Iron-Silicon (Fe-Si ) Powder Cores

Size: px
Start display at page:

Download "Iron-Silicon (Fe-Si ) Powder Cores"

Transcription

1 Iron-Silicon (Fe-Si ) Powder Cores INTRODUCTION Arnold Magnetics, a world leader in magnetic alloy powder products such as MPP, High- Flux and Super-MSS, now offers a new series of powder cores using an Iron-Silicon alloy under the trade name Fe-Si. The 6.5 wt% Iron-Silicon material is a well known alloy and offers significant advantages, displaying excellent soft magnetic properties such as high saturation magnetization, near zero magnetostriction and higher resistivity. The Fe-Si series powder cores are manufactured from a complex composition of Iron-Silicon powdered particles, compacted into geometries such as toroid, block, E or U- core shapes. The powder metal compaction process produces a product with excellent core loss performance compared with the conventional silicon-iron tape wound core due to the distributed air gap feature. Fe-Si powder cores have a typical 5,000 Gauss saturation flux density and core losses significantly lower than iron powder cores at high frequencies. The combination of high saturation flux density and high DC bias makes Iron-Silicon powder cores an ideal choice for higher power densities: where a low number of winding turns, low core loss and smaller size are required in today's power supply systems - especially in high energy storage applications. The curie temperature of the Iron-Silicon powder material is over 500 ºC. High temperature operation of the cores does not significantly affect the magnetic properties. There are no organic binders within Fe-Si cores. They are, therefore, not subject to thermal aging when operated at elevated temperatures. Fe-Si series cores can provide a 30% reduction in volume compared to Iron powder cores and are the best solution for large-current applications at a competitive price. General Material Properties Composition Iron-Silicon Alloy Material Code FS Permeability 4μ to 47μ Bmax 5,000 Gauss Core Loss (,000 G, ) mw/cc Curie Temperature 500 ºC Operating Temperature -30 to 200 ºC Frequency Range MHz Relative Cost Low

2 Typical Applications SMPS choke inductors PFC inductors VRM inductors Boost reactor Smoothing choke for Inverter Switching Regulator Inductors In Line Noise Filters >50 KVA UPS choke inductors Benefits High saturation flux density Very high DC biasing Performance Lower cost than SMSS or similar materials Manufactured into various shapes (e.g. E, U, toroid, block cores) Maximum operating temperature of 200 C The DC bias curves (below) demonstrate that Iron-Silicon powder is excellent when compared with SMSS (Sendust) and Iron powder of similar permeabilities and size. The curves presented here were measured based on standard.06 inch OD toroid core samples using a signal of khz and ma AC µ Percent Permeability DC Bias 75μ 90μ μ 60μ 0 0 DC Magnetizing Force (Oersteds)

3 The inductance versus frequency graph demonstrates the near linear performance of Iron- Silicon powder cores to MHz. Roll-off in permeability from low frequencies to MHz is less than 2.0 percent! Fe-Si Permeability μ 25μ 90μ 75μ 60μ μ 4μ 0 0 Frequency (khz) Permeability versus Temperature Arnold Fe-Si cores are extremely stable with temperature. % Permiability versus Temperature 8% 6% Permiability, % 4% 2% 0% -2% -4% FS 25μ FS 60μ FS 26μ -6% -8% -% Temperature, ºC

4 Typical Core Loss Curves 0 Fe-Si 4μ 0 Fe-Si 26μ 300KHZ khz 2 khz khz 2 khz khz khz Fe-Si 60μ 0 Fe-Si 75μ khz 2 khz khz khz 2 khz KHZ Fe-Si 90μ 0 Fe-Si 25μ khz khz 2 khz khz 2 khz khz Fe-Si 47μ khz 2 khz khz 0 00

5 Toroid Core Part Number Construction Part numbers for Arnold Fe-Si TM cores are constructed as shown below. FS Iron-Silicon (Fe-Si ) Toroidal Core Series Size table O.D.(inch) I.D.(inch) HGT(inch) Radius(inch) Area (cm 2 ) Lm (cm) Volume (cm 3 ) Arnold Magnetics can supply a wide range of standard toroid O.D. sizes from 4 inch (3.6 mm) to 5.28 inch (33 mm), as with Arnold MPP, High-Flux and Super-MSS powder core series. Arnold is also capable of providing non-standard, customer-specified physical dimensions.

6 E-Core Part Number Construction B C L A F M E D Iron-Silicon (Fe-Si ) E-Core Series Size table PART NO. UNIT A B C D(min) E(min) F L(nom) M(min) EFS- in 0.500± ± ± ± (mm) (2.70) (6.40) (3.56) (4.42) (8.89) (3.56) (.78) (2.64) EFS- in 0.760± ± ± ± (mm) (9.30) (8.) (4.78) (5.54) (3.90) (4.78) (2.39) (4.65) EFS- in.000± ± ± ± (mm) (25.40) (9.50) (6.50) (6.20) (8.80) (6.20) (3.20) (6.30) EFS- in.85± ± ± ± (mm) (30.) (5.0) (7.06) (9.70) (9.50) (6.96) (5.) (6.46) EFS- in.360± ± ± ± (mm) (34.50) (4.) (9.40) (9.60) (25.30) (9.30) (4.40) (7.90) EFS- in.609± ± ± ± (mm) (40.90) (6.50) (2.50) (.40) (28.30) (2.50) (6.00) (7.90) EFS- in.687± ± ± ± (mm) (42.80) (2.) (.80) (5.00) (30.40) (.90) (5.95) (9.27) EFS- in.687± ± ± ± (mm) (42.80) (2.) (5.40) (5.00) (30.40) (.90) (5.95) (9.27) EFS- in.687± ± ± ± (mm) (42.80) (2.) (20.00) (5.00) (30.40) (.90) (5.95) (9.27) Add material code to part number, e.g., for 60µ the complete part number is EFS Arnold is also capable of providing non-standard; customer-specified physical dimensions and geometries for E, U and block cores. Arnold Magnetics Limited D6 Xintang Industrial Zone Baishixia, Fuyong Town Baoan, Shenzhen, Guangdong, PRC For more information contact us at: UNITED STATES Rochester, NY USA EUROPE Barlborough, UK (+44) ASIA Hong Kong, China (+852)

Powdered Metal Cores. MPP (molypermalloy) & High Flux cores. Genalex & Genalex H (nickel-iron) iron) cores. Low Frequency Iron Powder cores

Powdered Metal Cores. MPP (molypermalloy) & High Flux cores. Genalex & Genalex H (nickel-iron) iron) cores. Low Frequency Iron Powder cores Powdered Metal Cores MPP (molypermalloy) & High Flux cores Genalex & Genalex H (nickel-iron) iron) cores Low Frequency Iron Powder cores RF Iron (carbonyl) Powder cores DuraFlux High Energy cores Page

More information

Thermal vs. Power Loss Efficiency Considerations for Powder Core Materials. Christopher Oliver Nien Teng Micrometals, Incorporated

Thermal vs. Power Loss Efficiency Considerations for Powder Core Materials. Christopher Oliver Nien Teng Micrometals, Incorporated Thermal vs. Power Loss Efficiency Considerations for Powder Core Materials Christopher Oliver Nien Teng Micrometals, Incorporated Outline Powder Cores Description What properties change with temperature

More information

Reactor Characteristic Evaluation and Analysis Technologies of JFE Steel

Reactor Characteristic Evaluation and Analysis Technologies of JFE Steel JFE TECHNICAL REPORT No. 21 (Mar. 2016) Reactor Characteristic Evaluation and Analysis Technologies of HIRATANI Tatsuhiko *1 NAMIKAWA Misao *2 NISHINA Yoshiaki *3 Abstract: Reactor characteristic evaluation

More information

Soft Magnetics Application Guide

Soft Magnetics Application Guide Soft Magnetics Application Guide p. 30.1 March 2000 Table of Contents Introduction... 30.3 Basics of Magnetics... 30.4 30.11 1. Energy... 30.4 2. Units of Measure... 30.4 3. Simple Magnetic Theory... 30.4

More information

Non-Linear Saturable Kool Mu Core Model

Non-Linear Saturable Kool Mu Core Model Non-Linear Saturable Kool Mu Core Model Scott Frankel, AEi Systems, LLC Iron Powder cores have been well suited for applications such as switching regulator inductors, in-line noise filters, and flyback

More information

Section 8: Magnetic Components

Section 8: Magnetic Components Section 8: Magnetic omponents Inductors and transformers used in power electronic converters operate at quite high frequency. The operating frequency is in khz to MHz. Magnetic transformer steel which

More information

Ferrite Impeder Rods. hinoday

Ferrite Impeder Rods. hinoday P R O D U C T G U I D E Ferrite Impeder Rods hinoday About Hinoday Mahindra Hinoday - The pioneers and leaders Mahindra Hinoday pioneers the ferrite manufacturing process in India four decades ago and

More information

Magnetic Path Length. Outside Dimensions Outer Diameter mm

Magnetic Path Length. Outside Dimensions Outer Diameter mm RoHS Compliant MAJOR USES Output choke coils for Switching Mode Power Supply Choke coils for DC-DC converter Normal mode choke coils for noise control FEATURES Great reduction of core loss enabling low

More information

A new method for simulation of saturation behavior in magnetic materials of inductive components

A new method for simulation of saturation behavior in magnetic materials of inductive components A new method for simulation of saturation behavior in magnetic materials of inductive components Dr. Jörn Schliewe, Stefan Schefler EPCOS AG, eidenheim, Germany Summary A common characterization method

More information

SPECIFICATION OF BS LQCMU SERIES

SPECIFICATION OF BS LQCMU SERIES SPECIFICATION OF BS LQCMU SERIES FEATURES 1. This miniature chip inductors wound on a special ferrite core. 2. Low DC resistance, high current capacity, and high saturation for surface mounting. 3. They

More information

Lecture 17 Push-Pull and Bridge DC-DC converters Push-Pull Converter (Buck Derived) Centre-tapped primary and secondary windings

Lecture 17 Push-Pull and Bridge DC-DC converters Push-Pull Converter (Buck Derived) Centre-tapped primary and secondary windings ecture 17 Push-Pull and Bridge DC-DC converters Push-Pull Converter (Buck Derived) Centre-tapped primary and secondary windings 1 2 D 1 i v 1 v 1s + v C o R v 2 v 2s d 1 2 T 1 T 2 D 2 Figure 17.1 v c (

More information

Applications SS 11 VL- R

Applications SS 11 VL- R AC Line Filters SS Coils, SSVL High Frequency Type Overview The KEMET SS Coils, SSVL Type AC line filters are offered in a wide variety of sizes and specifications. Applications Consumer Electronics Common

More information

Ferrites - "The Most Important Properties" 1994 Soft Ferrite Users Conference. By : George Orenchak Ferrite International Company

Ferrites - The Most Important Properties 1994 Soft Ferrite Users Conference. By : George Orenchak Ferrite International Company Ferrites - "The Most Important Properties" 1994 Soft Ferrite Users Conference By : George Orenchak Ferrite International Company Inductance - Electrical property that opposes any change in current because

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 15.3.2 Example 2 Multiple-Output Full-Bridge Buck Converter Q 1 D 1 Q 3 D 3 + T 1 : : n 2 D 5 i

More information

Design and analysis of the ferrite air-gapped cores for a resonant inductor

Design and analysis of the ferrite air-gapped cores for a resonant inductor ARCHIVES OF ELECTRICAL ENGINEERING VOL. 67(3), pp. 579 589 (2018) DOI 10.24425/123664 Design and analysis of the ferrite air-gapped cores for a resonant inductor JIANFEN ZHENG, CHUNFANG WANG, DONGWEI XIA

More information

SIFERRIT Materials. Siemens Matsushita Components 33

SIFERRIT Materials. Siemens Matsushita Components 33 SIFERRIT Materials Based on IEC 60401, the data specified here are typical data for the material in question, which have been determined principally on the basis of ring cores. The purpose of such characteristic

More information

Applications SU 9 V- R

Applications SU 9 V- R AC Line Filters SU Coils, SU 9V/9H Type Overview The KEMET SU Coils, SU 9V/9H Type AC line filters are offered in a wide variety of sizes and specifications. Applications Consumer Electronics Common mode

More information

15.1 Transformer Design: Basic Constraints. Chapter 15: Transformer design. Chapter 15 Transformer Design

15.1 Transformer Design: Basic Constraints. Chapter 15: Transformer design. Chapter 15 Transformer Design Chapter 5 Transformer Design Some more advanced design issues, not considered in previous chapter: : n Inclusion of core loss Selection of operating flux density to optimize total loss Multiple winding

More information

CERN ACCELERATOR SCHOOL Power Converters. Passive components. Prof. Alfred Rufer

CERN ACCELERATOR SCHOOL Power Converters. Passive components. Prof. Alfred Rufer CERN ACCELERATOR SCHOOL Power Converters Passive components Prof. Alfred Rufer Overview Part 1: (to be designed) Part 2: Capacitors (to be selected) Part 3: A new component: The Supercapacitor, component

More information

Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance

Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance 1. What is Faraday s Law? Magnitude of voltage induced in a turn of wire is proportional to the rate of change of flux passing through that

More information

Electrical to mechanical - such as motors, loudspeakers, charged particle deflection.

Electrical to mechanical - such as motors, loudspeakers, charged particle deflection. 1.0 Introduction Magnets are an important part of our daily lives, serving as essential components in everything from electric motors, loudspeakers, computers, compact disc players, microwave ovens and

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure

More information

Part III. Magnetics. Chapter 13: Basic Magnetics Theory. Chapter 13 Basic Magnetics Theory

Part III. Magnetics. Chapter 13: Basic Magnetics Theory. Chapter 13 Basic Magnetics Theory Part III. Magnetics 3 Basic Magnetics Theory Inductor Design 5 Transformer Design Chapter 3 Basic Magnetics Theory 3. Review of Basic Magnetics 3.. Basic relationships 3..2 Magnetic circuits 3.2 Transformer

More information

Measurement And Testing. Handling And Storage. Quick Reference Specification Checklist

Measurement And Testing. Handling And Storage. Quick Reference Specification Checklist Design Guide Contents Introduction Manufacturing Methods Modern Magnet Materials Coatings Units Of Measure Design Considerations Permanent Magnet Stability Physical Characteristics And Machining Of Permanent

More information

Ferrite Cores for Induction Welding

Ferrite Cores for Induction Welding 2005 Product Line atalog Ferrites and ssemblies for High Frequency Induction Welding Subsidiary of TT electronics plc Ferrite ores for Induction Welding F59 Typical Performance urves Ferrite Impeder Materials

More information

Ferrite For Switching Power Supplies Material Characteristics

Ferrite For Switching Power Supplies Material Characteristics (4/76) 2-1 / 23729 / e14.fm Material Characteristics MATERIAL CHARACTERISTICS(for Transformer and Choke) Material PC4 PC5 Initial permeability 23±25% 24±25% 25±25% 14±25% Amplitude permeability µa 3 min.

More information

Trilogy of Magnetics

Trilogy of Magnetics Trilogy of Magnetics Design Guide for EMI Filter Design, MP & RF Circuits Basic principles 11 I Basic principles 1 Basic principles of inductive components Magnetism The basis for understanding inductors

More information

Model TS105-10L5.5mm Thermopile Sensor

Model TS105-10L5.5mm Thermopile Sensor Thermopile IR-Sensor For Contactless Temperature Measurement Single Element For Industrial Pyrometers Silicon Lens Accurate Reference Sensor DESCRIPTION Thermopiles are mainly used for contactless temperature

More information

Modellierung von Kern- und Wicklungsverlusten Jonas Mühlethaler, Johann W. Kolar

Modellierung von Kern- und Wicklungsverlusten Jonas Mühlethaler, Johann W. Kolar Modellierung von Kern- und Wicklungsverlusten Jonas Mühlethaler, Johann W. Kolar Power Electronic Systems Laboratory, ETH Zurich Motivation Modeling Inductive Components Employing best state-of-the-art

More information

The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger

The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger High Magnetic Fields The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS R.Grössinger Coworker: M. Küpferling, H.Sassik, R.Sato, E.Wagner, O.Mayerhofer, M.Taraba ƒ1 Content CONTENT Generation

More information

EM Simulations using the PEEC Method - Case Studies in Power Electronics

EM Simulations using the PEEC Method - Case Studies in Power Electronics EM Simulations using the PEEC Method - Case Studies in Power Electronics Andreas Müsing Swiss Federal Institute of Technology (ETH) Zürich Power Electronic Systems www.pes.ee.ethz.ch 1 Outline Motivation:

More information

The Influence of Core Shape and Material Nonlinearities to Corner Losses of Inductive Element

The Influence of Core Shape and Material Nonlinearities to Corner Losses of Inductive Element The Influence of Core Shape and Material Nonlinearities to Corner Losses of Inductive Element Magdalena Puskarczyk 1, Brice Jamieson 1, Wojciech Jurczak 1 1 ABB Corporate Research Centre, Kraków, Poland

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

Advances in Material Technology Enable Game-Changing MLCC Performance

Advances in Material Technology Enable Game-Changing MLCC Performance WHITE PAPER Advances in Material Technology Enable Game-Changing MLCC Performance INTRODUCTION Although electrolytic capacitors have long been the preferred solution for decoupling applications where capacitance

More information

SECOND ENGINEER REG III/2 MARINE ELECTRO-TECHNOLOGY. 1. Understands the physical construction and characteristics of basic components.

SECOND ENGINEER REG III/2 MARINE ELECTRO-TECHNOLOGY. 1. Understands the physical construction and characteristics of basic components. SECOND ENGINEER REG III/ MARINE ELECTRO-TECHNOLOGY LIST OF TOPICS A B C D Electric and Electronic Components Electric Circuit Principles Electromagnetism Electrical Machines The expected learning outcome

More information

Problem 3.1 Magnetic Moments + - I

Problem 3.1 Magnetic Moments + - I MASSACHUSETTS NSTTUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011 Problem Set 3: Magnetic Materials and Magnetic

More information

Chapter 14: Inductor design

Chapter 14: Inductor design Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure 14.3 Multiple-winding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points

More information

NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD. Sample Examination EA605

NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD. Sample Examination EA605 Name: NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD Sample Examination EA605 EDDY CURRENT TESTING AS3998 LEVEL 2 GENERAL EXAMINATION 6161C * * * * * * * Time allowed

More information

Switching Hall Effect Sensor Design Example Application: commutation sensor precision motor timing device to control electronic commutation.

Switching Hall Effect Sensor Design Example Application: commutation sensor precision motor timing device to control electronic commutation. Switching Hall Effect Sensor Design Example Application: commutation sensor precision motor timing device to control electronic commutation. Requirements: 15 firing positions no bounce Minimal hysteresis

More information

Theory and Test Correlation for Laminate Stacking Factor Effect on Homopolar Bearing Stiffness

Theory and Test Correlation for Laminate Stacking Factor Effect on Homopolar Bearing Stiffness A. Kenny A. Palazzolo Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123 G. T. Montague A. F. Kasca NASA Lewis Research Center, Cleveland, OH Theory and Test Correlation

More information

AC Measurement of Magnetic Susceptibility. Physics 401, Fall 2016 Eugene V. Colla

AC Measurement of Magnetic Susceptibility. Physics 401, Fall 2016 Eugene V. Colla AC Measurement of Magnetic Susceptibility Physics 41, Fall 216 Eugene V. Colla Outline Ferromagnetism Measurement of the magnetic properties of the materials Lab experimental setup and experiments Some

More information

Tutorial Sheet IV. Fig. IV_2.

Tutorial Sheet IV. Fig. IV_2. Tutorial Sheet IV 1. Two identical inductors 1 H each are connected in series as shown. Deduce the combined inductance. If a third and then a fourth are similarly connected in series with this combined

More information

MAGNETIC FIELDS & UNIFORM PLANE WAVES

MAGNETIC FIELDS & UNIFORM PLANE WAVES MAGNETIC FIELDS & UNIFORM PLANE WAVES Name Section Multiple Choice 1. (8 Pts) 2. (8 Pts) 3. (8 Pts) 4. (8 Pts) 5. (8 Pts) Notes: 1. In the multiple choice questions, each question may have more than one

More information

Magnetic Force on a Moving Charge

Magnetic Force on a Moving Charge Magnetic Force on a Moving Charge Electric charges moving in a magnetic field experience a force due to the magnetic field. Given a charge Q moving with velocity u in a magnetic flux density B, the vector

More information

Ferroxcube. PROPORTIONS OF THE COMPOSITION The base materials are weighed into the correct proportions required for the final composition.

Ferroxcube. PROPORTIONS OF THE COMPOSITION The base materials are weighed into the correct proportions required for the final composition. TE NATURE OF SOFT FERRITES Composition Ferrites are dark grey or black ceramic materials. They are very hard, brittle and chemically inert. Most modern magnetically soft ferrites have a cubic (spinel)

More information

Molding Power Inductor

Molding Power Inductor Marking Outline: Magnetic shielded structure: excellent resistance to electro magnetic interference(emi). A composite structure, ultra low buzz noise. Low loss, high efficiency, wide application frequency.

More information

Scheme I SAMPLE QUESTION PAPER I

Scheme I SAMPLE QUESTION PAPER I SAMPLE QUESTION PAPER I Marks : 70 Time: 3 Hours Q.1) A) Attempt any FIVE of the following. a) Define active components. b) List different types of resistors. c) Describe method to test following passive

More information

Application Note. Paralleling of EconoPACK TM + Date: Page

Application Note. Paralleling of EconoPACK TM + Date: Page Date: 27.09.2004 Page 1 Paralleling of EconoPACK TM + 1. EconoPACK TM + Design 2. Paralleling of IGBT 3 and EmCon HE diodes 3. Methods of paralleling EconoPACK TM + 4. Dynamic and static current sharing

More information

Switching Regulators MC33063A SOP

Switching Regulators MC33063A SOP MC0A Features Operation from.0 to 0 Input Low Standby Current Current Limiting Output oltage Adjustable Frequency Operation to 00 khz Pb Free Packages are Available Output Current to. A SOP- 0. 0.0-0.0.0

More information

Inductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors

Inductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors Lecture 12: nductors nductors Hydraulic analogy Duality with capacitor Charging and discharging Robert R. McLeod, University of Colorado http://hilaroad.com/camp/projects/magnet.html 99 Lecture 12: nductors

More information

PERFORMANCE IMPROVEMENT OF THREE PHASE INDUCTION MOTOR USING SUPER MAGNETIC MATERIAL

PERFORMANCE IMPROVEMENT OF THREE PHASE INDUCTION MOTOR USING SUPER MAGNETIC MATERIAL PERFORMANCE IMPROVEMENT OF THREE PHASE INDUCTION MOTOR USING SUPER MAGNETIC MATERIAL Amit N.Patel 1, Darshan U. Thakar 2 1,2 Department of Electrical Engineering, Institute of Technology, Nirma University,

More information

SPECIFICATION FOR APPROVAL

SPECIFICATION FOR APPROVAL Laird Technologies,Co., Ltd. Customer : All Manufacturer : Laird Technologies Co.,Ltd. Product : Laird P/N : MGV2Series Customer P/N : N/A Issued Date : 8.2.8 Rev : A Customer Response Approved By: Signature:

More information

WLPN Series SMD Molded Power Choke Inductors

WLPN Series SMD Molded Power Choke Inductors WLPN303010 Series SMD Molded Power Choke Inductors *Contents in this sheet are subject to change without prior notice. Page 1 of 9 ASC_WLPN303010 Series_V3.0 Oct. 2016 Features 1. Close magnetic loop with

More information

EN Power Electronics and Machines

EN Power Electronics and Machines 1/19 - Power Electronics and Machines Transformers Suryanarayana Doolla Department of Energy Science and Engineering Indian Institute of Technology, Bombay suryad@iitb.ac.in Lecture Organization - Modules

More information

Iron core loss calculation with QuickField

Iron core loss calculation with QuickField Iron core loss calculation with QuickField Vladimir Podnos, Director of Marketing and Support, Tera Analysis Ltd. Alexander Lyubimtsev Support Engineer Tera Analysis Ltd. QuickField Analysis Options Magnetic

More information

Investigating the Impact of Uneven Magnetic Flux Density Distribution on Core Loss Estimation

Investigating the Impact of Uneven Magnetic Flux Density Distribution on Core Loss Estimation IEEE PEDS 2017, Honolulu, USA 12 15 December 2017 Investigating the Impact of Uneven Magnetic Flux Density Distribution on Core Loss Estimation Farideh Javidi N. 1, Morten Nymand 2 The Maersk Mc-Kinney

More information

TRANSFORMERS B O O K P G

TRANSFORMERS B O O K P G TRANSFORMERS B O O K P G. 4 4 4-449 REVIEW The RMS equivalent current is defined as the dc that will provide the same power in the resistor as the ac does on average P average = I 2 RMS R = 1 2 I 0 2 R=

More information

Electromagnetic Induction & Inductors

Electromagnetic Induction & Inductors Electromagnetic Induction & Inductors 1 Revision of Electromagnetic Induction and Inductors (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) Magnetic Field

More information

INPAQ. Specification. WIP252012S L Series. Product Name. Power Inductor. Size EIAJ Global RF/Component Solutions

INPAQ. Specification. WIP252012S L Series. Product Name. Power Inductor. Size EIAJ Global RF/Component Solutions WIP252012S L Series Specification Product Name Series Power Inductor WIP252012S L Series Size EIAJ 2520 WIP252012S L Series Engineering Specification 1. Scope Feature High saturation current realized by

More information

Book Page cgrahamphysics.com Transformers

Book Page cgrahamphysics.com Transformers Book Page 444-449 Transformers Review The RMS equivalent current is defined as the dc that will provide the same power in the resistor as the ac does on average P average = I 2 RMS R = 1 2 I 0 2 R= V RMS

More information

The Use of Multiphysics Models in the Design and Simulation of Magnetostrictive Transducers. Dr. Julie Slaughter ETREMA Products, Inc Ames, IA

The Use of Multiphysics Models in the Design and Simulation of Magnetostrictive Transducers. Dr. Julie Slaughter ETREMA Products, Inc Ames, IA The Use of Multiphysics Models in the Design and Simulation of Magnetostrictive Transducers Dr. Julie Slaughter ETREMA Products, Inc Ames, IA 1 ETREMA Products, Inc. Designer and manufacturer of technology

More information

STATIC TORQUE MEASUREMENT USING GMI STRAIN GAUGE

STATIC TORQUE MEASUREMENT USING GMI STRAIN GAUGE Journal of Optoelectronics and Advanced Materials Vol. 6, No. 2, June 2004, p. 699-703 STATIC TORQUE MEASUREMENT USING GMI STRAIN GAUGE T. Uchiyama, F. Borza *, T. Meydan Wolfson Centre for Magnetics Technology,

More information

MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM VISUAL PHYSICS ONLINE

MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM When electric charges are in motion they exert forces on each other that can t be explained by Coulomb s law. If two parallel

More information

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics System Engineering Indian Institute of Science, Bangalore

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics System Engineering Indian Institute of Science, Bangalore Switched Mode Power Conversion Prof. L. Umanand Department of Electronics System Engineering Indian Institute of Science, Bangalore Lecture - 39 Magnetic Design Good day to all of you. Today, we shall

More information

Modelling Non-Ideal Inductors in SPICE

Modelling Non-Ideal Inductors in SPICE Modelling Non-Ideal Inductors in SPICE Martin O'Hara Technical Manager, Newport Components, Milton Keynes November 1994 Abstract The non-ideal inductor exhibits both self resonance and non-linear current

More information

Definitions of Terminology in Magnetics

Definitions of Terminology in Magnetics Definitions of Terminology in Magnetics Ag Area of the air gap, or the cross sectional area of the air gap perpendicular to the flux path, is the average cross sectional area of that portion of the air

More information

IES LM MEASUREMENT AND TEST REPORT For

IES LM MEASUREMENT AND TEST REPORT For IES LM-79-08 MEASUREMENT AND TEST REPORT For Suzhou RUNLUX Electric Ltd. Kunshan Economic&Technological Development Zone, Kunshan City, Jiangsu, P.R.China. Test Model: R1-22TLD30W35K Report Type: Test

More information

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HC6H 400-S/SP1

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HC6H 400-S/SP1 AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HC6H 400-S/SP1 Picture of product with pencil Introduction The HC6H family is for the electronic measurement of DC, AC or pulsed currents in high power

More information

Induction Heating: fundamentals

Induction Heating: fundamentals LEP ELECTROMAGNETIC PROCESSING OF MATERIALS TECNOLGIE DEI PROCESSI ELETTROTERMICI Induction Heating: fundamentals Fabrizio Dughiero 2017-2018 Induction heating fundamentals May 28-30, 2014 1 Summary 1.

More information

LUXEON Flash. power light source. Introduction

LUXEON Flash. power light source. Introduction Technical Datasheet DS49 power light source LUXEON Flash Introduction LUXEON Flash is a family of ultra-compact light sources specifically designed and tested for use as a camera flash in space-constrained,

More information

FB-DC6 Electric Circuits: Magnetism and Electromagnetism

FB-DC6 Electric Circuits: Magnetism and Electromagnetism CREST Foundation Electrical Engineering: DC Electric Circuits Kuphaldt FB-DC6 Electric Circuits: Magnetism and Electromagnetism Contents 1. Electromagnetism 2. Magnetic units of measurement 3. Permeability

More information

magneticsp17 September 14, of 17

magneticsp17 September 14, of 17 EXPERIMENT Magnetics Faraday s Law in Coils with Permanent Magnet, DC and AC Excitation OBJECTIVE The knowledge and understanding of the behavior of magnetic materials is of prime importance for the design

More information

Tutorial Sheet Fig. Q1

Tutorial Sheet Fig. Q1 Tutorial Sheet - 04 1. The magnetic circuit shown in Fig. Q1 has dimensions A c = A g = 9 cm 2, g = 0.050 cm, l c = 30 cm, and N = 500 turns. Assume the value of the relative permeability,µ r = 70,000

More information

MATERIAL CHARACTERISTICS

MATERIAL CHARACTERISTICS MATERIAL CHARACTERISTICS Introduction Introduction Copyright 2007by Qingdao Ewic Hi-tech Magnetic Material Co,.,Ltd. 2007.08. T elephone 0532-8339-9675 QINGDAO EWIC HI-TECH MAGNETIC MATERIAL CO.,LTD. About

More information

WIP201610P L Series Engineering Specification

WIP201610P L Series Engineering Specification RoHS Pb WIP16P L Series Engineering 1. Scope Feature High saturation current realized by material properties and structure design Low DC resistance to achieve high conversion efficiency and lower temperature

More information

Analysis and Performance Evaluation of an Axial-Field Brushless PM Machine Utilising Soft Magnetic Composites

Analysis and Performance Evaluation of an Axial-Field Brushless PM Machine Utilising Soft Magnetic Composites The following paper posted here is not the official IEEE published version. The final published version of this paper can be found in the Proceedings of the International Electric Machines and Drives Conference

More information

MAGNETIC PROBLEMS. (d) Sketch B as a function of d clearly showing the value for maximum value of B.

MAGNETIC PROBLEMS. (d) Sketch B as a function of d clearly showing the value for maximum value of B. PHYS2012/2912 MAGNETC PROBLEMS M014 You can investigate the behaviour of a toroidal (dough nut shape) electromagnet by changing the core material (magnetic susceptibility m ) and the length d of the air

More information

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS 1. What is intrinsic If a semiconductor is sufficiently pure, then it is known as intrinsic semiconductor. ex:: pure Ge, pure Si 2. Mention the expression for intrinsic carrier concentration of intrinsic

More information

WIP252012P L Series Engineering Specification

WIP252012P L Series Engineering Specification RoHS Pb WIP212P L Series Engineering 1. Scope Feature High saturation current realized by material properties and structure design Low DC resistance to achieve high conversion efficiency and lower temperature

More information

Chapter 30 INDUCTANCE. Copyright 2012 Pearson Education Inc.

Chapter 30 INDUCTANCE. Copyright 2012 Pearson Education Inc. Chapter 30 INDUCTANCE Goals for Chapter 30 To learn how current in one coil can induce an emf in another unconnected coil To relate the induced emf to the rate of change of the current To calculate the

More information

IXGH48N60A3D C

IXGH48N60A3D C GenX TM V IGBT w/diode Ultra Low Vsat PT IGBT for up to khz switching IXGH8NAD S = V = 8A (sat).v TO-7 AD Symbol Test Conditions Maximum Ratings S = C to C V V CGR = C to C, R GE = MΩ V V GES Continuous

More information

FFSD08120A/D. Silicon Carbide Schottky Diode 1200 V, 8 A Features. FFSD08120A Silicon Carbide Schottky Diode. Description.

FFSD08120A/D. Silicon Carbide Schottky Diode 1200 V, 8 A Features. FFSD08120A Silicon Carbide Schottky Diode. Description. FFSD8A Silicon Carbide Schottky Diode V, 8 A Features Max Junction Temperature 75 C Avalanche Rated 8 mj High Surge Current Capacity Positive Temperature Coefficient Ease of Paralleling No Reverse Recovery

More information

DESIGN OF A HIGH-EFFICIENCY MAGNETORHEOLOGICAL VALVE

DESIGN OF A HIGH-EFFICIENCY MAGNETORHEOLOGICAL VALVE DESIGN OF A HIGH-EFFICIENCY MAGNETORHEOLOGICAL VALVE JIN-HYEONG YOO AND NORMAN M. WERELEY Alfred Gessow Rotorcraft Center, Department of Aerospace Engineering University of Maryland, College Park, Maryland

More information

MAU100 Series. 1W, Miniature SIP, Single & Dual Output DC/DC Converters MINMAX. Key Features

MAU100 Series. 1W, Miniature SIP, Single & Dual Output DC/DC Converters MINMAX. Key Features W, Miniature SIP, Single & Dual Output DC/DC s Key Features Efficiency up to % 000 Isolation MTBF >,000,000 Hours Low Cost Input,, and Output 3.3,,9,,,{,{9,{ and { Temperature Performance -0] to +] UL

More information

1/10 FEATURES HOW TO ORDER DIMENSIONS

1/10 FEATURES HOW TO ORDER DIMENSIONS OUTLINE Wire wound chip inductor is a perfect combine by means of combining high precision coil framework with superb wound technology.comparable with traditional inductor, it is improved technology, reduced

More information

B I A S T E E Reducing the Size of the Filtering Hardware. for Josephson Junction Qubit Experiments Using. Iron Powder Inductor Cores.

B I A S T E E Reducing the Size of the Filtering Hardware. for Josephson Junction Qubit Experiments Using. Iron Powder Inductor Cores. B I A S T E E 2. 0 Reducing the Size of the Filtering Hardware for Josephson Junction Qubit Experiments Using Iron Powder Inductor Cores. Daniel Staudigel Table of Contents Bias Tee 2.0 Daniel Staudigel

More information

In The Name of GOD. Switched Mode Power Supply

In The Name of GOD. Switched Mode Power Supply In The Name of GOD Switched Mode Power Supply Switched Mode Power Supply Lecture 9 Inductor Design Φ Adib Abrishamifar EE Department IUST Outline } Types of magnetic devices } Filter inductor } Ac inductor

More information

Suppose two uniform bars meet at an abrupt plane and there is a magnetic field induced by an extended core and coil structure off stage as in:

Suppose two uniform bars meet at an abrupt plane and there is a magnetic field induced by an extended core and coil structure off stage as in: Class Notes Week of 1/9 /3/017 ENGN1931F The magnetic structures that are central to the design of generators, transformers, motors, inductors, solenoids, etc. can be complex. We need a way to make approximate

More information

Designing an LLC Resonant Half-Bridge Power Converter

Designing an LLC Resonant Half-Bridge Power Converter Topic 3 Designing an LLC Resonant Half-Bridge Power Converter Hong Huang Agenda. Introduction Brief review Advantages 2. Design Prerequisites Configuration Operation Modeling Voltage gain function 3. Design

More information

Switched Mode Power Conversion

Switched Mode Power Conversion Inductors Devices for Efficient Power Conversion Switches Inductors Transformers Capacitors Inductors Inductors Store Energy Inductors Store Energy in a Magnetic Field In Power Converters Energy Storage

More information

IXXH75N60C3D1 V CES = 600V I C110. XPT TM 600V IGBT GenX3 TM w/ Diode. = 75A V CE(sat) 2.3V t fi(typ) = 75ns

IXXH75N60C3D1 V CES = 600V I C110. XPT TM 600V IGBT GenX3 TM w/ Diode. = 75A V CE(sat) 2.3V t fi(typ) = 75ns XPT TM 6V IGBT GenX TM w/ Diode Extreme Light Punch Through IGBT for -6 khz Switching IXXH7N6CD S = 6V = 7A (sat).v t fi(typ) = 7ns Symbol Test Conditions Maximum Ratings S = C to 7 C 6 V V CGR = C to

More information

Type FCA Acrylic Surface Mount Film Capacitors

Type FCA Acrylic Surface Mount Film Capacitors Type Acrylic Surface Mount Film Capacitors Acrylic Stacked Metallized Film Capacitors for Filtering and Noise Attenuation Type acrylic film chips are non-inductive stacked metallized film capacitors which

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Part III. Magnetics 13 Basic Magnetics Theory 14 Inductor Design 15 Transformer Design 1 Chapter

More information

Chapter 15 Magnetic Circuits and Transformers

Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers 1. Understand magnetic fields and their interactio with moving charges. 2. Use the right-hand rule to determine

More information

IXGH60N60C3 = 600V I C110. GenX3 TM 600V IGBT V CES. = 60A V CE(sat) 2.5V t fi (typ) = 50ns. High Speed PT IGBT for kHz Switching TO-247 AD

IXGH60N60C3 = 600V I C110. GenX3 TM 600V IGBT V CES. = 60A V CE(sat) 2.5V t fi (typ) = 50ns. High Speed PT IGBT for kHz Switching TO-247 AD GenX3 TM V IGBT High Speed PT IGBT for -khz Switching IXGHNC3 V CES = V 11 = A V CE(sat) V t fi (typ) = 5ns Symbol Test Conditions Maximum Ratings V CES = 25 C to 15 C V V CGR = 25 C to 15 C, R GE = 1MΩ

More information

IXXK200N60B3 IXXX200N60B3

IXXK200N60B3 IXXX200N60B3 XPT TM 6V IGBTs GenX3 TM Extreme Light Punch Through IGBT for -3kHz Switching Preliminary Technical Information S = 6V = A (sat).7v t fi(typ) = ns TO-6 (IXXK) Symbol Test Conditions Maximum Ratings S =

More information

Applications SC

Applications SC AC Line Filters SC Coils, Standard ype Overview he KEME SC Coils, Standard ype AC line filters are offered in a wide variety of sizes and specifications. Applications Consumer Electronics Common mode choke

More information

Model for Core Loss Prediction at High Frequency and High Flux Density. Jemimah C Akiror. A Thesis. The Department

Model for Core Loss Prediction at High Frequency and High Flux Density. Jemimah C Akiror. A Thesis. The Department Model for Core Loss Prediction at High Frequency and High Flux Density Jemimah C Akiror A Thesis in The Department of Electrical and Computer Engineering Presented in Partial Fulfillment of the Requirements

More information

XPT TM 600V IGBT GenX3 TM w/diode MMIX1X200N60B3H1 = 600V I C110 V CES. = 72A V CE(sat) 1.7V t fi(typ) = 110ns. Preliminary Technical Information

XPT TM 600V IGBT GenX3 TM w/diode MMIX1X200N60B3H1 = 600V I C110 V CES. = 72A V CE(sat) 1.7V t fi(typ) = 110ns. Preliminary Technical Information XPT TM 6V IGBT GenX3 TM w/diode (Electrically Isolated Tab) Preliminary Technical Information MMIXXN6B3H S = 6V = 7A (sat).7v t fi(typ) = ns Extreme Light Punch Through IGBT for -3kHz Switching Symbol

More information

IXYH82N120C3 V CES = 1200V I C V XPT TM IGBT GenX3 TM. = 82A V CE(sat) 3.2V t fi(typ) = 93ns. High-Speed IGBT for khz Switching

IXYH82N120C3 V CES = 1200V I C V XPT TM IGBT GenX3 TM. = 82A V CE(sat) 3.2V t fi(typ) = 93ns. High-Speed IGBT for khz Switching V XPT TM IGBT GenX TM High-Speed IGBT for - khz Switching IXYHNC S = V = A (sat).v t fi(typ) = 9ns Symbol Test Conditions Maximum Ratings S = C to 7 C V V CGR = C to 7 C, R GE = MΩ V V GES Continuous ±

More information