Algebra 2A. Algebra 2A- Unit 5

Size: px
Start display at page:

Download "Algebra 2A. Algebra 2A- Unit 5"

Transcription

1 Algeba 2A Algeba 2A- Ui 5

2 ALGEBRA 2A Less: 5.1 Name: Dae: Plymial fis O b j e i! I a evalae plymial fis! I a ideify geeal shapes f gaphs f plymial fis Plymial Fi: ly e vaiable (x) V a b l a y a :, ze a 0: : All he expes ae mbes. qai Algeba 2A- Ui 5 2

3 Vale f a fi: f ( k ) = Oe way evalae plymial fis is se die sbsii. Ahe way evalae a plymial is se syhei sbsii. V a b l a y Real Zes f a plymial fi: Maximm mbe f eal zes is eqal he degee. Real zes: whee he gaph sses he x-axis. f(x) = x + 2 g(x) = x 2 4 Hw may zes d he fllwig fis have? Zes may be eal mplex... The Fdameal Theem f Algeba: h degee plymial eqai has exaly slis. Ed behavi f a plymial fi: A B C D a x x + A) psiive eve B) psiive dd C) egaive eve D) egaive dd f (x) f (x) Algeba 2A- Ui 5 3

4 I s Example 1: Deide whehe he fi is a plymial fi. If i is, wie he fi i sadad fm ad sae is degee, ype ad leadig effiie. 1. f (x) = ½ x 2 3x f (x) = x x 2. f (x) = 6x x 1 + x 4. f (x) = 0.5 x + π x 2 2 Y Y T 1: Wha ae he degee ad leadig effiie f a) 3x 2-2x x 3 ) 4x 2 3xy + 16y 2 b) 100-5x x 7 d) 4x 6 + 6x 4 + 8x 8 10x I s Example 2: Vale f a fi sig Die Sbsii f (x) = 2 x 4-8 x x - 7 whe x = 3. Sli: Example 3: Vale f a fi sig Syhei Sbsii f (x) = 2 x 4-8 x x - 7 whe x = 3. Sli: Y T Y T 2: Use die sbsii If f(x)= 2x 2-3x + 1 a) f(-4) Y T 4: Usig Syhei Sbsii. Fid f(2) a) 3x 2 2x x 3 Y T 3: Use die sbsii If f(x)= x 2-4x 5 b) f(a 2-1) Y T 5: Usig Syhei Sbsii. Fid f(-5) b) 100 5x x 4 Algeba 2A- Ui 5 4

5 F eah gaph belw, desibe he ed behavi, deemie whehe i epeses a dd-degee a eve-degee fi. sae he mbe f eal zes. f(x)= f(x)= f(x)= f(x)= f(x)= f(x)= f(x)= f(x)= Algeba 2A- Ui 5 5

6 Y T 6: Y T 7: Y T Degee: # eal zes: Degee: # eal zes: Ed behavi: Ed behavi: Y T 8: Y T 9: Y w: Degee: # eal zes: Degee: # eal zes: Ed behavi: Ed behavi: Algeba 2A- Ui 5 6

7 Clse 5.1 Wam-p 5.1 p(3) = p(-5) = p(3) = p(-5) = Algeba 2A- Ui 5 7

8 ALGEBRA 2A Less: 5.2 Name: Dae: Gaphig Plymial Fis O b j e! I a gaph plymial fis ad lae hei eal zes! I a fid he maxima ad miima f plymial fis We have leaed hw gaph fis wih he fllwig degees: V a b l a y 0 Example: f(x) = 2 hizal lie 1 Example: f(x) = 2x 3 lie 2 Example: f(x) = x 2 + 2x 3 paabla Hw d y gaph plymial fis wih degees highe ha 2? We ll make a able f vales, he gaph... Gaphs f Plymial Fis: ae is (hee ae beaks) have smh s wih degee, have a ms 1 s Fllws ed behavi adig (eve dd) ad a (psiive egaive). Algeba 2A- Ui 5 8

9 I I s s i i Example 1: Gaph by makig a able f vales ad fid he eal zes, x-diae f elaive Example maxima 2 : Gaph & by miima. makig Desibe a able he f vales ed behavi ad fid f he he zes, gaph. x-diae f elaive maxima & miima. Desibe he ed behavi f he gaph. f (x) = x 3 + x 2 4 x 1 f (x) = x 4 2x 3 + 2x 2 + 4x. : a : # s: a ms # al zes: : a : # s: a ms # al zes: # eal zes: a ms # eal zes: a ms Ed Behavi: Ed Behavi: # Real zes: (x-diae) # Real zes: (x-diaes) Zes: bewee ad Zes: bewee ad bewee ad bewee ad bewee ad bewee ad Relaive maxima & miima Relaive maxima & miima Maxima a Maxima a Miima a Miima a Fid he appximae zes ( he eaes hdedhs) Algeba 2A- Ui 5 9

10 Y T 1: f(x) = 3x 3 9x + 1 x f(x) Relaive maxima & miima: Maxima a Miima a # Real zes: Zes: bewee ad bewee ad bewee ad Y T 2: f(x) = x 3 + 4x x f(x) Relaive maxima & miima: Maxima Real a zes: Miima a # Real zes: Zes: bewee Maxima: ad bewee Miima: ad bewee ad Algeba 2A- Ui 5 10

11 ALGEBRA 2A Less: 5.3 Name: Dae: Slvig Eqais by sig Qadai Tehiqes O b j e i! I a wie expessis i qadai fm! I a se qadai ehiqes slve eqais Qadai Fm: Qadai Fmla: V a b l a I s i Example 1: Wie he give expessi i qadai fm, if pssible. Example 2: Wie he give expessi i qadai fm, if pssible. Algeba 2A- Ui 5 11

12 I s i Example 3: Wie he give expessi i qadai fm, if pssible. Example 4: Wie he give expessi i qadai fm, if pssible. I y w wds: Wha is eessay f a expessi be wie i qadai fm? Y T 1: Wie eah expessi i qadai fm, if pssible. Y T a) 2x 4 + x b) x ) x 6 + x d) x - 2x 1/2 + 3 Algeba 2A- Ui 5 12

13 Example 5: Slve: Y T 2: Slve Y x 4-10x = 0 T Algeba 2A- Ui 5 13

14 Example 7: Slve. Example 8: Slve. Y T 3: Slve Algeba 2A- Ui 5 14

15 ALGEBRA 2A Less: 5.4 Name: Dae: The Remaide ad Fa Theems O b j e i! I a deemie whehe a bimial is a fa f a plymial by sig syhei sbsii Use syhei divisi: Example 1: (2x 2 + 3x 4) (x 2) R e v i e w Example 2: (p 3 6) (p 1) Algeba 2A- Ui 5 15

16 Y T 1: (2x 3 7x 2 8x + 16) (x 4) The bimial (x a) is a fa f he plymial f(x) if ad ly if f(a) = 0. This meas ha he emaide f he syhei divisi lg divisi is. Example 3: Shw ha x+5 is a fa f plymial.. The fid he emaiig fas f he Algeba 2A- Ui 5 16

17 Example 4: Give ha (x+2) is a fa f f(x), fid he emaiig fas f he plymial Y T 2: Algeba 2A- Ui 5 17

18 ALGEBRA 2A Less: 5.5 Name: Dae: Rs ad Zes O b j e i! I a fid all he zes (eal & imagiay) f a plymial fi! I a fid exa zes by sig he gaphig alla, syhei sbsii, ad he Qadai Fmla I s i Cmplex Zes ae always i pais! A plymial fi may have ay # f mplex zes. Examples: & (is jgae) & (is jgae) & (is jgae) Algeba 2A- Ui 5 18

19 Example 1: Fid all he zes f. Sep 1: Ty sme pssible zes by sig syhei sbsii: y may hea wih Gaph.Cal.! Sep 2: Oe y ge a plymial wih degee 2 y a slve he qadai eqai! Sep 3: Give he Aswe: Zes ae Example 2: Fid all he zes f f(x)= x 4 21x Sep 1: Ty sme pssible zes by sig syhei sbsii: y may hea wih Gaph.Cal.! Ty ahe ze il y ge a depessed plymial wih degee 2. Sep 2: Oe y ge a plymial wih degee 2 y a slve he qadai eqai! Sep 3: Give he Aswe: Zes ae Algeba 2A- Ui 5 19

20 Y T 1: Fid all he zes f Sep 1: Sep 2: Sep 3: Aswe Example 3: Wie a plymial fi f leas degee wih iege effiies whse zes ilde & (is jgae) Remembe: " Imagiay s always me i pais!!! " If p & q ae s f a eqai, he (x-p) ad (x-q) ae fas!!! S, bease hee ae zes, he leas degee will be:. Ad we ge he plymial fi wih he leas degee by mliplyig: Use FOIL disibive ppey. Hi: Dawig he aws may help y avid misakes! Simplify by mbiig like ems. Remembe: i 2 = -1 Aswe: Algeba 2A- Ui 5 20

21 Y T 2: Wie a plymial fis f leas degee wih iege effiies whse zes ilde & 4i. Whih e is missig? S, bease hee ae zes, he leas degee will be:. Ad we ge he plymial fi wih he leas degee by mliplyig: Use FOIL disibive ppey. Simplify by mbiig like ems. Aswe: Algeba 2A- Ui 5 21

22 ALGEBRA 2A Less: 5.6 Name: Dae: Opeais Fis O b j e! I a fid he sm, diffeee, pd, ad qie f fis.! I a fid he mpsii f fis. V a b l a y Cmpsii f Fis Thee is a 40% ff sale a Old Navy ad as a emplyee y eeive a 10% dis, hw mh will y pay a $299 jake? Y d ge 50% ff...his is a example f a mpsie fi. Y will pay 90% f he s (10% dis) afe y pay 60% (40% dis). The w fis lk like his f(x) = 0.9x g(x) = 0.6x We a p hese gehe i a mpsie fi ha lks like his f(g(x)) f f g f x Algeba 2A- Ui 5 22

23 Example 1: I s i esii: g(x) = 0 bease: Y T 1: Y D fge he esii sie he demia a eve be eqal! T Algeba 2A- Ui 5 23

24 I s i Example 2: Example 3: If f(x) = x 2 5 ad g(x) = 3x fid f[g(2)] fid g[f(2)] Y T 2: Y T Y T 3: Algeba 2A- Ui 5 24

Lecture 4. Electrons and Holes in Semiconductors

Lecture 4. Electrons and Holes in Semiconductors ecue 4 lec ad Hle i Semicduc I hi lecue yu will lea: eeai-ecmbiai i emicduc i me deail The baic e f euai gveig he behavi f elec ad hle i emicduc Shcley uai Quai-eualiy i cducive maeial C 35 Sig 2005 Faha

More information

Lecture 4. Electrons and Holes in Semiconductors

Lecture 4. Electrons and Holes in Semiconductors Lecue 4 lec ad Hle i Semicduc I hi lecue yu will lea: Geeai-ecmbiai i emicduc i me deail The baic e f euai gveig he behavi f elec ad hle i emicduc Shckley uai Quai-eualiy i cducive maeial C 35 Sig 2005

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Cntl Systems Fequency Dmain Analysis The fequency espnse f a system is defined as the steady-state espnse f the system t a sinusidal (hamnic) input. F linea systems, the esulting utput is itself

More information

Suppose we have observed values t 1, t 2, t n of a random variable T.

Suppose we have observed values t 1, t 2, t n of a random variable T. Sppose we have obseved vales, 2, of a adom vaable T. The dsbo of T s ow o belog o a cea ype (e.g., expoeal, omal, ec.) b he veco θ ( θ, θ2, θp ) of ow paamees assocaed wh s ow (whee p s he mbe of ow paamees).

More information

Neutron Slowing Down Distances and Times in Hydrogenous Materials. Erin Boyd May 10, 2005

Neutron Slowing Down Distances and Times in Hydrogenous Materials. Erin Boyd May 10, 2005 Neu Slwig Dw Disaces ad Times i Hydgeus Maeials i Byd May 0 005 Oulie Backgud / Lecue Maeial Neu Slwig Dw quai Flux behavi i hydgeus medium Femi eame f calculaig slwig dw disaces ad imes. Bief deivai f

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Chapter 3.1: Polynomial Functions

Chapter 3.1: Polynomial Functions Ntes 3.1: Ply Fucs Chapter 3.1: Plymial Fuctis I Algebra I ad Algebra II, yu ecutered sme very famus plymial fuctis. I this secti, yu will meet may ther members f the plymial family, what sets them apart

More information

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS UNIT : ANALYTICAL METHODS FOR ENGINEERS Ui code: A// QCF Level: Credi vale: OUTCOME TUTORIAL SERIES Ui coe Be able o aalyse ad model egieerig siaios ad solve problems sig algebraic mehods Algebraic mehods:

More information

m = Mass flow rate The Lonely Electron Example 0a:

m = Mass flow rate The Lonely Electron Example 0a: The Lel Elect Exaple 0a: Mass flw ate l Liea velcit Hw fa ut f ptial eeg iteacti? Hge ucleus Bh --- 93: Uest the etu ccept. Liea etu istace eeg ( l ) l F ( tie ) ( tie ) + Like t use the peples ieas (if

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Finie Diffeence Mehod fo Odinay Diffeenial Eqaions Afe eading his chape, yo shold be able o. Undesand wha he finie diffeence mehod is and how o se i o solve poblems. Wha is he finie diffeence

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set WYSE Academic Challenge Sectinal 006 Slutin Set. Cect answe: e. mph is 76 feet pe minute, and 4 mph is 35 feet pe minute. The tip up the hill takes 600/76, 3.4 minutes, and the tip dwn takes 600/35,.70

More information

MATHEMATICIA GENERALLI

MATHEMATICIA GENERALLI MATHEMATICIA GENERALLI (y Mhmmed Abbs) Lgithmi Reltis lgb ) lg lg ) b b) lg lg lg m lg m d) lg m. lg m lg m e) lg lg m lg g) lg lg h) f) lg lg f ( ) f ( ). Eetil Reltis ). lge. lge.... lge...!! b) e......

More information

Outline. Review Homework Problem. Review Homework Problem II. Review Dimensionless Problem. Review Convection Problem

Outline. Review Homework Problem. Review Homework Problem II. Review Dimensionless Problem. Review Convection Problem adial diffsio eqaio Febay 4 9 Diffsio Eqaios i ylidical oodiaes ay aeo Mechaical Egieeig 5B Seia i Egieeig Aalysis Febay 4, 9 Olie eview las class Gadie ad covecio boday codiio Diffsio eqaio i adial coodiaes

More information

Derivatives of Inverse Trig Functions

Derivatives of Inverse Trig Functions Derivaives of Inverse Trig Fncions Ne we will look a he erivaives of he inverse rig fncions. The formlas may look complicae, b I hink yo will fin ha hey are no oo har o se. Yo will js have o be carefl

More information

Zero Level Binomial Theorem 04

Zero Level Binomial Theorem 04 Zeo Level Biomial Theoem 0 Usig biomial theoem, epad the epasios of the Fid the th tem fom the ed i the epasio of followig : (i ( (ii, 0 Fid the th tem fom the ed i the epasio of (iii ( (iv ( a (v ( (vi,

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1 Samplig Example Le x = cos( 4π)cos( π). The fudameal frequecy of cos 4π fudameal frequecy of cos π is Hz. The ( f ) = ( / ) δ ( f 7) + δ ( f + 7) / δ ( f ) + δ ( f + ). ( f ) = ( / 4) δ ( f 8) + δ ( f

More information

Relations on the Apostol Type (p, q)-frobenius-euler Polynomials and Generalizations of the Srivastava-Pintér Addition Theorems

Relations on the Apostol Type (p, q)-frobenius-euler Polynomials and Generalizations of the Srivastava-Pintér Addition Theorems Tish Joal of Aalysis ad Nmbe Theoy 27 Vol 5 No 4 26-3 Available olie a hp://pbssciepbcom/ja/5/4/2 Sciece ad Edcaio Pblishig DOI:269/ja-5-4-2 Relaios o he Aposol Type (p -Fobeis-Ele Polyomials ad Geealizaios

More information

Chapter 8. Exploring Polynomial Functions. Jennifer Huss

Chapter 8. Exploring Polynomial Functions. Jennifer Huss Chapter 8 Exploring Polynomial Functions Jennifer Huss 8-1 Polynomial Functions The degree of a polynomial is determined by the greatest exponent when there is only one variable (x) in the polynomial Polynomial

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

Math 110 Midterm 1 Study Guide October 14, 2013

Math 110 Midterm 1 Study Guide October 14, 2013 Name: For more practice exercises, do the study set problems in sections: 3.4 3.7, 4.1, and 4.2. 1. Find the domain of f, and express the solution in interval notation. (a) f(x) = x 6 D = (, ) or D = R

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI EGIEERIG COLLEGE TIRUCHIRAALLI 6 QUESTIO BAK - ASWERS -SEMESTER: V MA 6 - ROBABILITY AD QUEUEIG THEORY UIT IV:QUEUEIG THEORY ART-A Quesio : AUC M / J Wha are he haraerisis of a queueig heory?

More information

dm dt = 1 V The number of moles in any volume is M = CV, where C = concentration in M/L V = liters. dcv v

dm dt = 1 V The number of moles in any volume is M = CV, where C = concentration in M/L V = liters. dcv v Mg: Pcess Aalyss: Reac ae s defed as whee eac ae elcy lue M les ( ccea) e. dm he ube f les ay lue s M, whee ccea M/L les. he he eac ae beces f a hgeeus eac, ( ) d Usually s csa aqueus eeal pcesses eac,

More information

Sequences and series Mixed exercise 3

Sequences and series Mixed exercise 3 eqees seies Mixe exeise Let = fist tem = ommo tio. tem = 7 = 7 () 6th tem = 8 = 8 () Eqtio () Eqtio (): 8 7 8 7 8 7 m to te tems 0 o 0 0 60.7 60.7 79.089 Diffeee betwee 0 = 8. 79.089 =.6 ( s.f.) 0 The

More information

Properties and Tests of Zeros of Polynomial Functions

Properties and Tests of Zeros of Polynomial Functions Properties ad Tests of Zeros of Polyomial Fuctios The Remaider ad Factor Theorems: Sythetic divisio ca be used to fid the values of polyomials i a sometimes easier way tha substitutio. This is show by

More information

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Spring

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Spring c Dr Oksana Shatalov, Spring 2016 1 3 FUNCTIONS 3.1 Definition and Basic Properties DEFINITION 1. Let A and B be nonempty sets. A function f from A to B is a rule that assigns to each element in the set

More information

42. (20 pts) Use Fermat s Principle to prove the law of reflection. 0 x c

42. (20 pts) Use Fermat s Principle to prove the law of reflection. 0 x c 4. (0 ts) Use Femt s Piile t ve the lw eleti. A i b 0 x While the light uld tke y th t get m A t B, Femt s Piile sys it will tke the th lest time. We theee lulte the time th s uti the eleti it, d the tke

More information

1 Fundamental Concepts From Algebra & Precalculus

1 Fundamental Concepts From Algebra & Precalculus Fundamental Concepts From Algebra & Precalculus. Review Exercises.. Simplify eac expression.. 5 7) [ 5)) ]. ) 5) 7) 9 + 8 5. 8 [ 5) 8 6)] [9 + 8 5 ]. 9 + 8 5 ) 8) + 5. 5 + [ )6)] 7) 7 + 6 5 6. 8 5 ) 6

More information

". :'=: "t',.4 :; :::-':7'- --,r. "c:"" --; : I :. \ 1 :;,'I ~,:-._._'.:.:1... ~~ \..,i ... ~.. ~--~ ( L ;...3L-. ' f.':... I. -.1;':'.

. :'=: t',.4 :; :::-':7'- --,r. c: --; : I :. \ 1 :;,'I ~,:-._._'.:.:1... ~~ \..,i ... ~.. ~--~ ( L ;...3L-. ' f.':... I. -.1;':'. = 47 \ \ L 3L f \ / \ L \ \ j \ \ 6! \ j \ / w j / \ \ 4 / N L5 Dm94 O6zq 9 qmn j!!! j 3DLLE N f 3LLE Of ADL!N RALROAD ORAL OR AL AOAON N 5 5 D D 9 94 4 E ROL 2LL RLLAY RL AY 3 ER OLLL 832 876 8 76 L A

More information

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 3 FUNCTIONS 3.1 Definition and Basic Properties DEFINITION 1. Let A and B be nonempty sets. A function f from A to B is a rule that assigns to each element in the set

More information

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2016 1 3 FUNCTIONS 3.1 Definition and Basic Properties DEFINITION 1. Let A and B be nonempty sets. A function f from the set A to the set B is a correspondence that assigns to

More information

( ) ( ) Weibull Distribution: k ti. u u. Suppose t 1, t 2, t n are times to failure of a group of n mechanisms. The likelihood function is

( ) ( ) Weibull Distribution: k ti. u u. Suppose t 1, t 2, t n are times to failure of a group of n mechanisms. The likelihood function is Webll Dsbo: Des Bce Dep of Mechacal & Idsal Egeeg The Uvesy of Iowa pdf: f () exp Sppose, 2, ae mes o fale of a gop of mechasms. The lelhood fco s L ( ;, ) exp exp MLE: Webll 3//2002 page MLE: Webll 3//2002

More information

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example C 188: Aificial Inelligence Fall 2007 epesening Knowledge ecue 17: ayes Nes III 10/25/2007 an Klein UC ekeley Popeies of Ns Independence? ayes nes: pecify complex join disibuions using simple local condiional

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

FBD of SDOF Base Excitation. 2.4 Base Excitation. Particular Solution (sine term) SDOF Base Excitation (cont) F=-(-)-(-)= 2ζω ωf

FBD of SDOF Base Excitation. 2.4 Base Excitation. Particular Solution (sine term) SDOF Base Excitation (cont) F=-(-)-(-)= 2ζω ωf .4 Base Exiaio Ipoa lass of vibaio aalysis Peveig exiaios fo passig fo a vibaig base hough is ou io a suue Vibaio isolaio Vibaios i you a Saellie opeaio Dis dives, e. FBD of SDOF Base Exiaio x() y() Syse

More information

MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES

MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES O completio of this ttoial yo shold be able to do the followig. Eplai aithmetical ad geometic pogessios. Eplai factoial otatio

More information

Comparing Different Estimators for Parameters of Kumaraswamy Distribution

Comparing Different Estimators for Parameters of Kumaraswamy Distribution Compaig Diffee Esimaos fo Paamees of Kumaaswamy Disibuio ا.م.د نذير عباس ابراهيم الشمري جامعة النهرين/بغداد-العراق أ.م.د نشات جاسم محمد الجامعة التقنية الوسطى/بغداد- العراق Absac: This pape deals wih compaig

More information

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70 Chapte Tw ce System 35.4 α α 100 Rx cs 0.354 R 69.3 35.4 β β 100 Ry cs 0.354 R 111 Example 11: The man shwn in igue (a) pulls n the cd with a fce f 70 lb. Repesent this fce actin n the suppt A as Catesian

More information

Modelling and Solution for Assignment Problem

Modelling and Solution for Assignment Problem Mdellig ad Slui f Assigme Pblem Liyig Yag Mighg Nie Zhewei Wu ad Yiyg Nie Absac I his pape he mixed-iege liea pgammig (MILP) f mii assigme is fmed ad a slui called Opeais Maix is peseed ad cmpaed wih he

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6

ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6 P 1 P 2 y sd fx s d fsh z ys P 3 P 4 my, ms, m, m, m, m P 6 d d P 7 m y P 5 m m s P 10 y y y P 8 P 9 s sh, s, ss, sd sds, s, sh sv s s P 11 s P 12,, m, m, m,, dd P 13 m f m P 18 h m s P 22 f fx f fsh fm

More information

Transient Radial Flow Toward a Well Aquifer Equation, based on assumptions becomes a 1D PDE for h(r,t) : Transient Radial Flow Toward a Well

Transient Radial Flow Toward a Well Aquifer Equation, based on assumptions becomes a 1D PDE for h(r,t) : Transient Radial Flow Toward a Well ansien Radial Flw wad a Well Aqife Eqain, based n assmpins becmes a D PDE f h(,) : -ansien flw in a hmgenes, ispic aqife -flly peneaing pmping well & infinie, hiznal, cnfined aqife f nifm hickness, hs

More information

An alternating series is a series where the signs alternate. Generally (but not always) there is a factor of the form ( 1) n + 1

An alternating series is a series where the signs alternate. Generally (but not always) there is a factor of the form ( 1) n + 1 Calculus II - Problem Solvig Drill 20: Alteratig Series, Ratio ad Root Tests Questio No. of 0 Istructios: () Read the problem ad aswer choices carefully (2) Work the problems o paper as eeded (3) Pick

More information

is monotonically decreasing function of Ω, it is also called maximally flat at the

is monotonically decreasing function of Ω, it is also called maximally flat at the Le.8 Aalog Filte Desig 8. Itodtio: Let s eview aalog filte desig sig lowpass pototype tasfomatio. This method ovets the aalog lowpass filte with a toff feqey of adia pe seod, alled the lowpass pototype,

More information

Practice Problems: Taylor and Maclaurin Series

Practice Problems: Taylor and Maclaurin Series Practice Problems: Taylor ad Maclauri Series Aswers. a) Start by takig derivatives util a patter develops that lets you to write a geeral formula for the -th derivative. Do t simplify as you go, because

More information

and lim lim 6. The Squeeze Theorem

and lim lim 6. The Squeeze Theorem Limits (day 3) Things we ll go over today 1. Limits of the form 0 0 (continued) 2. Limits of piecewise functions 3. Limits involving absolute values 4. Limits of compositions of functions 5. Limits similar

More information

= 4 and 4 is the principal cube root of 64.

= 4 and 4 is the principal cube root of 64. Chapter Real Numbers ad Radicals Day 1: Roots ad Radicals A2TH SWBAT evaluate radicals of ay idex Do Now: Simplify the followig: a) 2 2 b) (-2) 2 c) -2 2 d) 8 2 e) (-8) 2 f) 5 g)(-5) Based o parts a ad

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment Overview of Te Two-Sample -Te: Idepede Sample Chaper 4 z-te Oe Sample -Te Relaed Sample -Te Idepede Sample -Te Compare oe ample o a populaio Compare wo ample Differece bewee Mea i a Two-ample Experime

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1 Assigmet : Real Numbers, Sequeces. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a upper boud of A for every N. 2. Let y (, ) ad x (, ). Evaluate

More information

Scratch Ticket Game Closing Analysis SUMMARY REPORT

Scratch Ticket Game Closing Analysis SUMMARY REPORT TEXAS LTTERY ISSI Scach Tice Game lsig Aalysis SUARY REPRT Scach Tice Ifmai mpleed 1/ 3/ 216 Game# 16891 fimed Pacs 4, 613 Game ame Lucy Bucsl Acive Pacs 3, 29 Quaiy Pied 11, 21, 1 aehuse Pacs 1, 222 Pice

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India.

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India. Steie Hype Wiee Idex A. Babu 1, J. Baska Babujee Depatmet of mathematics, Aa Uivesity MIT Campus, Cheai-44, Idia. Abstact Fo a coected gaph G Hype Wiee Idex is defied as WW G = 1 {u,v} V(G) d u, v + d

More information

Section 5: Chain Rule

Section 5: Chain Rule Chaper The Derivaive Applie Calculus 11 Secion 5: Chain Rule There is one more ype of complicae funcion ha we will wan o know how o iffereniae: composiion. The Chain Rule will le us fin he erivaive of

More information

ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6

ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6 ANWE EY P 1 P 2 d fx d fh z P 3 P 4 m, m, m, m, m, m P 6 d d P 7 m P 5 m m P 10 d P 8 P 9 h,,, d d,, h v P 11 P 12,, m, m, m,, dd P 13 m f m P 18 h m P 22 f fx f fh fm fd P 14 m h P 19 m v x h d m P 15

More information

LESSON 15: COMPOUND INTEREST

LESSON 15: COMPOUND INTEREST High School: Expoeial Fuctios LESSON 15: COMPOUND INTEREST 1. You have see this fomula fo compoud ieest. Paamete P is the picipal amou (the moey you stat with). Paamete is the ieest ate pe yea expessed

More information

08257 ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6

08257 ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6 P 1 P 2 d fx d fh z P 3 P 4 m, m, m, m, m, m P 6 d d P 7 m P 5 m m P 10 P 8 P 9 h,,, d d,, d v P 11 P 12,, m, m, m,, dd P 13 m f m P 18 h m P 22 f fx f fh fm fd P 14 m h P 19 m v x h d m P 15 m m P 20

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

Chemistry 1B, Fall 2016 Topics 21-22

Chemistry 1B, Fall 2016 Topics 21-22 Cheisry B, Fall 6 Topics - STRUCTURE ad DYNAMICS Cheisry B Fall 6 Cheisry B so far: STRUCTURE of aos ad olecules Topics - Cheical Kieics Cheisry B ow: DYNAMICS cheical kieics herodyaics (che C, 6B) ad

More information

D.S.G. POLLOCK: TOPICS IN TIME-SERIES ANALYSIS STATISTICAL FOURIER ANALYSIS

D.S.G. POLLOCK: TOPICS IN TIME-SERIES ANALYSIS STATISTICAL FOURIER ANALYSIS STATISTICAL FOURIER ANALYSIS The Furier Represetati f a Sequece Accrdig t the basic result f Furier aalysis, it is always pssible t apprximate a arbitrary aalytic fucti defied ver a fiite iterval f the

More information

F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics

F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mahemaics Prelim Quesio Paper Soluio Q. Aemp ay FIVE of he followig : [0] Q.(a) Defie Eve ad odd fucios. [] As.: A fucio f() is said o be eve fucio if

More information

5.1 Angles and Their Measure

5.1 Angles and Their Measure 5. Angles and Their Measure Secin 5. Nes Page This secin will cver hw angles are drawn and als arc lengh and rains. We will use (hea) represen an angle s measuremen. In he figure belw i describes hw yu

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

At the end of this topic, students should be able to understand the meaning of finite and infinite sequences and series, and use the notation u

At the end of this topic, students should be able to understand the meaning of finite and infinite sequences and series, and use the notation u Natioal Jio College Mathematics Depatmet 00 Natioal Jio College 00 H Mathematics (Seio High ) Seqeces ad Seies (Lecte Notes) Topic : Seqeces ad Seies Objectives: At the ed of this topic, stdets shold be

More information

BINOMIAL THEOREM & ITS SIMPLE APPLICATION

BINOMIAL THEOREM & ITS SIMPLE APPLICATION Etei lasses, Uit No. 0, 0, Vadhma Rig Road Plaza, Vikas Pui Et., Oute Rig Road New Delhi 0 08, Ph. : 9690, 87 MB Sllabus : BINOMIAL THEOREM & ITS SIMPLE APPLIATION Biomia Theoem fo a positive itegal ide;

More information

LIMITS OF FUNCTIONS (I)

LIMITS OF FUNCTIONS (I) LIMITS OF FUNCTIO (I ELEMENTARY FUNCTIO: (Elemeary fucios are NOT piecewise fucios Cosa Fucios: f(x k, where k R Polyomials: f(x a + a x + a x + a x + + a x, where a, a,..., a R Raioal Fucios: f(x P (x,

More information

Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment HW5 Solution

Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment HW5 Solution Departmet of Civil Egieerig-I.I.T. Delhi CEL 899: Evirometal Risk Assessmet HW5 Solutio Note: Assume missig data (if ay) ad metio the same. Q. Suppose X has a ormal distributio defied as N (mea=5, variace=

More information

Math 421, Homework #9 Solutions

Math 421, Homework #9 Solutions Math 41, Homework #9 Solutions (1) (a) A set E R n is said to be path connected if for any pair of points x E and y E there exists a continuous function γ : [0, 1] R n satisfying γ(0) = x, γ(1) = y, and

More information

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi Wold Alied cieces Joal (8): 898-95 IN 88-495 IDOI Pblicaios = h x g x x = x N i W whee is a eal aamee is a boded domai wih smooh boday i R N 3 ad< < INTRODUCTION Whee s ha is s = I his ae we ove he exisece

More information

4r 2 12r + 9 = 0. r = 24 ± y = e 3x. y = xe 3x. r 2 6r + 25 = 0. y(0) = c 1 = 3 y (0) = 3c 1 + 4c 2 = c 2 = 1

4r 2 12r + 9 = 0. r = 24 ± y = e 3x. y = xe 3x. r 2 6r + 25 = 0. y(0) = c 1 = 3 y (0) = 3c 1 + 4c 2 = c 2 = 1 Mathematics MATB44, Assignment 2 Solutions to Selected Problems Question. Solve 4y 2y + 9y = 0 Soln: The characteristic equation is The solutions are (repeated root) So the solutions are and Question 2

More information

x c the remainder is Pc ().

x c the remainder is Pc (). Algebra, Polyomial ad Ratioal Fuctios Page 1 K.Paulk Notes Chapter 3, Sectio 3.1 to 3.4 Summary Sectio Theorem Notes 3.1 Zeros of a Fuctio Set the fuctio to zero ad solve for x. The fuctio is zero at these

More information

CE 1010 HW: S13 C siti n F ncti ns

CE 1010 HW: S13 C siti n F ncti ns Name CE 1010 HW: S13 C siti n F ncti ns 1. Functions f and g are defined in the tables below. x 3 2 0 1 4 5 8 10 12 f(x) 8 6 3 2 5 8 11 15 20 x 0 2 3 4 5 8 9 11 15 g(x) 1 3 5 10 4 2 0 2 5 Find the values

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

Unit 2 Functions HW #1 Mrs. Dailey

Unit 2 Functions HW #1 Mrs. Dailey HW#1 Name Algebra II Unit 2 Functions HW #1 Mrs. Dailey 1) Determine for each of the following graphed relationships whether y is a function of x using the Vertical Line Test. 2) What are the outputs for

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

4. PERMUTATIONS AND COMBINATIONS

4. PERMUTATIONS AND COMBINATIONS 4. PERMUTATIONS AND COMBINATIONS PREVIOUS EAMCET BITS 1. The umbe of ways i which 13 gold cois ca be distibuted amog thee pesos such that each oe gets at least two gold cois is [EAMCET-000] 1) 3 ) 4 3)

More information

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables Some Basic Probability Cocepts 2. Experimets, Outcomes ad Radom Variables A radom variable is a variable whose value is ukow util it is observed. The value of a radom variable results from a experimet;

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Relative and Circular Motion

Relative and Circular Motion Relaie and Cicula Moion a) Relaie moion b) Cenipeal acceleaion Mechanics Lecue 3 Slide 1 Mechanics Lecue 3 Slide 2 Time on Video Pelecue Looks like mosly eeyone hee has iewed enie pelecue GOOD! Thank you

More information

8 Further theory of function limits and continuity

8 Further theory of function limits and continuity 8 Further theory of function limits and continuity 8.1 Algebra of limits and sandwich theorem for real-valued function limits The following results give versions of the algebra of limits and sandwich theorem

More information

Modeling Micromixing Effects in a CSTR

Modeling Micromixing Effects in a CSTR delig irixig Effes i a STR STR, f all well behaved rears, has he wides RTD i.e. This eas ha large differees i perfrae a exis bewee segregaed flw ad perais a axiu ixedess diis. The easies hig rea is he

More information

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues Alied Maheaical Sciece Vol. 8 o. 5 747-75 The No-Tucaed Bul Aival Queue M x /M/ wih Reei Bali Sae-Deede ad a Addiioal Seve fo Loe Queue A. A. EL Shebiy aculy of Sciece Meofia Uiveiy Ey elhebiy@yahoo.co

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2 Joh Rley Novembe ANSWERS O ODD NUMBERED EXERCISES IN CHAPER Seo Eese -: asvy (a) Se y ad y z follows fom asvy ha z Ehe z o z We suppose he lae ad seek a oado he z Se y follows by asvy ha z y Bu hs oads

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

171S2.2q The Algebra of Functions. February 13, MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College

171S2.2q The Algebra of Functions. February 13, MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 2: More on Functions 2.1 Increasing, Decreasing, and Piecewise Functions; Applications 2.2 The Algebra of Functions 2.3

More information

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial a b c Fig. S. The anenna consucion: (a) ain geoeical paaees, (b) he wie suppo pilla and (c) he console link beween wie and coaial pobe. Fig. S. The anenna coss-secion in he y-z plane. Accoding o [], he

More information

Final Exam. Tuesday, December hours, 30 minutes

Final Exam. Tuesday, December hours, 30 minutes an Faniso ae Univesi Mihael Ba ECON 30 Fall 04 Final Exam Tuesda, Deembe 6 hous, 30 minues Name: Insuions. This is losed book, losed noes exam.. No alulaos of an kind ae allowed. 3. how all he alulaions.

More information

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work MÜHENDİSLİK MEKNİĞİ. HFT İş-Eneji Pwe f a fce: Pwe in he abiliy f a fce d wk F: The fce applied n paicle Q P = F v = Fv cs( θ ) F Q v θ Pah f Q v: The velciy f Q ÖRNEK: İŞ-ENERJİ ω µ k v Calculae he pwe

More information

1 FUNCTIONS _ 5 _ 1.0 RELATIONS

1 FUNCTIONS _ 5 _ 1.0 RELATIONS 1 FUNCTIONS 1.0 RELATIONS Notes : (i) Four types of relations : one-to-one many-to-one one-to-many many-to-many. (ii) Three ways to represent relations : arrowed diagram set of ordered pairs graph. (iii)

More information

APPLIED THERMODYNAMICS D201. SELF ASSESSMENT SOLUTIONS TUTORIAL 2 SELF ASSESSMENT EXERCISE No. 1

APPLIED THERMODYNAMICS D201. SELF ASSESSMENT SOLUTIONS TUTORIAL 2 SELF ASSESSMENT EXERCISE No. 1 APPIED ERMODYNAMICS D0 SEF ASSESSMEN SOUIONS UORIA SEF ASSESSMEN EXERCISE No. Show how the umeti effiiey of a ideal sigle stage eioatig ai omesso may be eeseted by the equatio ( / Whee is the leaae atio,

More information

E o and the equilibrium constant, K

E o and the equilibrium constant, K lectrchemical measuremets (Ch -5 t 6). T state the relati betwee ad K. (D x -b, -). Frm galvaic cell vltage measuremet (a) K sp (D xercise -8, -) (b) K sp ad γ (D xercise -9) (c) K a (D xercise -G, -6)

More information

CLAIM No, HOLE No, FOOTAGE

CLAIM No, HOLE No, FOOTAGE DIAMND DRILLING ARNLD TWNSHIP! Ad REPRT N; WRK PERFRMED BY: Wm Lk CLAIM N HLE N FTAGE L 63 A82 553 DATE NTE Ag/82 ) NTES! ) #2983 A IN! ~S) L 6/3 A CMA L C /v Pbem Pge The g pge hs dme hd pbem whe sed

More information

SOME NOTES ON INEQUALITIES

SOME NOTES ON INEQUALITIES SOME NOTES ON INEQUALITIES Rihard Hoshio Here are four theorems that might really be useful whe you re workig o a Olympiad problem that ivolves iequalities There are a buh of obsure oes Chebyheff, Holder,

More information