a The mathematics of packing spheres

Size: px
Start display at page:

Download "a The mathematics of packing spheres"

Transcription

1 1 Of oranges and mayonnaise: a The mathematics of packing spheres Rob Farr & Rob Groot September 2011

2 π / ?

3 3 π /

4 In 2 dimensions it s clear: 4 Any packing of equal circles can be split up into triangles The triangle with the highest packing is this one, with 91% coverage: Magically this triangle can Magically, this triangle can be used to tile the plane:

5 In 3 dimensions there is a fly in the ointment: 5 The best packed polyhedron (at 78%) can t be fitted together to tile all of space. So the globally best packed state is not the locally best packed state

6 Different kinds of packing: 1. Crystalline packing of monodisperse spheres 6 History: 1611 Kepler conjecture for monodisperse sphere packing: π/18 1/ from face centred cubic Gauss proved this for regular packings 1997 Thomas Hales provided a full proof... Face Centred Cubic

7 Crystalline packing of monodisperse spheres 7 Seen in colloidal crystals with enough time to equilibrate: Temper rature Gas Coexiste ence of gas and fcc FCC crystal Not po ossible Volume fraction Note: Because interaction is hard sphere, no T dependence

8 Random close packing of monodisperse spheres 8 At high volume fractions, it takes a long time to form crystals Nature 413, 694 (2001) Dil ute Concen ntrated Liq. Coexistence f.c.c?? The system can get trapped in a disordered glassy state, even at a volume fraction where it should crystallize.

9 Random close packing of monodisperse spheres 9 If the system is compressed further in the glassy state, there is a maximum packing fraction which is achievable for this random, disordered state, which is φ max 0.64 First studied in detail by Bernal in 1956, & appears to be a y, pp well defined state (still controversial see Torquato et al.).

10 Why do we care? 10

11 The emulsion clock 11 Most foods are emulsions. Both water and oil phases are usually structured. Low Fat Margarine HIGH OIL Margarine Mayonnaise Dressing HIGH OIL Sauce W/O O/W Soup HIGH WATER Liquid id Margarine VLF Dairy Spread Fresh Cheese HIGH WATER Non-Dairy Cream Ice Cream

12 The importance of random close packing Viscosity of (hard) particle suspensions 12 In fluid systems of hard particles, viscosity is related to how far below RCP you are (e.g. Krieger-Dougherty equation) η r = 1 φ φmax [ η]φ [ ] max Rheology of hard spheres J. Chem Phys. 83(9), 4717 (1985) At low shear rate, the particles will be randomly arranged At high shear rate may get aligned into string phases (higher φ max ) Vis scosity Volume fraction

13 The importance of random close packing Yield stress of emulsions & elastic particle gels You can go above RCP if the spheres are deformable, and then you get a solid. The elastic and yield properties of emulsions (e.g. full fat mayo.) are related to how far above RCP they are. 13 ld stress Yiel CSLM of dense emulsion J. Coll. Int. Sci. 79 (1996) 439

14 The importance of random close packing Specific surface area and permeability D Arcy flow through packed beds (oil through sandstone, coffee through grounds) is related to average pore sizes, specific surface area and so indirectly to packing fraction 14

15 Packing of different size distributions 15 What if you mix two powders and tap them down to random close packing? How much space will they occupy? Or two different emulsions what will the viscosity be? You can run computer simulations of packing, but it is not easy, and each simulation takes hours or days even with the latest code [Rob Groot]. The only remaining option is to think harder...

16 What does polydispersity do to R.C.P.? Think of packing spheres with two different sizes: 16 (a) (b) In general, this increases the close packing vol. fraction: You can sometimes think of packing small spheres in the gaps between big ones, Or grouping small spheres to form large ones which Or grouping small spheres to form large ones, which frees up space.

17 Random Close Packing of bidisperse systems The bidisperse case (mixture of two different sizes) has been long studied but even this simplest case is not trivial 17 t Mass of these particles presen Two parameters: Ratio R of sphere sizes, and Relative amounts of the two types (w) Sphere diameter

18 Random Close Packing of bidisperse systems 18 mass fraction in larger spheres (Data from R. Groot)

19 Predicting the volume fraction of polydisperse hard sphere packings 19 Difficulty 1: Small spheres may rattle around between large spheres. However, if they are similar il size, they might just interfere with the packing of the large spheres. Difficulty 2: It is not just one question: we want to know the maximum packing fraction of any distribution (mixtures of 2, 3, ) different spheres. What are we are trying to approximate?

20 The mathematical zoo 20 3 Numbers Function Numbers 9 g(x)=12j 0 (x) Functions Operator Functions g(x)=cosh(x) Functions Numbers Functional? (Exercise for the reader) Numbers Functions There are other animals, like functionalals and operatorators, but not many have been successfully domesticated.

21 What we are looking for 21 We want to approximate the functional F, where F : P ( D ) a φ 3 D max P 3D (D) is the size distribution of the spheres (could be anything) P 3D size D This is much more difficult than approximating a function How can we simplify the problem?

22 Mapping the 3D problem onto 1D Suppose we start t with our sphere distribution, ib ti and create a collection of rods in the following way: 22 This gives: ( L L P 1D 3 D L P ) ( D ) dd D If the 3D arrangement of spheres were true RCP, then the length fraction of the rods would be exactly φ RCP

23 Mapping the 3D problem onto 1D 23 How do we pack this collection of rods in 1D, in such a way that it represents a section through a 3D RCP state? There must exist a many-body potential V ( x, x,..., x 1 2 N ) which is minimized for the correct positions of the rods. V will be very complex, reflecting topological properties of 3D space (interactions of next nearest neighbours etc.). However, the potential V has some basic properties:

24 Basic properties of the potential V (1) It should lead to a maximum packing fraction that is unchanged if all the rods (or spheres) are magnified by an equal amount. 24 (2) The potential should be "hard : it is either 0 or. (3) The interaction between large rods should reach through small rods, so very small rods can rattle around in the gaps between the large rods, while the large rods carry the load. (4) Interaction range for very unequal rods should be determined by size of the smallest rod, so small rods can form a random packed system in between the large rods.

25 What is the simplest 2-body potential with these properties? Suppose we have rods on a line: and we introduce a strange hard particle interaction: ti The rods bump into each other before they actually touch: L 1 L 2 minimum separation is f L 1, L ) min( 2 Free to move cannot get closer This gives our approximation to V

26 Results for bidisperse spheres 26 But, how accurate is this approximation to the potential V?

27 Results for log-normal distribution 27 P3 D ( D) 1 [ln( D / D exp Dσσ 2 π 2 σ 2 0 )] 2 σ=0.66

28 Results for log-normal distribution 28 P3 D ( D) 1 [ln( D / D exp Dσσ 2 π 2 σ 2 0 )] 2

29 Results for tridisperse spheres 29 1 : 3 : 9

30 30 Conclusions It is a long story... but: We now have a fast and jolly accurate method for predicting RCP for any given sphere size distribution This could be useful for design of systems which are This could be useful for design of systems which are approximately hard sphere.

31 31 Quick advertisement An free and open-source program called spherepack1d will soon be available on the Source Forge website: This will make predictions for arbitrary mixtures of sphere sizes, including mixtures of lognormal distributions.

Ideality in Granular Mixtures: Random Packing of Non-Spherical Particles

Ideality in Granular Mixtures: Random Packing of Non-Spherical Particles Ideality in Granular Mixtures: Random Packing of Non-Spherical Particles Andriy Kyrylyuk Van t Hoff Lab for Physical and Colloid Chemistry, Utrecht University, The Netherlands Outline Motivation. Spheres:

More information

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES EXERCISE 5.1: Colloidal particles may be either dispersed or aggregated. (a) What causes the difference between these two cases? Answer in terms of interparticle

More information

Handle Food Samples with Care for Reliable Rheological Results

Handle Food Samples with Care for Reliable Rheological Results Handle Food Samples with Care for Reliable Rheological Results Dr. Klaus Oldörp The world leader in serving science Overview Food and rheology Sample handling before the measurement The right measuring

More information

3 rd Food Emulsions Short Course November 13 th & 14 th, 2008 University of Massachusetts. David Julian McClements University of Massachusetts

3 rd Food Emulsions Short Course November 13 th & 14 th, 2008 University of Massachusetts. David Julian McClements University of Massachusetts 3 rd Food Emulsions Short Course November 13 th & 14 th, 2008 University of Massachusetts David Julian McClements University of Massachusetts Program Objectives Review Basic Principles of Emulsion Science

More information

collisions inelastic, energy is dissipated and not conserved

collisions inelastic, energy is dissipated and not conserved LECTURE 1 - Introduction to Granular Materials Jamming, Random Close Packing, The Isostatic State Granular materials particles only interact when they touch hard cores: rigid, incompressible, particles

More information

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future?

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future? Modeling Random Wet 2D Foams with Controlled Polydispersity Back to the Future? Andy Kraynik Sandia National Labs (retired) CEAS, University of Manchester University of Erlangen-Nuremberg Simon Cox Aberystwyth

More information

Relative Viscosity of Non-Newtonian Concentrated Emulsions of Noncolloidal Droplets

Relative Viscosity of Non-Newtonian Concentrated Emulsions of Noncolloidal Droplets Ind. Eng. Chem. Res. 2000, 39, 4933-4943 4933 Relative Viscosity of Non-Newtonian Concentrated Emulsions of Noncolloidal Droplets Rajinder Pal* Department of Chemical Engineering, University of Waterloo,

More information

Computer generation of dense polydisperse sphere packings

Computer generation of dense polydisperse sphere packings JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 18 8 NOVEMBER 2002 Computer generation of dense polydisperse sphere packings Anuraag R. Kansal Department of Chemical Engineering, Princeton University, Princeton,

More information

Math in the Grocery Aisle: from stacking oranges to constructing error-correcting codes. Lenny Fukshansky Claremont McKenna College

Math in the Grocery Aisle: from stacking oranges to constructing error-correcting codes. Lenny Fukshansky Claremont McKenna College Math in the Grocery Aisle: from stacking oranges to constructing error-correcting codes Lenny Fukshansky Claremont McKenna College GEMS February 28, 2009 1 What is the best way to pack oranges? (from Wikipedia)

More information

Random closest packing in a 2D lattice model

Random closest packing in a 2D lattice model J. Phys. A: Math. Gen. 33 (2000) 1729 1734. Printed in the UK PII: S0305-4470(00)09254-4 Random closest packing in a 2D lattice model E Eisenberg and A Baram Department of Physics, Bar-Ilan University,

More information

Pharmaceutics I. Unit 6 Rheology of suspensions

Pharmaceutics I. Unit 6 Rheology of suspensions Pharmaceutics I اينالديصيدلينيات 1 Unit 6 Rheology of suspensions 1 Rheology, the science of the flow or deformation of matter (liquid or soft solid) under the effect of an applied force. It addresses

More information

Using rheology to study the hardness and spreadability of butter

Using rheology to study the hardness and spreadability of butter Using rheology to study the hardness and spreadability of butter RHEOLOGY AND VISCOSITY Introduction Butter is a multiphase emulsion consisting of fat globules, crystalline fat and an aqueous phase dispersed

More information

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Outline Laponite Basic background. Laponite in suspension Bonn et al.,

More information

Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields

Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL 19, 211 Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields Hye-Jin Ahn and Ki-Won

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A phase diagram for jammed matter Chaoming Song, Ping Wang, Hernán A. Makse Here, we describe the details of the calculations leading to the phase diagram of jammed matter. The main theoretical result

More information

Pharmaceutics I صيدالنيات 1. Unit 6

Pharmaceutics I صيدالنيات 1. Unit 6 Pharmaceutics I صيدالنيات 1 Unit 6 1 Rheology of suspensions Rheology, the study of flow, addresses the viscosity characteristics of powders, fluids, and semisolids. Materials are divided into two general

More information

Random packing of mixtures of hard rods and spheres

Random packing of mixtures of hard rods and spheres Random packing of mixtures of hard rods and spheres Claudia Ferreiro School of Chemistry, University of Bristol 22/03/2013 Introduction (Colloidal Liquid Crystals) Random Close Packing Monte Carlo-like

More information

Physical Properties: Mass, Volume, Density, Conductivity, Magnetism, State of Matter, Solubility Mixtures, Heterogeneous mixtures, suspension,

Physical Properties: Mass, Volume, Density, Conductivity, Magnetism, State of Matter, Solubility Mixtures, Heterogeneous mixtures, suspension, Physical Properties: Mass, Volume, Density, Conductivity, Magnetism, State of Matter, Solubility Mixtures, Heterogeneous mixtures, suspension, Homogeneous mixtures, colloid, solution Unit: Physical Properties

More information

Matter. Anything that has mass and occupies space. Chemistry. is the study of matter and how it changes.

Matter. Anything that has mass and occupies space. Chemistry. is the study of matter and how it changes. Matter Chapter 2.1 Matter Anything that has mass and occupies space. Chemistry is the study of matter and how it changes. PLEASE KEEP YOUR HANDS IN THE BOAT AND PLEASE DON T FEED THE ANIMALS. Pure

More information

Flow of Glasses. Peter Schall University of Amsterdam

Flow of Glasses. Peter Schall University of Amsterdam Flow of Glasses Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10 14 sec Time scale Liquid!

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS 1 MECHANICAL PROPERTIES OF MATERIALS Pressure in Solids: Pressure in Liquids: Pressure = force area (P = F A ) 1 Pressure = height density gravity (P = hρg) 2 Deriving Pressure in a Liquid Recall that:

More information

Anomalous effect of turning off long-range mobility interactions in Stokesian Dynamics

Anomalous effect of turning off long-range mobility interactions in Stokesian Dynamics Anomalous effect of turning off long-range mobility interactions in Stokesian Dynamics Adam K. Townsend, a), b) and Helen J. Wilson Department of Mathematics, University College London, Gower Street, London

More information

Sphere Packings, Coverings and Lattices

Sphere Packings, Coverings and Lattices Sphere Packings, Coverings and Lattices Anja Stein Supervised by: Prof Christopher Smyth September, 06 Abstract This article is the result of six weeks of research for a Summer Project undertaken at the

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

Prestress stability. Lecture VI. Session on Granular Matter Institut Henri Poincaré. R. Connelly Cornell University Department of Mathematics

Prestress stability. Lecture VI. Session on Granular Matter Institut Henri Poincaré. R. Connelly Cornell University Department of Mathematics Prestress stability Lecture VI Session on Granular Matter Institut Henri Poincaré R. Connelly Cornell University Department of Mathematics 1 Potential functions How is the stability of a structure determined

More information

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES 30 SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines

More information

Science 8 Chapter 7 Section 1

Science 8 Chapter 7 Section 1 Science 8 Chapter 7 Section 1 Describing Fluids (pp. 268-277) What is a fluid? Fluid: any thing that flows; a liquid or a gas While it would seem that some solids flow (sugar, salt, etc), they are not

More information

ABOUT MATTER. [B&G; Chapter 1]

ABOUT MATTER. [B&G; Chapter 1] ABOUT MATTER [B&G; Chapter 1] Chemistry is the study of matter with respect to its composition, characteristics and the transformations it undergoes. What is matter? It is anything that has mass and occupies

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

The structure of Atom I

The structure of Atom I The structure of Atom I Matter Matter Matter is anything that occupies space and has mass. The particle theory of matter The particle theory of matter states that matter is made up of a large number of

More information

PACKERS PUZZLE. Teacher s Guide Getting Started. Kai Chung Tam Macau, People s Republic of China

PACKERS PUZZLE. Teacher s Guide Getting Started. Kai Chung Tam Macau, People s Republic of China Teacher s Guide Getting Started Kai Chung Tam Macau, People s Republic of China Purpose In this two-day lesson, students consider ways to estimate the number of spheres that will fit within a container.

More information

Deformation behaviour of homogeneous and heterogeneous bimodal networks

Deformation behaviour of homogeneous and heterogeneous bimodal networks Deformation behaviour of homogeneous and heterogeneous bimodal networks Natasha Kamerlin 1,2 and Christer Elvingson 1, 1 Department of Chemistry - Ångström Laboratory, Uppsala University Box 523, S-751

More information

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids CHEM 1212 - Principles of Chemistry II Chapter 10 - Liquids and Solids 10.1 Intermolecular Forces recall intramolecular (within the molecule) bonding whereby atoms can form stable units called molecules

More information

Advances in Colloid and Interface Science

Advances in Colloid and Interface Science Advances in Colloid and Interface Science 171 172 (2012) 1 16 Contents lists available at SciVerse ScienceDirect Advances in Colloid and Interface Science journal homepage: www.elsevier.com/locate/cis

More information

MATTER: CLASSIFICATION AND PROPERTIES

MATTER: CLASSIFICATION AND PROPERTIES MATTER: CLASSIFICATION AND PROPERTIES Chemistry: Is the science concerned with the properties, composition and behaviour of matter. Matter: Anything that has mass and occupies space. (volume) (Matter is

More information

Breakdown of Elasticity Theory for Jammed Hard-Particle Packings: Conical Nonlinear Constitutive Theory

Breakdown of Elasticity Theory for Jammed Hard-Particle Packings: Conical Nonlinear Constitutive Theory Breakdown of Elasticity Theory for Jammed Hard-Particle Packings: Conical Nonlinear Constitutive Theory S. Torquato, 1,2 A. Donev 2,3, and F. H. Stillinger 1 Department of Chemistry, 1 Princeton Materials

More information

1 Solutions and Other Mixtures

1 Solutions and Other Mixtures CHAPTER 8 SECTION Solutions 1 Solutions and Other Mixtures KEY IDEAS As you read this section, keep these questions in mind: What is a heterogeneous mixture? What is a homogeneous mixture? What Is a Mixture?

More information

A droplet of colloidal solution is left to evaporate on a superhydrophobic surface. Avijit Baidya

A droplet of colloidal solution is left to evaporate on a superhydrophobic surface. Avijit Baidya A droplet of colloidal solution is left to evaporate on a superhydrophobic surface. Avijit Baidya 14.03.15 In this paper Evaporation-driven particle self-assembly can be used to generate three-dimensional

More information

CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS

CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS CRYSTAL STRUCTURE CRYSTALLINE AND AMORPHOUS SOLIDS Crystalline solids have an ordered arrangement. The long range order comes about from an underlying

More information

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy 33 PHASE CHANGES - To understand solids and liquids at the molecular level, it will help to examine PHASE CHANGES in a little more detail. A quick review of the phase changes... Phase change Description

More information

Name: Date: Class Notes Chemistry. Energy is the ability to move or change matter.

Name: Date: Class Notes Chemistry. Energy is the ability to move or change matter. Name: Date: Class Notes Chemistry Energy Energy is the ability to move or change matter. Everything in the universe consists of two things: energy and matter. Actually, energy and matter are different

More information

Classification of Matter. States of Matter Physical and Chemical Properties Physical and Chemical Changes

Classification of Matter. States of Matter Physical and Chemical Properties Physical and Chemical Changes 1 Classification of Matter States of Matter Physical and Chemical Properties Physical and Chemical Changes 2 Classification of Matter Matter is anything that has mass and occupies space. We can classify

More information

THE PHYSICS OF FOAM. Boulder School for Condensed Matter and Materials Physics. July 1-26, 2002: Physics of Soft Condensed Matter. 1.

THE PHYSICS OF FOAM. Boulder School for Condensed Matter and Materials Physics. July 1-26, 2002: Physics of Soft Condensed Matter. 1. THE PHYSICS OF FOAM Boulder School for Condensed Matter and Materials Physics July 1-26, 2002: Physics of Soft Condensed Matter 1. Introduction Formation Microscopics 2. Structure Experiment Simulation

More information

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam Nonequilibrium transitions in glassy flows Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10

More information

Lecture 7. Rheology. Hamid Alghurabi. Assistant Lecturer in Pharmaceutics

Lecture 7. Rheology. Hamid Alghurabi. Assistant Lecturer in Pharmaceutics Physical Pharmacy Lecture 7 Rheology Assistant Lecturer in Pharmaceutics Overview Types of flow Newtonian systems Non-Newtonian systems Thixotropy Definition Applications in formulations Determination

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

Soft matters end use properties analysis thanks to Microrheology

Soft matters end use properties analysis thanks to Microrheology Soft matters end use properties analysis thanks to Microrheology Formulaction, 10 impasse Borde Basse, 31240 L Union, France, www.formulaction.com Abstract. We present a new technique of passive microrheology

More information

Self-Assembly. Self-Assembly of Colloids.

Self-Assembly. Self-Assembly of Colloids. Self-Assembly Lecture 5-6 Self-Assembly of Colloids. Liquid crystallinity Colloidal Stability and Phases The range of forces attractive and repelling forces exists between the colloidal particles van der

More information

Advanced Ceramics for Strategic Applications Prof. H. S. Maiti Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Advanced Ceramics for Strategic Applications Prof. H. S. Maiti Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Advanced Ceramics for Strategic Applications Prof. H. S. Maiti Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture -3 Crystal Structure Having made some introductory

More information

Ionic Bonding. Chem

Ionic Bonding. Chem Whereas the term covalent implies sharing of electrons between atoms, the term ionic indicates that electrons are taken from one atom by another. The nature of ionic bonding is very different than that

More information

Igneous Rocks. How Do Igneous Rocks Form? Liquid to Solid

Igneous Rocks. How Do Igneous Rocks Form? Liquid to Solid Igneous Rocks Answering the Big Question The activities in this lesson will help students answer the Big Question by modeling the result of different cooling rates of magma and lava and by learning how

More information

Chapter 1. Viscosity and the stress (momentum flux) tensor

Chapter 1. Viscosity and the stress (momentum flux) tensor Chapter 1. Viscosity and the stress (momentum flux) tensor Viscosity and the Mechanisms of Momentum Transport 1.1 Newton s law of viscosity ( molecular momentum transport) 1.2 Generalization of Newton

More information

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from Chapter 1. Introduction 1.1 Some Characteristics of Fluids We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from scientific or engineering point of view. In

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

Lesson 1 Substances and Mixtures

Lesson 1 Substances and Mixtures Lesson 1 Student Labs and Activities Page Launch Lab 8 Content Vocabulary 9 Lesson Outline 10 MiniLab 12 Content Practice A 13 Content Practice B 14 School to Home 15 Key Concept Builders 16 Enrichment

More information

Introduction to Viscometry and Rheology, Basics, Rotational Testing. Basic Seminar Applied Rheology

Introduction to Viscometry and Rheology, Basics, Rotational Testing. Basic Seminar Applied Rheology Introduction to Viscometry and Rheology, Basics, Rotational Testing Basic Seminar Applied Rheology Contents Definition of basic rheological parameters Viscosity and elasticity Deformation, shear stress

More information

Colloidal Fluids, Glasses, and Crystals

Colloidal Fluids, Glasses, and Crystals Colloidal Fluids, Glasses, and Crystals Pierre Wiltzius Beckman Institute for Advanced Science and Technology University of Illinois, Urbana-Champaign wiltzius@uiuc.edu Thermodynamics of Hard Spheres

More information

The effect of plasticity in crumpling of thin sheets: Supplementary Information

The effect of plasticity in crumpling of thin sheets: Supplementary Information The effect of plasticity in crumpling of thin sheets: Supplementary Information T. Tallinen, J. A. Åström and J. Timonen Video S1. The video shows crumpling of an elastic sheet with a width to thickness

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #3 January 24, 2008 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

How do sharks and crabs sense depth? Crabs in space and out of their depth

How do sharks and crabs sense depth? Crabs in space and out of their depth How do sharks and crabs sense depth? Crabs in space and out of their depth The Crabs in Space team used a very simple mathematical calculation to prove a fundamental part of their research. Applying a

More information

The steady shear of three-dimensional wet polydisperse foams

The steady shear of three-dimensional wet polydisperse foams J. Non-Newtonian Fluid Mech. 92 (2000) 151 166 The steady shear of three-dimensional wet polydisperse foams B.S. Gardiner, B.Z. Dlugogorski, G.J. Jameson Department of Chemical Engineering, The University

More information

Activity 5&6: Metals and Hexagonal Close-Packing

Activity 5&6: Metals and Hexagonal Close-Packing Chemistry 150 Name(s): Activity 5&6: Metals and Hexagonal Close-Packing Metals are chemicals characterized by high thermal and electrical conductivity, malleability and ductility. Atoms are the smallest

More information

CHEM1902/ N-2 November 2014

CHEM1902/ N-2 November 2014 CHEM1902/4 2014-N-2 November 2014 The cubic form of boron nitride (borazon) is the second-hardest material after diamond and it crystallizes with the structure shown below. The large spheres represent

More information

Effective Temperatures in Driven Systems near Jamming

Effective Temperatures in Driven Systems near Jamming Effective Temperatures in Driven Systems near Jamming Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Tom Haxton Yair Shokef Tal Danino Ian Ono Corey S. O Hern Douglas Durian

More information

(a). t = 0 (b). t = 0.276

(a). t = 0 (b). t = 0.276 10 (a). t = 0 (b). t = 0.276 Figure 8: Snapshots of the sedimentation of 5040 disks of diameter 10/192 cm in 2D (W =8 cm). The initial lattice is disordered. from t = 0:026 to t = 0:476. In Figure 6, a

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/22836 holds various files of this Leiden University dissertation. Author: Woldhuis, Erik Title: Foam rheology near the jamming transition Issue Date: 2013-12-11

More information

Jamming III: Characterizing Randomness via the Entropy of Jammed Matter

Jamming III: Characterizing Randomness via the Entropy of Jammed Matter Jamming III: Characterizing Randomness via the Entropy of Jammed Matter Christopher Briscoe, Chaoming Song, Ping Wang, Hernán A. Makse 1 Levich Institute and Physics Department, City College of New York,

More information

To gain a working knowledge of unit cells, packing efficiency, coordination numbers and their relationship to each other.

To gain a working knowledge of unit cells, packing efficiency, coordination numbers and their relationship to each other. Solid State Modeling PURPOSE A B To explore some simple solid state structures. To explore unit cell stoichiometry. GOALS To visualize the three-dimensional arrangement of atoms and ions in common solid

More information

NSW Higher School Certificate Senior Science 9.2 Lifestyle Chemistry

NSW Higher School Certificate Senior Science 9.2 Lifestyle Chemistry NSW Higher School Certificate Senior Science 9.2 Lifestyle Chemistry Section 2 Cleaning Products 9.2 Lifestyle Chemistry Section 2 ::: Cleaning Products 9.2.2 A wide range of cleaning products are made

More information

MIXTURES AND DISSOLVING. CE/Honors Chemistry Unit 10

MIXTURES AND DISSOLVING. CE/Honors Chemistry Unit 10 MIXTURES AND DISSOLVING CE/Honors Chemistry Unit 10 TYPES OF MIXTURES Solution: homogeneous mixture of two or more substances in a single phase Two parts: solvent (greater amt) and solute Does not separate

More information

Types of Mixtures. Main Idea. Heterogeneous and Homogeneous Mixtures. Key Terms soluble solute electrolyte solution suspension nonelectrolyte

Types of Mixtures. Main Idea. Heterogeneous and Homogeneous Mixtures. Key Terms soluble solute electrolyte solution suspension nonelectrolyte Types of Mixtures Key Terms soluble solute electrolyte solution suspension nonelectrolyte solvent colloid It is easy to determine that some materials are mixtures because you can see their component parts.

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 6a BONDING AND SURFACES

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 6a BONDING AND SURFACES 3.091 Introduction to Solid State Chemistry Lecture Notes No. 6a BONDING AND SURFACES 1. INTRODUCTION Surfaces have increasing importance in technology today. Surfaces become more important as the size

More information

For this activity, all of the file labels will begin with a Roman numeral IV.

For this activity, all of the file labels will begin with a Roman numeral IV. I V. S O L I D S Name Section For this activity, all of the file labels will begin with a Roman numeral IV. A. In Jmol, open the SCS file in IV.A.1. Click the Bounding Box and Axes function keys. Use the

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

Protein-stabilised emulsions

Protein-stabilised emulsions Proteinstabilised emulsions Ranjan Sharma 1 Emulsion definition An emulsion consists of two immiscible liquids (generally oil and water) with one liquid forming the continueous phase while the other the

More information

Mixtures. Definition 1: Mixture

Mixtures. Definition 1: Mixture Mixtures We see mixtures all the time in our everyday lives. A stew, for example, is a mixture of different foods such as meat and vegetables; sea water is a mixture of water, salt and other substances,

More information

Dilatancy Transition in a Granular Model. David Aristoff and Charles Radin * Mathematics Department, University of Texas, Austin, TX 78712

Dilatancy Transition in a Granular Model. David Aristoff and Charles Radin * Mathematics Department, University of Texas, Austin, TX 78712 Dilatancy Transition in a Granular Model by David Aristoff and Charles Radin * Mathematics Department, University of Texas, Austin, TX 78712 Abstract We introduce a model of granular matter and use a stress

More information

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Reviewers' comments: Reviewer #1 (Remarks to the Author): Reviewers' comments: Reviewer #1 (Remarks to the Author): The manuscript investigates the crystallization of colloidal systems of nearly hard superballs realized as suspensions of micron-sized silica particles.

More information

Lecture 17. Insights into disorder

Lecture 17. Insights into disorder Lecture 17 Insights into disorder C 4 C 6 Order is convenient Structures can be classified in a compact way A certain amount of defects can be introduced and classified Order is efficient The closest sphere

More information

Separating Mixtures. Name: Class:

Separating Mixtures. Name: Class: Separating Mixtures Name: Class: Directions: Match the words with the big ideas by writing the letter beside the idea. Use the same words in the short article below. Use key words and phrases from the

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

Emulsion Droplets: Characteristics and Importance

Emulsion Droplets: Characteristics and Importance Emulsion Droplets: Characteristics and Importance Jochen Weiss *Food Structure and Functionality Laboratories Department of Food Science & Biotechnology University of Hohenheim Garbenstrasse 21, 7599 Stuttgart,

More information

SUMMARY A STUDY OF VISCO-ELASTIC NON-NEWTONIAN FLUID FLOWS. where most of body fluids like blood and mucus are non-newtonian ones.

SUMMARY A STUDY OF VISCO-ELASTIC NON-NEWTONIAN FLUID FLOWS. where most of body fluids like blood and mucus are non-newtonian ones. SUMMARY A STUDY OF VISCO-ELASTIC NON-NEWTONIAN FLUID FLOWS Non-Newtonian fluids abound in many aspects of life. They appear in nature, where most of body fluids like blood and mucus are non-newtonian ones.

More information

Name Date Class THE NATURE OF GASES

Name Date Class THE NATURE OF GASES 13.1 THE NATURE OF GASES Section Review Objectives Describe the assumptions of the kinetic theory as it applies to gases Interpret gas pressure in terms of kinetic theory Define the relationship between

More information

SNC1D CHEMISTRY 2/8/2013. ATOMS, ELEMENTS, & COMPOUNDS L Classifying Matter (P ) Classifying Matter. Classifying Matter

SNC1D CHEMISTRY 2/8/2013. ATOMS, ELEMENTS, & COMPOUNDS L Classifying Matter (P ) Classifying Matter. Classifying Matter SNC1D CHEMISTRY ATOMS, ELEMENTS, & COMPOUNDS L (P.141-143) All matter is made up of different types and combinations of particles which gives them particular characteristics, or properties. A property

More information

Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space

Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space We have seen that diffraction occurs when, in reciprocal space, Let us now plot this information. Let us designate

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Chapter 6 Molten State

Chapter 6 Molten State Chapter 6 Molten State Rheology ( 流變學 ) study of flow and deformation of (liquid) fluids constitutive (stress-strain) relation of fluids shear flow shear rate ~ dγ/dt ~ velocity gradient dv 1 = dx 1 /dt

More information

Liquids, Solids and Phase Changes

Liquids, Solids and Phase Changes Chapter 10 Liquids, Solids and Phase Changes Chapter 10 1 KMT of Liquids and Solids Gas molecules have little or no interactions. Molecules in the Liquid or solid state have significant interactions. Liquids

More information

Chemistry Day 5. Friday, August 31 st Tuesday, September 4 th, 2018

Chemistry Day 5. Friday, August 31 st Tuesday, September 4 th, 2018 Chemistry Day 5 Friday, August 31 st Tuesday, September 4 th, 2018 Do-Now Title: BrainPOP: States of Matter 1. Write down today s FLT 2. List two examples of gases 3. List two examples of things that are

More information

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 214 Supplementary material to On the rheology of pendular gels and morphological developments in

More information

Ram Seshadri MRL 2031, x6129, These notes complement chapter 6 of Anderson, Leaver, Leevers and Rawlings

Ram Seshadri MRL 2031, x6129, These notes complement chapter 6 of Anderson, Leaver, Leevers and Rawlings Crystals, packings etc. Ram Seshadri MRL 2031, x6129, seshadri@mrl.ucsb.edu These notes complement chapter 6 of Anderson, Leaver, Leevers and Rawlings The unit cell and its propagation Materials usually

More information

States of matter. Chapter 11. Kinetic Molecular Theory of Liquids and Solids. Kinetic Molecular Theory of Solids Intermolecular Forces

States of matter. Chapter 11. Kinetic Molecular Theory of Liquids and Solids. Kinetic Molecular Theory of Solids Intermolecular Forces States of matter Chapter 11 Intermolecular Forces Liquids and Solids By changing the T and P, any matter can exist as solid, liquid or gas. Forces of attraction determine physical state Phase homogeneous

More information

1 Rheology of Disperse Systems

1 Rheology of Disperse Systems 7 1 Rheology of Disperse Systems Norbert Willenbacher and Kristina Georgieva 1.1 Introduction The rheology of disperse systems is an important processing parameter. Being able to characterize and manipulate

More information

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS FINITE STRAIN EFFECTS IN SOLIDS Consider an elastic solid in shear: Shear Stress σ(γ) = Gγ If we apply a shear in the opposite direction: Shear Stress σ( γ) = Gγ = σ(γ) This means that the shear stress

More information

Rheology of Soft Materials. Rheology

Rheology of Soft Materials. Rheology Τ Thomas G. Mason Department of Chemistry and Biochemistry Department of Physics and Astronomy California NanoSystems Institute Τ γ 26 by Thomas G. Mason All rights reserved. γ (t) τ (t) γ τ Δt 2π t γ

More information

Applied Surfactants: Principles and Applications

Applied Surfactants: Principles and Applications Applied Surfactants: Principles and Applications Tadros, Tharwat F. ISBN-13: 9783527306299 Table of Contents Preface. 1 Introduction. 1.1 General Classification of Surface Active Agents. 1.2 Anionic Surfactants.

More information

Sheared foam as a supercooled liquid?

Sheared foam as a supercooled liquid? EUROPHYSICS LETTERS 1 January 2000 Europhys. Lett., 49 (1), pp. 68 74 (2000) Sheared foam as a supercooled liquid? S. A. Langer 1 and A. J. Liu 2 1 Information Technology Laboratory, NIST - Gaithersburg,

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

Thermal Convection of a Fluid

Thermal Convection of a Fluid C04 Thermal Convection of a Fluid http://web.ics.purdue.edu/~braile/edumod/convect/convect.htm Focus on Inquiry The students will calculate the velocity of convection currents using vegetable oil and thyme

More information