Scheme I SAMPLE QUESTION PAPER I

Size: px
Start display at page:

Download "Scheme I SAMPLE QUESTION PAPER I"

Transcription

1 SAMPLE QUESTION PAPER I Marks : 70 Time: 3 Hours Q.1) A) Attempt any FIVE of the following. a) Define active components. b) List different types of resistors. c) Describe method to test following passive components using multimeter. 1. Resistor 2. Capacitor 3. Inductor d) List standard values of inductor available in market. e) State the applications of Laser diode. f) List the types of rectifiers. g) State specifications of PIN diode. a) Explain the construction of LDR with sketch. b) Explain working of electrolytic capacitor. c) List different types of capacitor. d) Sketch input/output waveforms for half and full wave rectifiers. 10 Marks Q.3) Attempt any THREE of the following a) State the Faradays law of electromagnetic induction and explain applications of it. b) Describe the construction of air core inductor with sketch. c) Draw symbol of following diodes. a. Zener diode b. Tunnel diode c. Photodiode d. Laser diode 1

2 d) Centre tap and bridge type circuits having the same load resistance and transformer turn ratio are shown in following fig. The primary of each is connected to 230V, 50Hz supply. a. Calculate the DC voltage in each case. b. PIV for each for the same DC output. Assume the diodes to be ideal. Q.4) Attempt any THREE of the following a) Sketch labelled waveform of ECG and EEG. b) Explain the concept of polarization and depolarization of cell with sketch. c) Describe the working principle of linear potentiometer. d) List the specification of air gang capacitor. e) Sketch resistor with colour band of 100Ω resistance with 10% tolerance. Q.5) Attempt any TWO of the following a) Explain the construction of P-N junction diode with sketch. b) Differentiate between photodiode and laser diode. c) Explain the role of engineers in healthcare industry. Q.6) Attempt any TWO of the following a) Explain working of full wave rectifier with sketch. b) List six different medical equipment based on following classifications 1. Analytical 2. Diagnostic c) Explain merits and demerits of following inductors. 1. Air core inductor 2. Ferrite core inductor 3. Iron core inductor 2

3 SAMPLE QUESTION PAPER - II Marks : 70 Time: 3 Hours Q.1) A) Attempt any FIVE of the following. 10 Marks a) Define passive components. b) List materials of resistors. c) Following capacitors are available a. 10,000 µf electrolytic capacitor b. 100 µf electrolytic capacitor c. Trimmer (range between 10 to 100 µf) d. Trimmer (range between 100 to 10,000 µf) Select value of capacitor to design 20v DC (O/P) power supply. d) Suppose if an inductor is labeled as 223K, find the exact value of inductor. e) Sketch symbol of P-N junction diode. f) Define ripple factor. g) List applications of Tunnel diode and Laser diode. a) Explain the construction of carbon film resistors with sketches. b) Compare variable capacitor with fixed capacitor. 3

4 c) List materials used for construction of electrolytic capacitor. d) Define following parameters of rectifier a. Ripple Frequency b. PIV of Diode c. TUF d. Efficiency Q.3) Attempt any THREE of the following. a) List out hard and soft magnetic materials. b) Describe different types of magnetic materials and their B-H curve. c) Explain constructional diagram of PIN diode. d) Calculate the voltage across VDC and the current IDC, flowing through a R=100Ω resistor connected to a 240 Vrms single phase half-wave rectifier as shown above. Also calculate the DC power consumed by the load. Q.4) Attempt any THREE of the following. a) Sketch EMG and ERG waveform. b) Describe basic medical instrumentation system with its sketch. c) Explain the construction of wire wound resistors with sketches. d) State the applications of PVC gang capacitor. e) Select passive component for designing of circuit on PCB of size 5mm 5mm to get resistance of 1kΩ between any two points. (For resistive trimmer). Q.5) Attempt any TWO of the following. a) Discuss the applications of IRLED in detail. b) Explain construction of tunnel diode with sketch. c) Describe action potential of the cells Q.6) Attempt any TWO of the following. a) Describe the circuit diagram of half wave rectifier with sketch. b) Give the primary signal characteristics of EMG and ERG. c) Explain re-polarization and depolarization with sketch 4

5 SAMPLE TEST PAPER I Marks : 20 Time: 1 Hour Q.1) A) Attempt any FOUR of the following. a) List passive components. b) List the materials used for capacitors. d) List the specifications of electrolytic capacitor. e) Distinguish between PVC gang capacitor and trimmer capacitor. f) Classify Resistors. g) Draw constructional diagram of trimmer capacitor. 08 Marks a) Explain the construction of SMD resistors. b) Describe the working principle of logarithmic potentiometer. c) Distinguish between PVC gang capacitor and trimmer capacitor. d) Compare variable capacitor with fixed capacitor. 5

6 SAMPLE TEST PAPER II Marks : 20 Time: 1 Hour Q.1) A) Attempt any FOUR of the following. a) Draw symbol of Zener and Tunnel diode. b) List the applications of Shottkey diode. c) Define Filters. d) Define TUF and efficiency of rectifier. e) List any four analytical equipments. f) Sketch ECG waveform. 08 Marks a) Describe constructional sketch of PIN diode. b) Compare half wave, full wave bridge and center tap rectifier. c) Discuss the concept of polarization and depolarization with sketch. d) In a centre-tap full wave rectifier, the load resistance R L =1KΩ. Each diode has a forward bias dynamic resistance r f of 10Ω. The voltage across half the secondary winding is 220 sin 314t. Find (i) the peak value of current (ii) the DC or average value of current (iii) the rms value of current (iv) the ripple factor. 6

PHYSICS. Downloaded From: Time Allowed : 3 Hrs. Max. Marks 60

PHYSICS. Downloaded From:   Time Allowed : 3 Hrs. Max. Marks 60 PHYSICS Time Allowed : Hrs. Max. Marks 60 * Candidates are required to give their answers in their own words as far as practicable. * Marks allotted to each question are indicated against it. Special Instructions

More information

NZQA unit standard version 2 Page 1 of 8

NZQA unit standard version 2 Page 1 of 8 Page 1 of 8 Title Demonstrate knowledge of electrical principles in an electrotechnology or telecommunications environment Level 3 Credits 15 Purpose This unit standard covers basic electrical principles

More information

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2 - CAPACITOR NETWORK

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2 - CAPACITOR NETWORK EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No.2 - CAPACITOR NETWORK NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is

More information

SECOND ENGINEER REG III/2 MARINE ELECTRO-TECHNOLOGY. 1. Understands the physical construction and characteristics of basic components.

SECOND ENGINEER REG III/2 MARINE ELECTRO-TECHNOLOGY. 1. Understands the physical construction and characteristics of basic components. SECOND ENGINEER REG III/ MARINE ELECTRO-TECHNOLOGY LIST OF TOPICS A B C D Electric and Electronic Components Electric Circuit Principles Electromagnetism Electrical Machines The expected learning outcome

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 1. In the single-phase rectifier shown below in Fig 1a., s = 1mH and I d = 10A. The input voltage v s has the pulse waveform shown

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

Lecture 17 Push-Pull and Bridge DC-DC converters Push-Pull Converter (Buck Derived) Centre-tapped primary and secondary windings

Lecture 17 Push-Pull and Bridge DC-DC converters Push-Pull Converter (Buck Derived) Centre-tapped primary and secondary windings ecture 17 Push-Pull and Bridge DC-DC converters Push-Pull Converter (Buck Derived) Centre-tapped primary and secondary windings 1 2 D 1 i v 1 v 1s + v C o R v 2 v 2s d 1 2 T 1 T 2 D 2 Figure 17.1 v c (

More information

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Question Booklet

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Question Booklet Farr High School HIGHER PHYSICS Unit 3 Electricity Question Booklet 1 MONITORING ND MESURING.C. 1. What is the peak voltage of the 230 V mains supply? The frequency of the mains supply is 50 Hz. How many

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Electricity. Questions and Solutions. James Page Arthur Baillie [HIGHER]

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Electricity. Questions and Solutions. James Page Arthur Baillie [HIGHER] NTIONL QULIFICTIONS CURRICULUM SUPPORT Physics Electricity Questions and Solutions James Page rthur Baillie [HIGHER] The Scottish Qualifications uthority regularly reviews the arrangements for National

More information

Power Electronics

Power Electronics Prof. Dr. Ing. Joachim Böcker Power Electronics 3.09.06 Last Name: Student Number: First Name: Study Program: Professional Examination Performance Proof Task: (Credits) (0) (0) 3 (0) 4 (0) Total (80) Mark

More information

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU Project Components MC34063 or equivalent Bread Board PSpice Software OrCAD designer Lite version http://www.cadence.com/products/orcad/pages/downloads.aspx#pspice More Details on the Introduction CONVERTER

More information

NATIONAL CERTIFICATE (VOCATIONAL) NQF LEVEL

NATIONAL CERTIFICATE (VOCATIONAL) NQF LEVEL MARKING GUIDELINES NATIONAL CERTIFICATE (VOCATIONAL) NQF LEVEL 2 NOVEMBER 2009 This marking guideline consists of 8 pages. (MARKING GUIDELINES) -2- NC770(E)(O30)V SECTION A QUESTION 1: COMPONENTS AND CIRCUIT

More information

Physics Department. CfE Higher Unit 3: Electricity. Problem Booklet

Physics Department. CfE Higher Unit 3: Electricity. Problem Booklet Physics Department CfE Higher Unit 3: Electricity Problem Booklet Name Class 1 Contents Exercise 1: Monitoring and measuring a.c. Exercise 2: Current, voltage, power and resistance Exercise 3: Electrical

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering QUESTION PAPER INTERNAL ASSESSMENT TEST 2 Date : /10/2016 Marks: 0 Subject & Code: BASIC ELECTRICAL ENGINEERING -15ELE15 Sec : F,G,H,I,J,K Name of faculty : Dhanashree Bhate, Hema B, Prashanth V Time :

More information

6.3. Transformer isolation

6.3. Transformer isolation 6.3. Transformer isolation Objectives: Isolation of input and output ground connections, to meet safety requirements eduction of transformer size by incorporating high frequency isolation transformer inside

More information

Industrial Technology: Electronic Technology Crosswalk to AZ Math Standards

Industrial Technology: Electronic Technology Crosswalk to AZ Math Standards Page 1 of 1 August 1998 1M-P1 Compare and contrast the real number system and its various subsystems with regard to their structural characteristics. PO 2 PO 3 2.0 Apply mathematics calculations. 2.1 Apply

More information

ASSOCIATE DEGREE IN ENGINEERING RESIT EXAMINATIONS SEMESTER 1. "Electrical Eng Science"

ASSOCIATE DEGREE IN ENGINEERING RESIT EXAMINATIONS SEMESTER 1. Electrical Eng Science ASSOCIATE DEGREE IN ENGINEERING RESIT EXAMINATIONS SEMESTER 1 COURSE NAME: "Electrical Eng Science" CODE: GROUP: "[ADET 2]" DATE: December 2010 TIME: DURATION: 9:00 am "Two hours" INSTRUCTIONS: 1. This

More information

S.E. Sem. III [ETRX] Electronic Circuits and Design I

S.E. Sem. III [ETRX] Electronic Circuits and Design I S.E. Sem. [ETRX] Electronic ircuits and Design Time : 3 Hrs.] Prelim Paper Solution [Marks : 80 Q.1(a) What happens when diode is operated at high frequency? [5] Ans.: Diode High Frequency Model : This

More information

Capacitor. Capacitor (Cont d)

Capacitor. Capacitor (Cont d) 1 2 1 Capacitor Capacitor is a passive two-terminal component storing the energy in an electric field charged by the voltage across the dielectric. Fixed Polarized Variable Capacitance is the ratio of

More information

A Level Physics B (Advancing Physics) H557/03 Practical skills in physics Sample Question Paper SPECIMEN

A Level Physics B (Advancing Physics) H557/03 Practical skills in physics Sample Question Paper SPECIMEN A Level Physics B (Advancing Physics) H557/03 Practical skills in physics Sample Question Paper Date Morning/Afternoon Time allowed: 1 hour 30 minutes You must have: the Data, Formulae and Relationships

More information

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER: UNIT VII IASING & STAILIZATION AMPLIFIE: - A circuit that increases the amplitude of given signal is an amplifier - Small ac signal applied to an amplifier is obtained as large a.c. signal of same frequency

More information

Figure Circuit for Question 1. Figure Circuit for Question 2

Figure Circuit for Question 1. Figure Circuit for Question 2 Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question

More information

Module 3 Electrical Fundamentals

Module 3 Electrical Fundamentals 3.1 Electron Theory Structure and distribution of electrical charges within: atoms, molecules, ions, compounds; Molecular structure of conductors, semiconductors and insulators. 3.2 Static Electricity

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

2. The following diagram illustrates that voltage represents what physical dimension?

2. The following diagram illustrates that voltage represents what physical dimension? BioE 1310 - Exam 1 2/20/2018 Answer Sheet - Correct answer is A for all questions 1. A particular voltage divider with 10 V across it consists of two resistors in series. One resistor is 7 KΩ and the other

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency 3.1. The dc transformer model 3.2. Inclusion of inductor copper loss 3.3. Construction of equivalent circuit model 3.4. How to

More information

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V. When you have completed this exercise, you will be able to operate a zener-clamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based

More information

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

More information

CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

Some Important Electrical Units

Some Important Electrical Units Some Important Electrical Units Quantity Unit Symbol Current Charge Voltage Resistance Power Ampere Coulomb Volt Ohm Watt A C V W W These derived units are based on fundamental units from the meterkilogram-second

More information

MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194

MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194 MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194 Question 1 (a) List three sources of heat in soldering (b) state the functions of flux in soldering (c) briefly describe with aid of diagram

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

TSTE25 Power Electronics. Lecture 3 Tomas Jonsson ICS/ISY

TSTE25 Power Electronics. Lecture 3 Tomas Jonsson ICS/ISY TSTE25 Power Electronics Lecture 3 Tomas Jonsson ICS/ISY 2016-11-09 2 Outline Rectifiers Current commutation Rectifiers, cont. Three phase Inrush and short circuit current Exercises 5-5, 5-8, 3-100, 3-101,

More information

5. You may use the following values of physical constants wherever necessary. Class XII Physics (042) Sample Question Paper

5. You may use the following values of physical constants wherever necessary. Class XII Physics (042) Sample Question Paper Class XII Physics (04) Sample Question Paper 018-19 Time allowed: hours. Max. Marks: 70 General Instructions: 1. All questions are compulsory. There are 7 questions in all.. This question paper has four

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]

More information

ECE Circuit Theory. Final Examination. December 5, 2008

ECE Circuit Theory. Final Examination. December 5, 2008 ECE 212 H1F Pg 1 of 12 ECE 212 - Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

Dept. of Electrical Engineering Final Exam, Summer Semester: 2014/2015

Dept. of Electrical Engineering Final Exam, Summer Semester: 2014/2015 de Form No. T611 Philadelphia University Faculty of Engineering Dept. of Electrical Engineering Final Exam, Summer Semester: 2014/2015 Student Name: Student Number: Course Title: nstrumentation and Measurement

More information

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016 CLASS: XII AISSCE 2016 Subject: Physics EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016 Q3 Section A ( 1 Mark ) A force F is acting between two charges placed some distances apart in vacuum. If a brass

More information

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS UNIT 2: ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS MODULE 1: ELECTRICITY AND MAGNETISM GENERAL OBJECTIVES On completion of this Module, students should: 1. understand

More information

Electromagnetic Induction & Inductors

Electromagnetic Induction & Inductors Electromagnetic Induction & Inductors 1 Revision of Electromagnetic Induction and Inductors (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) Magnetic Field

More information

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

+2 Physics Important FIVE marks Questions. English Medium : Volume I. (From - March: 2006 to Oct : 2015)

+2 Physics Important FIVE marks Questions. English Medium : Volume I. (From - March: 2006 to Oct : 2015) +2 Physics Important FIVE marks Questions English Medium : Volume I (From - March: 2006 to Oct : 2015) +2 Physics Unit -1 Electrostatics - Five marks questions 1. Write the properties of electric lines

More information

Mutual Inductance: This is the magnetic flux coupling of 2 coils where the current in one coil causes a voltage to be induced in the other coil.

Mutual Inductance: This is the magnetic flux coupling of 2 coils where the current in one coil causes a voltage to be induced in the other coil. agnetically Coupled Circuits utual Inductance: This is the magnetic flux coupling of coils where the current in one coil causes a voltage to be induced in the other coil. st I d like to emphasize that

More information

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors L05: Capacitors and Inductors 50 Capacitors 51 Outline of the lecture: Capacitors and capacitance. Energy storage. Capacitance formula. Types of capacitors. Inductors and inductance. Inductance formula.

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY REVSED HGHER PHYSCS REVSON BOOKLET ELECTRONS AND ENERGY Kinross High School Monitoring and measuring a.c. Alternating current: Mains supply a.c.; batteries/cells supply d.c. Electrons moving back and forth,

More information

Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory

Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory Lab 4 RC Circuits Name Partner s Name I. Introduction/Theory Consider a circuit such as that in Figure 1, in which a potential difference is applied to the series combination of a resistor and a capacitor.

More information

TRANSFORMERS B O O K P G

TRANSFORMERS B O O K P G TRANSFORMERS B O O K P G. 4 4 4-449 REVIEW The RMS equivalent current is defined as the dc that will provide the same power in the resistor as the ac does on average P average = I 2 RMS R = 1 2 I 0 2 R=

More information

Herefordshire College of Technology Center Number Student:

Herefordshire College of Technology Center Number Student: Herefordshire College of Technology Center Number 024150 Course: : BTEC Level 3 Subsidiary Diploma in Engineering / Diploma in Electrical/Electronic Engineering Student: Unit/s: 6 Electrical & Electronic

More information

Lab 9/14/2012. Lab Power / Energy Series / Parallel Small Signal Applications. Outline. Power Supply

Lab 9/14/2012. Lab Power / Energy Series / Parallel Small Signal Applications. Outline. Power Supply Outline Session 2: Analog Circuits Lab Power / Energy Series / Parallel Small Signal Applications Lab hits Power Supply, Oscilloscope, Breadboard, Multimeters Energy Power an Energy for, L, C Series /

More information

Chapter 14: Inductor design

Chapter 14: Inductor design Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure 14.3 Multiple-winding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points

More information

coil of the circuit. [8+8]

coil of the circuit. [8+8] Code No: R05310202 Set No. 1 III B.Tech I Semester Regular Examinations, November 2008 ELECTRICAL MEASUREMENTS (Electrical & Electronic Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

Book Page cgrahamphysics.com Transformers

Book Page cgrahamphysics.com Transformers Book Page 444-449 Transformers Review The RMS equivalent current is defined as the dc that will provide the same power in the resistor as the ac does on average P average = I 2 RMS R = 1 2 I 0 2 R= V RMS

More information

Notes on Electric Circuits (Dr. Ramakant Srivastava)

Notes on Electric Circuits (Dr. Ramakant Srivastava) Notes on Electric ircuits (Dr. Ramakant Srivastava) Passive Sign onvention (PS) Passive sign convention deals with the designation of the polarity of the voltage and the direction of the current arrow

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

OR Explain thermal breakdown in solid dielectrics. How this mechanism is

OR Explain thermal breakdown in solid dielectrics. How this mechanism is Subject : High Voltage Engineering (2090) ITM Universe, Vadodara Electrical Engineering Department Class : Electrical Sem : th Long Questions Sr. No Question Unit No : 0 Explain Charge Simulation method

More information

Engineering Unit 1: Engineering Principles

Engineering Unit 1: Engineering Principles Write your name here Surname Other names Pearson BTEC Level 3 Extended Certificate, Foundation Diploma, Diploma, Extended Diploma Centre Number Learner Registration Number Engineering Unit 1: Engineering

More information

+ ( )= with initial condition

+ ( )= with initial condition Department of Electrical Engineering PhD. Admission Test Full Marks: 90 Time 90 minutes Date: 02.2.204 NAME: Appl. No: Write your answer on the question paper ONLY. All questions carry equal marks. PART

More information

To investigate further the series LCR circuit, especially around the point of minimum impedance. 1 Electricity & Electronics Constructor EEC470

To investigate further the series LCR circuit, especially around the point of minimum impedance. 1 Electricity & Electronics Constructor EEC470 Series esonance OBJECTIE To investigate further the series LC circuit, especially around the point of minimum impedance. EQUIPMENT EQUIED Qty Apparatus Electricity & Electronics Constructor EEC470 Basic

More information

PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6404-MEASUREMENTS AND INSTRUMENTATION

PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6404-MEASUREMENTS AND INSTRUMENTATION PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6404-MEASUREMENTS AND INSTRUMENTATION ACADEMIC YEAR: 2015-2016 (EVEN SEMESTER) Branch: EEE QUESTION BANK

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 2.4 Cuk converter example L 1 C 1 L 2 Cuk converter, with ideal switch i 1 i v 1 2 1 2 C 2 v 2 Cuk

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level *3242847993* PHYSICS 9702/43 Paper 4 A2 Structured Questions October/November 2012 2 hours Candidates

More information

BASIC ELECTRONICS CONDUCTION IN SEMICONDUCTORS

BASIC ELECTRONICS CONDUCTION IN SEMICONDUCTORS BASIC ELECTRONICS Subject Code: ELN-15/5 IA marks: 5 Hours per week : 04 Exam Hours 03 Total Hrs: 5 Exam Marks: 100 CHAPTER 1 CONDUCTION IN SEMICONDUCTORS Electrons and holes in an intrinsic semiconductors,

More information

Impedance/Reactance Problems

Impedance/Reactance Problems Impedance/Reactance Problems. Consider the circuit below. An AC sinusoidal voltage of amplitude V and frequency ω is applied to the three capacitors, each of the same capacitance C. What is the total reactance

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18 Circuit Analysis-II Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.

More information

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1-signal function generator 2- Oscilloscope, A.V.O meter 3- Resisters & inductor &capacitor THEORY the following form for

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

Chapter wise Theoretical Important Questions in Physics for Class-XII

Chapter wise Theoretical Important Questions in Physics for Class-XII Electrostatics- 1. Derive an expression for the electric field at a point on the axial position of an electric dipole. 2. Derive an expression for the electric field at a point on the equatorial position

More information

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 6-7 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 04. Capacitors

DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 04. Capacitors MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 04 Capacitors Roll. No: Checked by: Date: Grade: Object: To become familiar with Capacitors,

More information

Power Factor Improvement

Power Factor Improvement Salman bin AbdulazizUniversity College of Engineering Electrical Engineering Department EE 2050Electrical Circuit Laboratory Power Factor Improvement Experiment # 4 Objectives: 1. To introduce the concept

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 04 ELECTRONICS AND COMMUNICATION ENGINEERING Name : Electronic Measurements and Instrumentation Code : A50422 Class : III -

More information

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background SIMPLE D.C. CICUITS AND MEASUEMENTSBackground This unit will discuss simple D.C. (direct current current in only one direction) circuits: The elements in them, the simple arrangements of these elements,

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current

More information

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel esson 6 Solution of urrent in Parallel and Seriesparallel ircuits n the last lesson, the following points were described:. How to compute the total impedance/admittance in series/parallel circuits?. How

More information

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively Chapter 3 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively In the LC circuit the charge, current, and potential difference vary sinusoidally (with period T and angular

More information

Electricity and Light Pre Lab Questions

Electricity and Light Pre Lab Questions Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.

More information

ECE 201 Fall 2009 Final Exam

ECE 201 Fall 2009 Final Exam ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,

More information

Units (Different systems of units, SI units, fundamental and derived units)

Units (Different systems of units, SI units, fundamental and derived units) Physics: Units & Measurement: Units (Different systems of units, SI units, fundamental and derived units) Dimensional Analysis Precision and significant figures Fundamental measurements in Physics (Vernier

More information

General Instructions :

General Instructions : Class XII Subject - Physics General Instructions : 1. All questions are compulsory. 2. Q. 1 to 5 are Very short Answer type questions (1 Mark each. ) 3. Q. 6 to 12 are short Answer type questions. (2 Marks

More information

Magnetic Fields

Magnetic Fields Magnetic circuits introduction Becomes aware of the similarities between the analysis of magnetic circuits and electric circuits. Develop a clear understanding of the important parameters of a magnetic

More information

The Basic Capacitor. Dielectric. Conductors

The Basic Capacitor. Dielectric. Conductors Chapter 9 The Basic Capacitor Capacitors are one of the fundamental passive components. In its most basic form, it is composed of two conductive plates separated by an insulating dielectric. The ability

More information

NABTEB Past Questions and Answers - Uploaded online

NABTEB Past Questions and Answers - Uploaded online MAY/JUNE 2008 Question & Model Answer IN BASIC ELECTRICITY 194 QUESTION 1 1(a) Explain the following terms in relation to atomic structure (i) Proton Neutron (iii) Electron (b) Three cells of emf 1.5 volts

More information

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

More information

Review of Basic Electrical and Magnetic Circuit Concepts EE

Review of Basic Electrical and Magnetic Circuit Concepts EE Review of Basic Electrical and Magnetic Circuit Concepts EE 442-642 Sinusoidal Linear Circuits: Instantaneous voltage, current and power, rms values Average (real) power, reactive power, apparent power,

More information

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ECE QUESTION BANK. : G.Lakshminarayana, Asst.

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ECE QUESTION BANK. : G.Lakshminarayana, Asst. ` INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 04 DEPARTMENT OF ECE QUESTION BANK Name Code Class Branch P a g e : Electronic Measurements and Instrumentation : A504 : III - B. Tech

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

QUESTION BANK DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING UNIT I - INTRODUCTION SYLLABUS

QUESTION BANK DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING UNIT I - INTRODUCTION SYLLABUS QUESTION BANK DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEM NAME OF THE SUBJECT NAME OF THE FACULTY : II / IV : EE6404 MEASUREMENTS AND INSTRUMENTATION : K.M.S.MUTHUKUMARA RAJAGURU, AP/EEE

More information

CBSE_2014_SET_3 Physics

CBSE_2014_SET_3 Physics CBSE_2014_SET_3 Physics 1. A conducting loop is held below a current carrying wire PQ as shown. Predict the direction of the induced current in the loop when the current in the wire is constantly increasing.

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK II SEMESTER BE8255 BASIC ELECTRICAL, ELECTRONICS AND MEASUREMENT ENGINEERING

More information