideniy ens I ae he Rivlin-Eicsen ens A N (b) Veify ha Oldyd uppe deivaives f he ideniy ens ae he negaive Whie-Mezne enss [see Pb 8 f he definiin f Whie-Mezne ens] Ans (a) he Nh lwe cnveced deivaive f is given by N N D JL / Dτ whee JL( τ) F ( τ) ( τ) F ( τ ) F I τ ( τ ) N N D J L D C JL τ F ( τ) F( τ) C ( τ) hus N A N Dτ Dτ τ τ (b) he Nh uppe cnveced deivaive f is given by N N 1 1 D JU / Dτ whee JU ( τ) F ( τ) ( τ)( F ) ( τ ) F I τ N N D J U D C JU ( τ ) F ( τ)( F ) ( τ) C ( τ) hus N M N N Dτ Dτ τ τ N 1 ( τ ) ( 85 Obain he equain D/ D+ v+ ( v) whee ( is he lwe cnveced deivaive f Ans By definiin he lwe cnveced deivaive is DJ L ( τ) / Dτ whee τ JL τ F ( τ) ( τ) F ( τ) hus D L( τ) / D τ D / D τ J F ( ) F ( ) τ τ + F ()[ τ] F () + F () () F Nw F F ( F ) ( v ) [see Eq(81)] and D / D D / D τ τ τ D τ / Dτ D / D D / D τ heefe F I 8- Cpyigh 1 Elsevie Inc

24 ( τ ) ( DJL D + v+ ( v) Dτ D τ 86 Cnside he fllwing cnsiuive equain: ( D / D) whee ( D / D) + S+ S μd S S α DS+SD and S is c-ainal deivaive f S Obain he shea sess funcin and he w nmal sess funcins f his fluid Ans Wih v 1 x v v he ae f defmain ens and spin ens ae: / / [ ] / [ ] / S D W Since he flw is seady he c-ainal deivaive is f symmeic S: + [ ] [ ] S SW WS SW SW Nw S1 S11 S1 S S SW S S 1 S11 S1 S 1 SW S S1 S1 S11 S S S S S 11 S S 1 1 [ ] [ ] S1 S11 + S S SD + DS S S 11 S S S S1 S S1 hus D S/ D S + α ( DS+SD ) gives ( α 1) ( 1+ α) + ( α 1) ( α 1) D S ( 1+ α) + ( α 1) ( 1+ α) ( 1+ α) D ( α 1) S ( 1+ α) S S1 S11 S S S11 S S1 S1 1 D S heefe S+ μd D S11 + ( α 1) S1 (i) S1 + ( 1 + α) S11 + ( α 1 ) S μ (ii) S1 + ( α 1) S (iii) S + ( 1+ α) S1 (iv) S + ( 1+ α ) S1 (v) S (vi) Nw (iii) (v) and (vi) give S1 S S S 1 α S Eq(iv) gives ( 1 α) ( α )( ) S + S hus wih 1 A 1+ 1 we have Eq (i) gives ( ) 11 1 S1 μ / A( ) S11 μ 1 α / A( ) S μ 1 + α / A( ) he shea sess funcin is S1 μ / A( ) he nmal sess funcins ae: 1 11 σ S S μ / A( ) σ S S μ 1 + α / A( ) 8-4 Cpyigh 1 Elsevie Inc

25 87 Obain he appaen viscsiy and he nmal sess funcins f he Oldyd -cnsan fluid [see (C) f Secin 8] Ans F he simple sheaing flw / / [ D] / [ ] / W S1 S11 S S S [ ] + [ SW] [ WS ] ( / ) S11 S S1 S 1 S S1 S1 S11 + S S [ SD ] + [ DS ] ( / ) S11 S S1 S + 1 S S1 4S1 S S SS ˆ ( SD+DS ) ( / ) S S / 1 D [ ] + [ DW] [ WD ] / DD 1 4 μ μ ˆ DD D ( ˆ μ D+ D ) μ S11 1S1 S1 1S S1 1S S+ ˆ 1S S1 1S S S S1 1S S S S+ Sˆ μ D+ Dˆ 1 ( ) S11 1S1 S1 1S S1 1S μ μ S S S S μ 1 1 S1 1S S S hus S S S S S μ S S μ s ha we have μ 11 μ ( 1 ) all he S S S he appaen viscsiy is η S1 / μ σ1 11 μ 1 σ1 8-5 Cpyigh 1 Elsevie Inc

26 88 Obain he appaen viscsiy and he nmal sess funcins f he Oldyd 4-cnsan fluid [see (D) f Secin 8] Ans F he simple sheaing flw / / S1 S11 S S [ ] / [ ] / D W S S11 S S1 S 1 S S1 4S1 S S SS ˆ ( SD+DS ) ( / ) S S / 1 D [ ] + [ DW] [ WD ] / DD ˆ DD D 1 1 / μ ( S)[ D ] μ ( S11 + S + S ) / 1 ( ) ( ˆ ) S+ Sˆ + μ S D μ D+ D S S S S + μ S + S + S / S S S1 1S + μ( S11 + S + S )/ S S S1 1S S S μ μ μ hus S S S S1 S11 1S1 μ S1 + μs11 / μ Fm which we ge wih B( ) (1 + μ ) 1 ( ) ( + ) 11 μ 1 / 1 μ 1 μ / S B S B hus he appaen viscsiy is: η μ μ S / (1 + )/ B( ) ( 1 )/ B( ) Nmal sess funcins ae: σ μ σ 8-6 Cpyigh 1 Elsevie Inc

27 1 1 { n } 89 Given [ Q] 1 and [ N] 1 and i 1 and { n } A N+N A N N (a) Veify ha QA Q A and QA Q A (b) Fm i 1 1 pi+f( A1 A) and ( Qf A1 A Q f QA1Q QAQ ) shw ha Q( ) Q ( ) and (c) Fm he esuls f pa (b) shw ha he viscmeic funcins have he ppeies: S( ) S ( ) σ1( ) σ1( ) σ( ) σ( ) 1 Ans (a) [ A1] ( N+N ) and 1 A 1 1 QA1Q 1 1 [ A 1] QAQ 1 1 [ A ] 1 1 (b) Q( ) Q Q pi+f( A1 A) Q pi+qf( A1 A) Q pi+f( QAQ 1 QAQ ) pi+f( A1( ) A( ) ) A A and A A hus Nw 1 1 Q( ) Q pi + f ( A1( ) A( ) ) and ( ) p 1( ) ( ) ha is Q( ) Q ( ) and Q( ) Q ( ) (c) [ ] Q Q I + f A A Q Q ( ) ( ) 11 ( ) 11 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) S( ) S( ) Q Q hus σ1 σ1 σ σ [Ne in viscmeic flw 1 ] 84 F he velciy field given in example 81 ie v vθ vz v he sess cmpnens in ems f he shea sess funcin S( ) and he nmal sess funcins σ ( ) and σ ( ) whee dv/ d (b) bain he fllwing velciy disibuin f he 1 (a) bain 8-7 Cpyigh 1 Elsevie Inc

28 Piseuille flw unde a pessue gadien f ( f ): v γ ( f /) d whee γ is he invese shea sess funcin and (c)bain he elain γ π Rf / 1/( R f ) f Q / f Ans (a) In example 81 we see ha he velciy field v vθ vz v descibes a viscmeic flw wih he nnze Rivlin-Eicsen enss given by [ A1] [ A ] n i whee n1 ez n e n e θ and dv / d (see Example 81 bu ne he diffeences in he de f bases) hus he sess cmpnens wih espec he basis { n i } ae given by (See secin 8): Sz τ( ) Szz S σ1( ) S Sθθ σ( ) Szθ Sθ (b) Wih S depending nly n he equains f min becme: S S Sθθ p p 1 p + ( i) (ii) ( Sz ) ( iii) θ z p p p Eq (i) gives z Eq (ii) gives θ z and Eq (iii) gives z z hus p / z a cnsan f Eq (iii) becmes 1 f C ( Sz ) f ( Sz ) f Sz + Since S z mus be finie a hus C and S f / Nw S τ ( ) whee τ ( ) is he shea sess funcin and dv/ d z z hus τ ( ) f / Inveing his equain we have τ ( f /) γ ( f /) n i R 1 Since τ ( ) is an dd funcin f heefe γ is als an dd funcin f s ha γ f / dv/ d γ f / dv γ f / d R R hus v( R) v γ ( f /) d Since v( R ) heefe γ ( /) R (c) he vlume dischage is given by Q v π d heefe v f d R R R dv R dv R Q v d v d d f d π π π π γ ( /) d d R hus Q/ π γ ( f /) d Le f / s d ds / f and 4 s / f hen R R f / R f / s s Q / π γ f / d 8 s / f γ sds f Q / π 8 sγ sds Diffeeniaing he las equain wih espec f we bain 1 f Q Rf Rf Rf R Rf Rf Rf 8 γ 8 γ R f γ π f f Rf 1 ( f Q) hus γ π R f f 8-8 Cpyigh 1 Elsevie Inc

29 8-9 Cpyigh 1 Elsevie Inc

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work MÜHENDİSLİK MEKNİĞİ. HFT İş-Eneji Pwe f a fce: Pwe in he abiliy f a fce d wk F: The fce applied n paicle Q P = F v = Fv cs( θ ) F Q v θ Pah f Q v: The velciy f Q ÖRNEK: İŞ-ENERJİ ω µ k v Calculae he pwe

More information

10.7 Temperature-dependent Viscoelastic Materials

10.7 Temperature-dependent Viscoelastic Materials Secin.7.7 Temperaure-dependen Viscelasic Maerials Many maerials, fr example plymeric maerials, have a respnse which is srngly emperaure-dependen. Temperaure effecs can be incrpraed in he hery discussed

More information

MEAN GRAVITY ALONG PLUMBLINE. University of New Brunswick, Department of Geodesy and Geomatics Engineering, Fredericton, N.B.

MEAN GRAVITY ALONG PLUMBLINE. University of New Brunswick, Department of Geodesy and Geomatics Engineering, Fredericton, N.B. MEA GRAVITY ALG PLUMBLIE Beh-Anne Main 1, Chis MacPhee, Rbe Tenze 1, Pe Vaníek 1 and Macel Sans 1 1. Inducin 1 Univesiy f ew Bunswick, Depamen f Gedesy and Gemaics Engineeing, Fedeicn,.B., E3B 5A3, Canada

More information

2. The units in which the rate of a chemical reaction in solution is measured are (could be); 4rate. sec L.sec

2. The units in which the rate of a chemical reaction in solution is measured are (could be); 4rate. sec L.sec Kineic Pblem Fm Ramnd F. X. Williams. Accding he equain, NO(g + B (g NOB(g In a ceain eacin miue he ae f fmain f NOB(g was fund be 4.50 0-4 ml L - s -. Wha is he ae f cnsumpin f B (g, als in ml L - s -?

More information

( t) Steady Shear Flow Material Functions. Material function definitions. How do we predict material functions?

( t) Steady Shear Flow Material Functions. Material function definitions. How do we predict material functions? Rle f aeial Funins in Rhelgial Analysis Rle f aeial Funins in Rhelgial Analysis QUALIY CONROL QUALIAIVE ANALYSIS QUALIY CONROL QUALIAIVE ANALYSIS mpae wih he in-huse daa n qualiaive basis unknwn maeial

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

Maxwell Equations. Dr. Ray Kwok sjsu

Maxwell Equations. Dr. Ray Kwok sjsu Maxwell quains. Ray Kwk sjsu eeence: lecmagneic Fields and Waves, Lain & Csn (Feeman) Inducin lecdynamics,.. Giihs (Penice Hall) Fundamenals ngineeing lecmagneics,.k. Cheng (Addisn Wesley) Maxwell quains.

More information

Lecture 3. Electrostatics

Lecture 3. Electrostatics Lecue lecsics In his lecue yu will len: Thee wys slve pblems in elecsics: ) Applicin f he Supepsiin Pinciple (SP) b) Applicin f Guss Lw in Inegl Fm (GLIF) c) Applicin f Guss Lw in Diffeenil Fm (GLDF) C

More information

Visco-elastic Layers

Visco-elastic Layers Visc-elasic Layers Visc-elasic Sluins Sluins are bained by elasic viscelasic crrespndence principle by applying laplace ransfrm remve he ime variable Tw mehds f characerising viscelasic maerials: Mechanical

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

Brace-Gatarek-Musiela model

Brace-Gatarek-Musiela model Chaper 34 Brace-Gaarek-Musiela mdel 34. Review f HJM under risk-neural IP where f ( T Frward rae a ime fr brrwing a ime T df ( T ( T ( T d + ( T dw ( ( T The ineres rae is r( f (. The bnd prices saisfy

More information

Part 2 KINEMATICS Motion in One and Two Dimensions Projectile Motion Circular Motion Kinematics Problems

Part 2 KINEMATICS Motion in One and Two Dimensions Projectile Motion Circular Motion Kinematics Problems Pa 2 KINEMATICS Min in One and Tw Dimensins Pjecile Min Cicula Min Kinemaics Pblems KINEMATICS The Descipin f Min Physics is much me han jus he descipin f min. Bu being able descibe he min f an bjec mahemaically

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

EN221 - Fall HW # 7 Solutions

EN221 - Fall HW # 7 Solutions EN221 - Fall2008 - HW # 7 Soluions Pof. Vivek Shenoy 1.) Show ha he fomulae φ v ( φ + φ L)v (1) u v ( u + u L)v (2) can be pu ino he alenaive foms φ φ v v + φv na (3) u u v v + u(v n)a (4) (a) Using v

More information

Kinematics Review Outline

Kinematics Review Outline Kinemaics Review Ouline 1.1.0 Vecrs and Scalars 1.1 One Dimensinal Kinemaics Vecrs have magniude and direcin lacemen; velciy; accelerain sign indicaes direcin + is nrh; eas; up; he righ - is suh; wes;

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

AP Physics 1 MC Practice Kinematics 1D

AP Physics 1 MC Practice Kinematics 1D AP Physics 1 MC Pracice Kinemaics 1D Quesins 1 3 relae w bjecs ha sar a x = 0 a = 0 and mve in ne dimensin independenly f ne anher. Graphs, f he velciy f each bjec versus ime are shwn belw Objec A Objec

More information

The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components

The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components Upcming eens in PY05 Due ASAP: PY05 prees n WebCT. Submiing i ges yu pin ward yur 5-pin Lecure grade. Please ake i seriusly, bu wha cuns is wheher r n yu submi i, n wheher yu ge hings righ r wrng. Due

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Orthotropic Materials

Orthotropic Materials Kapiel 2 Ohoopic Maeials 2. Elasic Sain maix Elasic sains ae elaed o sesses by Hooke's law, as saed below. The sesssain elaionship is in each maeial poin fomulaed in he local caesian coodinae sysem. ε

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

Transient Radial Flow Toward a Well Aquifer Equation, based on assumptions becomes a 1D PDE for h(r,t) : Transient Radial Flow Toward a Well

Transient Radial Flow Toward a Well Aquifer Equation, based on assumptions becomes a 1D PDE for h(r,t) : Transient Radial Flow Toward a Well ansien Radial Flw wad a Well Aqife Eqain, based n assmpins becmes a D PDE f h(,) : -ansien flw in a hmgenes, ispic aqife -flly peneaing pmping well & infinie, hiznal, cnfined aqife f nifm hickness, hs

More information

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant Nes n Inducance and cu Tansens Je Wlfe, Physcs UNSW cus wh and - Wha happens when yu clse he swch? (clse swch a 0) - uen flws ff capac, s d Acss capac: Acss ess: c d s d d ln + cns. 0, ln cns. ln ln ln

More information

β A Constant-G m Biasing

β A Constant-G m Biasing p 2002 EE 532 Anal IC Des II Pae 73 Cnsan-G Bas ecall ha us a PTAT cuen efeence (see p f p. 66 he nes) bas a bpla anss pes cnsan anscnucance e epeaue (an als epenen f supply lae an pcess). Hw h we achee

More information

Lecture 4 ( ) Some points of vertical motion: Here we assumed t 0 =0 and the y axis to be vertical.

Lecture 4 ( ) Some points of vertical motion: Here we assumed t 0 =0 and the y axis to be vertical. Sme pins f erical min: Here we assumed and he y axis be erical. ( ) y g g y y y y g dwnwards 9.8 m/s g Lecure 4 Accelerain The aerage accelerain is defined by he change f elciy wih ime: a ; In analgy,

More information

Physics Courseware Physics I Constant Acceleration

Physics Courseware Physics I Constant Acceleration Physics Curseware Physics I Cnsan Accelerain Equains fr cnsan accelerain in dimensin x + a + a + ax + x Prblem.- In he 00-m race an ahlee acceleraes unifrmly frm res his p speed f 0m/s in he firs x5m as

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

Lecture 3: Resistive forces, and Energy

Lecture 3: Resistive forces, and Energy Lecure 3: Resisive frces, and Energy Las ie we fund he velciy f a prjecile ving wih air resisance: g g vx ( ) = vx, e vy ( ) = + v + e One re inegrain gives us he psiin as a funcin f ie: dx dy g g = vx,

More information

Stress, Cauchy s equation and the Navier-Stokes equations

Stress, Cauchy s equation and the Navier-Stokes equations Chapte 3 Stess, Cauchy s equation and the Navie-Stokes equations 3. The concept of taction/stess Conside the volume of fluid shown in the left half of Fig. 3.. The volume of fluid is subjected to distibuted

More information

CHAPTER GAUSS'S LAW

CHAPTER GAUSS'S LAW lutins--ch 14 (Gauss's Law CHAPTE 14 -- GAU' LAW 141 This pblem is ticky An electic field line that flws int, then ut f the cap (see Figue I pduces a negative flux when enteing and an equal psitive flux

More information

Heat transfer between shell and rigid body through the thin heat-conducting layer taking into account mechanical contact

Heat transfer between shell and rigid body through the thin heat-conducting layer taking into account mechanical contact Advanced Cmpuainal Meds in Hea Tansfe X 8 Hea ansfe beween sell and igid bdy ug e in ea-cnducing laye aking in accun mecanical cnac V. V. Zzulya Cen de Invesigación Cienífica de Yucaán, Méida, Yucaán,

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

Total Deformation and its Role in Heavy Precipitation Events Associated with Deformation-Dominant Flow Patterns

Total Deformation and its Role in Heavy Precipitation Events Associated with Deformation-Dominant Flow Patterns ADVANCES IN ATMOSPHERIC SCIENCES VOL. 25 NO. 1 2008 11 23 Tal Defmain and is Rle in Heavy Pecipiain Evens Assciaed wih Defmain-Dminan Flw Paens GAO Shuing 1 (påë) YANG Shuai 12 (fl R) XUE Ming 3 (Å ) and

More information

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A LCTRIC & MAGNTIC FILDS I (STATIC FILDS) LC 05A D. Hanna A. Kils Assciate Pfess lectnics & Cmmnicatins ngineeing Depatment Faclty f ngineeing Cai Univesity Fall 0 f Static lecticity lectic & Magnetic Fields

More information

A) (0.46 î ) N B) (0.17 î ) N

A) (0.46 î ) N B) (0.17 î ) N Phys10 Secnd Maj-14 Ze Vesin Cdinat: xyz Thusday, Apil 3, 015 Page: 1 Q1. Thee chages, 1 = =.0 μc and Q = 4.0 μc, ae fixed in thei places as shwn in Figue 1. Find the net electstatic fce n Q due t 1 and.

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCuseWae hp://cw.m.edu 6.03/ESD.03J Elecmagnecs and Applcans, Fall 005 Please use he fllwng can fma: Makus Zahn, Ech Ippen, and Davd Saeln, 6.03/ESD.03J Elecmagnecs and Applcans, Fall 005. (Massachuses

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

3.3.1 Expanded forms of the Continuity Equation. θ (ρv θ)+ z (ρv z)=0. θ (ρv θ sin θ)+ 1

3.3.1 Expanded forms of the Continuity Equation. θ (ρv θ)+ z (ρv z)=0. θ (ρv θ sin θ)+ 1 Ke Equations 58 3.3 Ke Equations 3.3.1 Epanded foms of the Continuit Equation Rectangula coodinates: t (v (v z (v z0 Clindical coodinates: t 1 Spheical coodinates: (v 1 t 1 2 (2 v 1 θ (v θ z (v z0 θ (v

More information

Electric Charge. Electric charge is quantized. Electric charge is conserved

Electric Charge. Electric charge is quantized. Electric charge is conserved lectstatics lectic Chage lectic chage is uantized Chage cmes in incements f the elementay chage e = ne, whee n is an intege, and e =.6 x 0-9 C lectic chage is cnseved Chage (electns) can be mved fm ne

More information

(V 1. (T i. )- FrC p. ))= 0 = FrC p (T 1. (T 1s. )+ UA(T os. (T is

(V 1. (T i. )- FrC p. ))= 0 = FrC p (T 1. (T 1s. )+ UA(T os. (T is . Yu are repnible fr a reacr in which an exhermic liqui-phae reacin ccur. The fee mu be preheae he hrehl acivain emperaure f he caaly, bu he pruc ream mu be cle. T reuce uiliy c, yu are cniering inalling

More information

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in Circui Variables 1 Assessmen Problems AP 1.1 Use a produc of raios o conver wo-hirds he speed of ligh from meers per second o miles per second: ( ) 2 3 1 8 m 3 1 s 1 cm 1 m 1 in 2.54 cm 1 f 12 in 1 mile

More information

Application of Fractional Calculus in Food Rheology E. Vozáry, Gy. Csima, L. Csapó, F. Mohos

Application of Fractional Calculus in Food Rheology E. Vozáry, Gy. Csima, L. Csapó, F. Mohos Applicain f Facinal Calculus in F Rhelgy Szen Isán Uniesiy, Depamen f Physics an Cnl Vzay.sze@ek.szie.hu Keyws: facinal calculus, iscelasic, f, ceep, ecey Absac. In facinal calculus he e (β) f iffeeniain

More information

Field due to a collection of N discrete point charges: r is in the direction from

Field due to a collection of N discrete point charges: r is in the direction from Physcs 46 Fomula Shee Exam Coulomb s Law qq Felec = k ˆ (Fo example, f F s he elecc foce ha q exes on q, hen ˆ s a un veco n he decon fom q o q.) Elecc Feld elaed o he elecc foce by: Felec = qe (elecc

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Finie Diffeence Mehod fo Odinay Diffeenial Eqaions Afe eading his chape, yo shold be able o. Undesand wha he finie diffeence mehod is and how o se i o solve poblems. Wha is he finie diffeence

More information

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x, Laplace Transforms Definiion. An ordinary differenial equaion is an equaion ha conains one or several derivaives of an unknown funcion which we call y and which we wan o deermine from he equaion. The equaion

More information

Work, Energy, and Power. AP Physics C

Work, Energy, and Power. AP Physics C k, Eneg, and Pwe AP Phsics C Thee ae man diffeent TYPES f Eneg. Eneg is expessed in JOULES (J) 4.19 J = 1 calie Eneg can be expessed me specificall b using the tem ORK() k = The Scala Dt Pduct between

More information

Mass Linear Momentum Moment of Momentum Energy Putting it all together!

Mass Linear Momentum Moment of Momentum Energy Putting it all together! inie Cnrl lue nalsis vin fr a Sse a inie Cnrl lue a Linear enu en f enu Ener Puin i all eer! D Cnservain f a B = Tal aun f a in e e b = a er uni a = DB ˆ b b n ˆ n ˆ equain Bu D / =! Cninui Equain a leavin

More information

a. (1) Assume T = 20 ºC = 293 K. Apply Equation 2.22 to find the resistivity of the brass in the disk with

a. (1) Assume T = 20 ºC = 293 K. Apply Equation 2.22 to find the resistivity of the brass in the disk with Aignmen #5 EE7 / Fall 0 / Aignmen Sluin.7 hermal cnducin Cnider bra ally wih an X amic fracin f Zn. Since Zn addiin increae he number f cnducin elecrn, we have cale he final ally reiiviy calculaed frm

More information

Stochastic Modelling in Finance - Solutions to sheet 8

Stochastic Modelling in Finance - Solutions to sheet 8 Sochasic Modelling in Finance - Soluions o shee 8 8.1 The price of a defaulable asse can be modeled as ds S = µ d + σ dw dn where µ, σ are consans, (W ) is a sandard Brownian moion and (N ) is a one jump

More information

PHYS PRACTICE EXAM 2

PHYS PRACTICE EXAM 2 PHYS 1800 PRACTICE EXAM Pa I Muliple Choice Quesions [ ps each] Diecions: Cicle he one alenaive ha bes complees he saemen o answes he quesion. Unless ohewise saed, assume ideal condiions (no ai esisance,

More information

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial a b c Fig. S. The anenna consucion: (a) ain geoeical paaees, (b) he wie suppo pilla and (c) he console link beween wie and coaial pobe. Fig. S. The anenna coss-secion in he y-z plane. Accoding o [], he

More information

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can. 1 Cicula Moion Radians One evoluion is equivalen o 360 0 which is also equivalen o 2π adians. Theefoe we can say ha 360 = 2π adians, 180 = π adians, 90 = π 2 adians. Hence 1 adian = 360 2π Convesions Rule

More information

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light Lecue 5 Chape 3 lecomagneic Theo, Phoons, and Ligh Gauss s Gauss s Faada s Ampèe- Mawell s + Loen foce: S C ds ds S C F dl dl q Mawell equaions d d qv A q A J ds ds In mae fields ae defined hough ineacion

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 35 Chaper 8: Second Order Circuis Daniel M. Liynski, Ph.D. ECE 1 Circui Analysis Lesson 3-34 Chaper 7: Firs Order Circuis (Naural response RC & RL circuis, Singulariy funcions,

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

Control Volume Derivation

Control Volume Derivation School of eospace Engineeing Conol Volume -1 Copyigh 1 by Jey M. Seizman. ll ighs esee. Conol Volume Deiaion How o cone ou elaionships fo a close sysem (conol mass) o an open sysem (conol olume) Fo mass

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 15 10/30/2013. Ito integral for simple processes

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 15 10/30/2013. Ito integral for simple processes MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.7J Fall 13 Lecure 15 1/3/13 I inegral fr simple prcesses Cnen. 1. Simple prcesses. I ismery. Firs 3 seps in cnsrucing I inegral fr general prcesses 1 I inegral

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: 5/0/011 Chapte 5 In the last lectue: CapacitanceII we calculated the capacitance C f a system f tw islated cnducts. We als calculated the capacitance f sme simple gemeties. In this chapte we will cve the

More information

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC Ch.. Group Work Unis Coninuum Mechanics Course (MMC) - ETSECCPB - UPC Uni 2 Jusify wheher he following saemens are rue or false: a) Two sreamlines, corresponding o a same insan of ime, can never inersec

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

The Buck Resonant Converter

The Buck Resonant Converter EE646 Pwer Elecrnics Chaper 6 ecure Dr. Sam Abdel-Rahman The Buck Resnan Cnverer Replacg he swich by he resnan-ype swich, ba a quasi-resnan PWM buck cnverer can be shwn ha here are fur mdes f pera under

More information

5.1 Angles and Their Measure

5.1 Angles and Their Measure 5. Angles and Their Measure Secin 5. Nes Page This secin will cver hw angles are drawn and als arc lengh and rains. We will use (hea) represen an angle s measuremen. In he figure belw i describes hw yu

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant. ANTNNAS Vecto and Scala Potentials Maxwell's quations jωb J + jωd D ρ B (M) (M) (M3) (M4) D ε B Fo a linea, homogeneous, isotopic medium and ε ae contant. Since B, thee exists a vecto A such that B A and

More information

ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6

ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6 P 1 P 2 y sd fx s d fsh z ys P 3 P 4 my, ms, m, m, m, m P 6 d d P 7 m y P 5 m m s P 10 y y y P 8 P 9 s sh, s, ss, sd sds, s, sh sv s s P 11 s P 12,, m, m, m,, dd P 13 m f m P 18 h m s P 22 f fx f fsh fm

More information

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown [Giffiths Ch.-] 8//8, :am :am, Useful fomulas V ˆ ˆ V V V = + θ+ φ ˆ and v = ( v ) + (sin θvθ ) + v θ sinθ φ sinθ θ sinθ φ φ. (6%, 7%, 7%) Suppose the potential at the suface of a hollow hemisphee is specified,

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5 ECE 6345 Sping 15 Pof. David R. Jackson ECE Dept. Notes 5 1 Oveview This set of notes discusses impoved models of the pobe inductance of a coaxially-fed patch (accuate fo thicke substates). A paallel-plate

More information

21.9 Magnetic Materials

21.9 Magnetic Materials 21.9 Magneic Maerials The inrinsic spin and rbial min f elecrns gives rise he magneic prperies f maerials è elecrn spin and rbis ac as iny curren lps. In ferrmagneic maerials grups f 10 16-10 19 neighbring

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

3 ) = 10(1-3t)e -3t A

3 ) = 10(1-3t)e -3t A haper 6, Sluin. d i ( e 6 e ) 0( - )e - A p i 0(-)e - e - 0( - )e -6 W haper 6, Sluin. w w (40)(80 (40)(0) ) ( ) w w w 0 0 80 60 kw haper 6, Sluin. i d 80 60 40x0 480 ma haper 6, Sluin 4. i (0) 6sin 4-0.7

More information

Motion Along a Straight Line

Motion Along a Straight Line PH 1-3A Fall 010 Min Alng a Sraigh Line Lecure Chaper (Halliday/Resnick/Walker, Fundamenals f Physics 8 h ediin) Min alng a sraigh line Sudies he min f bdies Deals wih frce as he cause f changes in min

More information

SMKA NAIM LILBANAT KOTA BHARU KELANTAN. SEKOLAH BERPRESTASI TINGGI. Kertas soalan ini mengandungi 7 halaman bercetak.

SMKA NAIM LILBANAT KOTA BHARU KELANTAN. SEKOLAH BERPRESTASI TINGGI. Kertas soalan ini mengandungi 7 halaman bercetak. Name : Frm :. SMKA NAIM LILBANAT 55 KOTA BHARU KELANTAN. SEKOLAH BERPRESTASI TINGGI PEPERIKSAAN PERCUBAAN SPM / ADDITIONAL MATHEMATICS Keras ½ Jam ½ Jam Unuk Kegunaan Pemeriksa Arahan:. This quesin paper

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

Relative and Circular Motion

Relative and Circular Motion Relaie and Cicula Moion a) Relaie moion b) Cenipeal acceleaion Mechanics Lecue 3 Slide 1 Mechanics Lecue 3 Slide 2 Time on Video Pelecue Looks like mosly eeyone hee has iewed enie pelecue GOOD! Thank you

More information

Final Review of AerE 243 Class

Final Review of AerE 243 Class Final Review of AeE 4 Class Content of Aeodynamics I I Chapte : Review of Multivaiable Calculus Chapte : Review of Vectos Chapte : Review of Fluid Mechanics Chapte 4: Consevation Equations Chapte 5: Simplifications

More information

3. Electromagnetic Waves II

3. Electromagnetic Waves II Lectue 3 - Electomagnetic Waves II 9 3. Electomagnetic Waves II Last time, we discussed the following. 1. The popagation of an EM wave though a macoscopic media: We discussed how the wave inteacts with

More information

Chem. 6C Midterm 1 Version B October 19, 2007

Chem. 6C Midterm 1 Version B October 19, 2007 hem. 6 Miderm Verin Ocber 9, 007 Name Suden Number ll wr mu be hwn n he exam fr parial credi. Pin will be aen ff fr incrrec r n uni. Nn graphing calcular and ne hand wrien 5 ne card are allwed. Prblem

More information

The 37th International Physics Olympiad Singapore. Experimental Competition. Wednesday, 12 July, Sample Solution

The 37th International Physics Olympiad Singapore. Experimental Competition. Wednesday, 12 July, Sample Solution The 37h Inernainal Physics Olypiad Singapre Experienal Cpeiin Wednesday, July, 006 Saple Sluin Par a A skech f he experienal seup (n required) Receiver Raing able Gnieer Fixed ar Bea splier Gnieer Mvable

More information

Chapter 2 Solutions. ψ 1 ψ. 16 t. ( z υt ), where υ is in the negative z direction. = 2 A. Chapter 2 Solutions = 32

Chapter 2 Solutions. ψ 1 ψ. 16 t. ( z υt ), where υ is in the negative z direction. = 2 A. Chapter 2 Solutions = 32 Chaper Soluions 1 Chaper Soluions.1 υ ( z+ υ) ψ υ( z+ υ) ψ υ I s a wice differeniable funcion of ( z υ ), where υ is in he negaive z direcion.. υ ψ ( y,) ( y 4) ( y 4 ) ψ ( y 4 ) ψ 3 Thus, υ 4, υ 16, and,

More information

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU Physis 44 Eleo-Magneo-Dynamis M. Beondo Physis BYU Paaveos Φ= V + Α Φ= V Α = = + J = + ρ J J ρ = J S = u + em S S = u em S Physis BYU Poenials Genealize E = V o he ime dependen E & B ase Podu of paaveos:

More information

WORK POWER AND ENERGY Consevaive foce a) A foce is said o be consevaive if he wok done by i is independen of pah followed by he body b) Wok done by a consevaive foce fo a closed pah is zeo c) Wok done

More information

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions EN10: Continuum Mechanics Homewok 7: Fluid Mechanics Solutions School of Engineeing Bown Univesity 1. An ideal fluid with mass density ρ flows with velocity v 0 though a cylindical tube with cosssectional

More information

MEMS 0031 Electric Circuits

MEMS 0031 Electric Circuits MEMS 0031 Elecric Circuis Chaper 1 Circui variables Chaper/Lecure Learning Objecives A he end of his lecure and chaper, you should able o: Represen he curren and volage of an elecric circui elemen, paying

More information

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2  P 1 =  #P L L, Lecue 36 Pipe Flow and Low-eynolds numbe hydodynamics 36.1 eading fo Lecues 34-35: PKT Chape 12. Will y fo Monday?: new daa shee and daf fomula shee fo final exam. Ou saing poin fo hydodynamics ae wo equaions:

More information

The complex Fourier series has an important limiting form when the period approaches infinity, i.e., T 0. 0 since it is proportional to 1/L, but

The complex Fourier series has an important limiting form when the period approaches infinity, i.e., T 0. 0 since it is proportional to 1/L, but Fourier Transforms The complex Fourier series has an imporan limiing form when he period approaches infiniy, i.e., T or L. Suppose ha in his limi () k = nπ L remains large (ranging from o ) and (2) c n

More information

GEOID-QUASIGEOID CORRECTION IN FORMULATION OF THE FUNDAMENTAL FORMULA OF PHYSICAL GEODESY. Robert Tenzer 1 Petr Vaníček 2

GEOID-QUASIGEOID CORRECTION IN FORMULATION OF THE FUNDAMENTAL FORMULA OF PHYSICAL GEODESY. Robert Tenzer 1 Petr Vaníček 2 GEID-QUASIGEID CECTI I FMULATI F TE FUDAMETAL FMULA F PYSICAL GEDESY be Tenze 1 Pe Vaníček 1 Depamen f Gedesy and Gemaics Enineein Univesiy f ew Bunswick P Bx 4400 Fedeicn ew Bunswick Canada E3B 5A3; Tel

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES In igid body kinemaics, we use he elaionships govening he displacemen, velociy and acceleaion, bu mus also accoun fo he oaional moion of he body. Descipion of he moion of igid

More information

Maximum Cross Section Reduction Ratio of Billet in a Single Wire Forming Pass Based on Unified Strength Theory. Xiaowei Li1,2, a

Maximum Cross Section Reduction Ratio of Billet in a Single Wire Forming Pass Based on Unified Strength Theory. Xiaowei Li1,2, a Inenainal Fum n Enegy, Envinmen and Susainable evelpmen (IFEES 06 Maximum Css Sein Reduin Rai f Bille in a Single Wie Fming Pass Based n Unified Sengh They Xiawei Li,, a Shl f Civil Engineeing, Panzhihua

More information

ELECTRODYNAMICS: PHYS 30441

ELECTRODYNAMICS: PHYS 30441 ELETRODYNAMIS: PHYS 44. Electomagnetic Field Equations. Maxwell s Equations Analysis in space (vacuum). oulomb Bon June 4, 76 Angoulême, Fance Died August 2, 86 Pais, Fance In 785 oulomb pesented his thee

More information

Single Degree of Freedom System Forced Vibration

Single Degree of Freedom System Forced Vibration Maa Kliah : Dinamia Srr & Penganar Reayasa Kegempaan Kde : TSP 3 SKS : 3 SKS Single Degree f Freedm Sysem Frced Vibrain Pereman - 3 TIU : Mahasiswa dapa menelasan enang eri dinamia srr. Mahasiswa dapa

More information

A) N B) 0.0 N C) N D) N E) N

A) N B) 0.0 N C) N D) N E) N Cdinat: H Bahluli Sunday, Nvembe, 015 Page: 1 Q1. Five identical pint chages each with chage =10 nc ae lcated at the cnes f a egula hexagn, as shwn in Figue 1. Find the magnitude f the net electic fce

More information

Physics 1402: Lecture 22 Today s Agenda

Physics 1402: Lecture 22 Today s Agenda Physics 142: ecure 22 Today s Agenda Announcemens: R - RV - R circuis Homework 6: due nex Wednesday Inducion / A curren Inducion Self-Inducance, R ircuis X X X X X X X X X long solenoid Energy and energy

More information

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN D. Keffe - ChE 40: Hea Tansfe and Fluid Flow Deamen of Chemical Enee Uniesi of Tennessee Pof. Daid Keffe Couse Lecue Noes SIXTEEN SECTION.6 DIFFERENTIL EQUTIONS OF CONTINUITY SECTION.7 DIFFERENTIL EQUTIONS

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba THE INTEACTION OF ADIATION AND MATTE: SEMICLASSICAL THEOY PAGE 26 III. EVIEW OF BASIC QUANTUM MECHANICS : TWO -LEVEL QUANTUM SYSTEMS : The lieaue of quanum opics and lase specoscop abounds wih discussions

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information