Flow of Glasses. Peter Schall University of Amsterdam

Size: px
Start display at page:

Download "Flow of Glasses. Peter Schall University of Amsterdam"

Transcription

1 Flow of Glasses Peter Schall University of Amsterdam

2 Liquid or Solid?

3 Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind sec Time scale Liquid!

4 Fundamental Transition Elastic solid Elastic Modulus µ Viscous Liquid diffusive, Viscosity η Symmetry change Temporal symmetry Elastic F F(-t) = F(t) F(-t) = - F(t) Plastic F Energy storage Energy loss

5 Glass Formation Cooling from Liquid Solidification Glass transition

6 Viscosity and Diffusion Macroscopic: Viscosity viscosity / Pa s Glass transition glass liquid 1 day 1 year Menkind temperature sec Time scale P. Schall, Harvard University

7 Viscosity and Diffusion Simple Liquids: Arrhenius E act Log(viscosity) simple liquids Diffusion coefficient D ~ D 0 e ( -E act/k B T) Viscosity η ~ η 0 e ( E act/k B T) many glasses (1/T g ) (1/T)

8 Strong and Fragile Glasses Angel plot Arrhenius η = η 0 exp(e/k B T) Vogel-Fulcher- Tamman η = η 0 exp( ) B T-T 0

9 Glass Phenomenology Myth: Do cathedral glasses flow over centuries? NO! Vogel-Fulcher-Tamman = Relax. Time > s

10 Hard-Sphere Suspensions Hard-sphere Phase Diagram Fluid Quench 0.49 Fluid + Cryst Crystal Glass Volume Fraction (Alder, Wainwright 1957)

11 Single Particle Dynamics Diffusion (Molecules or small particles in a supercooled liquid) Mean-square Displacement R Liquid r 2 ~ t Supercooled liquid Arrest in plateau time 0 t D Diffusion time τ Glass relaxation time

12 Supercooled Liquids Dynamic Measurements... Weeks et al. Science (2000)

13 Insight into Flow Phenomena

14 Food Personal care products and Applications Paint Processing Construction

15 Suspension Flows γ. Shear thickening Diffusion rate t D -1 Shear thinning Driven Flow 10-4 Free volume V f /V p?? Viscous Flow Fluid 0.49 Supercooled Fluid 0.58 Glass 0.64 φ

16 Glassy Flow - Basics i. Free volume

17 Free Volume Theory Hard Spheres Bernal The structure of liquids et al. 1960s Canonical Holes

18 Model systems: Hard spheres Voronoi Volume

19 Free Volume Theory V 0 V i Free Volume V f ~ (V i V 0 ) Free Volume Theory: P(V f ) ~ exp(-v f / <V f >)

20 Free Volume Theory V 0 V i Rearrangements occur if V f ~ V 0 Viscosity η ~ P (V f ~V 0 ) -1 ~ exp(+δv 0 /<V f >) ~1

21 Free Volume Theory V 0 Free volume from thermal expansion V i Big success of free volume theory! Viscosity =

22 Free Volume Theory Suspensions (Chaikin, PRE 2002) φ max 1 / (Temperature) Volume fraction φ

23 Free Volume Theory Max. Packing Fraction φ m ~ 0.64 V 0 V i Free volume:??? Viscosity: =???

24 Free Volume Theory Max. Packing Fraction φ m ~ 0.64 V 0 V i Free volume: Viscosity: =

25 Free Volume Theory: Suspensions η / µ ,0 0,1 0,2 0,3 0,4 0,5 0,6 φ φ max = (Cheng, Chaikin, PRE 2002)

26 Flow : Constitutive description Fraction f of flow spot Strain per STZ = 1. Free volume Theory (! =" # $#= %& & 2. Strain per STZ ~ 1 3. Jump Rate = & Applied Stress σ Jump Rate (Spaepen Acta Met. 1977) )*/, -)*/, (forward) (backward)

27 Flow : Constitutive description Fraction f of flow spot Strain per STZ = Jump Rate (Spaepen Acta Met. 1977) =!. /012 3*, =!. 45 9: sinh(x) ~ x?

28 Flow : Constitutive description Models Creep of Bulk Metallic Glass Pd 41 Ni 10 Cu 29 P 20 Heggen et al T = 550K

29 Local Correlation Shear Modulus From thermal fluctuations <ε ij2 > t Free Volume From Voronoi volume 1 R k B T = µ <ε ij2 > 2 t V 0 Rahmani et al. Phys Rev. E (2014)

30 Local Correlation Shear Modulus µ [k B T/R 3 ] V f [10-3 V 0 ] Free Volume Rahmani et al. Phys Rev. E (2014)

31 Glassy Flow - Basics i. Correlations T T g Increasing cooperativity Adam & Gibbs (1965)

32 Elastic Field Elastic continuum

33 Elastic Field Displacements Strain Field (Hutchinson 2006) Strain B C long-range Correlations between flow spots?

34 Elastic Correlations? Internal coupling in external field

35 Analogy: Magnetic Coupling Magnetic spins in external field m(r) r m(r+ r) H Correlation function F E ΔG = J G J G+ΔG B Susceptibility D E = "F E G $H

36 Analogy: Magnetic Coupling 2nd Order Phase Transitions m(r) r m(r+ r) H Critical Scaling close to T c F E G G O G P Divergence of Correlation length Susceptibility P L L R M D E L L N M Correlation length

37 Glasses: Dynamic correlations Dynamic correlation function v(0, t) r v(r, t) 4-point correlation function T S G,ΔV = # 0,ΔV # G,ΔV Dynamic susceptibility D S = "T S G,ΔV $G

38 Glasses: Dynamic correlations Granular fluid of ball bearings Colloidal glass Computer simulation 2D repulsive discs Dynamical criticality? T S G O B X Y

39 Glasses: Dynamic correlations Berthier et al. PRL 2003 Dynamical criticality? T S G O B X Y

40 Glass transition: critical phenomenon? Berthier, Biroli et al No true divergence for quiescent glass

41 Summary Glasses Liquid and Solid, depending on time scale Flows Liquid/Glassy, Flow rate ~ t D -1, τ D -1 Structural ingredient Free volume local modulus Correlations Elastic field Coupling Self-Organization?

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam Nonequilibrium transitions in glassy flows Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10

More information

Nonequilibrium transitions in glassy flows II. Peter Schall University of Amsterdam

Nonequilibrium transitions in glassy flows II. Peter Schall University of Amsterdam Nonequilibrium transitions in glassy flows II Peter Schall University of Amsterdam Flow of glasses 1st Lecture Glass Phenomenology Basic concepts: Free volume, Dynamic correlations Apply Shear Glass? Soft

More information

Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses

Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses A normal liquid will crystallize at a melting temperature T m as it is cooled via a first-order phase transition (see figure above).

More information

SAMPLE ANSWERS TO HW SET 3B

SAMPLE ANSWERS TO HW SET 3B SAMPLE ANSWERS TO HW SET 3B First- Please accept my most sincere apologies for taking so long to get these homework sets back to you. I have no excuses that are acceptable. Like last time, I have copied

More information

Statistical Mechanics of Jamming

Statistical Mechanics of Jamming Statistical Mechanics of Jamming Lecture 1: Timescales and Lengthscales, jamming vs thermal critical points Lecture 2: Statistical ensembles: inherent structures and blocked states Lecture 3: Example of

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004 Elements of Polymer Structure and Viscoelasticity David M. Parks Mechanics and Materials II 2.002 February 18, 2004 Outline Elements of polymer structure Linear vs. branched; Vinyl polymers and substitutions

More information

Sheared foam as a supercooled liquid?

Sheared foam as a supercooled liquid? EUROPHYSICS LETTERS 1 January 2000 Europhys. Lett., 49 (1), pp. 68 74 (2000) Sheared foam as a supercooled liquid? S. A. Langer 1 and A. J. Liu 2 1 Information Technology Laboratory, NIST - Gaithersburg,

More information

Experimental Colloids I (and I)

Experimental Colloids I (and I) Experimental Colloids I (and I) Dave Weitz Harvard http://www.seas.harvard.edu/projects/weitzlab Boulder Summer School 7/24/17 Experimental Colloids I (and I) Dave Weitz Harvard http://www.seas.harvard.edu/projects/weitzlab

More information

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care)

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Peter Young Talk at MPIPKS, September 12, 2013 Available on the web at http://physics.ucsc.edu/~peter/talks/mpipks.pdf

More information

MP10: Process Modelling

MP10: Process Modelling MP10: Process Modelling MPhil Materials Modelling Dr James Elliott 0.1 MP10 overview 6 lectures on process modelling of metals and polymers First three lectures by JAE Introduction to polymer rheology

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

Web Course Physical Properties of Glass. Range Behavior

Web Course Physical Properties of Glass. Range Behavior Web Course Physical Properties of Glass Glass Transformation- Range Behavior Richard K. Brow Missouri University of Science & Technology Department of Materials Science & Engineering Glass Transformation-1

More information

Quiz 1. Introduction to Polymers

Quiz 1. Introduction to Polymers 100406 Quiz 1. Introduction to Polymers 1) Polymers are different than low-molecular weight oligomers. For example an oligomeric polyethylene is wax, oligomeric polystyrene is similar to naphthalene (moth

More information

The yielding transition in periodically sheared binary glasses at finite temperature. Nikolai V. Priezjev

The yielding transition in periodically sheared binary glasses at finite temperature. Nikolai V. Priezjev The yielding transition in periodically sheared binary glasses at finite temperature Nikolai V. Priezjev 5 March, 2018 Department of Mechanical and Materials Engineering Wright State University Movies,

More information

T. Egami. Model System of Dense Random Packing (DRP)

T. Egami. Model System of Dense Random Packing (DRP) Introduction to Metallic Glasses: How they are different/similar to other glasses T. Egami Model System of Dense Random Packing (DRP) Hard Sphere vs. Soft Sphere Glass transition Universal behavior History:

More information

Length Scales Related to Alpha and Beta Relaxation in Glass Forming Liquids

Length Scales Related to Alpha and Beta Relaxation in Glass Forming Liquids Length Scales Related to Alpha and Beta Relaxation in Glass Forming Liquids Chandan Dasgupta Centre for Condensed Matter Theory Department of Physics, Indian Institute of Science With Smarajit Karmakar

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids Atsushi Ikeda Fukui Institute for Fundamental Chemistry, Kyoto University Atsushi Ikeda & Ludovic Berthier Phys. Rev. E 92,

More information

The glass transition as a spin glass problem

The glass transition as a spin glass problem The glass transition as a spin glass problem Mike Moore School of Physics and Astronomy, University of Manchester UBC 2007 Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay Mike Moore (Manchester)

More information

Lecture 4: viscoelasticity and cell mechanics

Lecture 4: viscoelasticity and cell mechanics Teaser movie: flexible robots! R. Shepherd, Whitesides group, Harvard 1 Lecture 4: viscoelasticity and cell mechanics S-RSI Physics Lectures: Soft Condensed Matter Physics Jacinta C. Conrad University

More information

A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity

A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity 1 A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity Hiroshi Matsuoka a) Department of hysics, Illinois State University,

More information

Spatially heterogeneous dynamics in supercooled organic liquids

Spatially heterogeneous dynamics in supercooled organic liquids Spatially heterogeneous dynamics in supercooled organic liquids Stephen Swallen, Marcus Cicerone, Marie Mapes, Mark Ediger, Robert McMahon, Lian Yu UW-Madison NSF Chemistry 1 Image from Weeks and Weitz,

More information

Slightly off-equilibrium dynamics

Slightly off-equilibrium dynamics Slightly off-equilibrium dynamics Giorgio Parisi Many progresses have recently done in understanding system who are slightly off-equilibrium because their approach to equilibrium is quite slow. In this

More information

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Outline Laponite Basic background. Laponite in suspension Bonn et al.,

More information

Quiz 1 Introduction to Polymers

Quiz 1 Introduction to Polymers 090109 Quiz 1 Introduction to Polymers In class we discussed the definition of a polymer first by comparing polymers with metals and ceramics and then by noting certain properties of polymers that distinguish

More information

A Review of Liquid-Glass Transitions

A Review of Liquid-Glass Transitions A Review of Liquid-Glass Transitions Anne C. Hanna December 14, 2006 Abstract Supercooling of almost any liquid can induce a transition to an amorphous solid phase. This does not appear to be a phase transition

More information

cooperative motion in sheared granular matter Takahiro Hatano

cooperative motion in sheared granular matter Takahiro Hatano cooperative motion in sheared granular matter Takahiro Hatano (Earthquake Research Institute, University of Tokyo) amorphous particulate systems: structure? 2D granular matter close to jamming spontaneous

More information

Effective Temperatures in Driven Systems near Jamming

Effective Temperatures in Driven Systems near Jamming Effective Temperatures in Driven Systems near Jamming Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Tom Haxton Yair Shokef Tal Danino Ian Ono Corey S. O Hern Douglas Durian

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001 Chemical Engineering 160/260 Polymer Science and Engineering Lecture 14: Amorphous State February 14, 2001 Objectives! To provide guidance toward understanding why an amorphous polymer glass may be considered

More information

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry Planetary Surfaces Gravity & Rotation Polar flattening caused by rotation is the largest deviation from a sphere for a planet sized object (as

More information

Rheology of concentrated hard-sphere suspensions

Rheology of concentrated hard-sphere suspensions Rheology of concentrated hard-sphere suspensions Complex behaviour in a simple system Wilson Poon School of Physics & Astronomy, The University of Edinburgh Rut Besseling Lucio Isa ( ETH, Zürich) Khoa

More information

Introduction to Geology Spring 2008

Introduction to Geology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.001 Introduction to Geology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. RHEOLOGICAL MODELS Rheology

More information

Interfacial dynamics

Interfacial dynamics Interfacial dynamics Interfacial dynamics = dynamic processes at fluid interfaces upon their deformation Interfacial rheological properties: elasticity, viscosity, yield stress, Relation between macroscopic

More information

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel Rheology of cellulose solutions Puu-23.6080 - Cellulose Chemistry Michael Hummel Contents Steady shear tests Viscous flow behavior and viscosity Newton s law Shear thinning (and critical concentration)

More information

Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses. Abstract

Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses. Abstract Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses Eloi Pineda Dept. de Física i Enginyeria Nuclear, ESAB, Universitat Politècnica de Catalunya, Campus

More information

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

More information

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like: 11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

More information

University Graz / Austria Institut für Chemie Volker Ribitsch

University Graz / Austria Institut für Chemie Volker Ribitsch University Graz / Austria Institut für Chemie Volker Ribitsch 1 Rheology Oscillatory experiments Dynamic experiments Deformation of materials under non-steady conditions in the linear viscoelastic range

More information

Phys 563 Phase Transition and Renormalization groups Term paper 2010

Phys 563 Phase Transition and Renormalization groups Term paper 2010 Phys 563 Phase Transition and Renormalization groups Term paper 2010 Instructor: Prof. Nigel Goldenfeld Title: Understanding glass-forming and jamming materials in the context of soft colloids Jian Yang

More information

Athermal shear-transformation-zone theory of amorphous plastic deformation. I. Basic principles

Athermal shear-transformation-zone theory of amorphous plastic deformation. I. Basic principles Athermal shear-transformation-zone theory of amorphous plastic deformation. I. Basic principles Eran Bouchbinder, 1 J. S. Langer, 2 and Itamar Procaccia 1 1 Department of Chemical Physics, The Weizmann

More information

Glass Transition as the Rheological Inverse of Gelation

Glass Transition as the Rheological Inverse of Gelation NNF Summer reading group, July 18 th 2017 Glass Transition as the Rheological Inverse of Gelation ACS Macromolecules 46, 2425-2432 (2013) H Henning Winter Department of Chemical Engineering and Department

More information

Chapter 6 Molten State

Chapter 6 Molten State Chapter 6 Molten State Rheology ( 流變學 ) study of flow and deformation of (liquid) fluids constitutive (stress-strain) relation of fluids shear flow shear rate ~ dγ/dt ~ velocity gradient dv 1 = dx 1 /dt

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

Rheology of Fluids: Newtonian to Non Newtonian

Rheology of Fluids: Newtonian to Non Newtonian 0/26 Rheology of Fluids: Newtonian to Non Newtonian Ali Najafi University of Zanjan, Zanjan Instituet for advanced Studies in Basic Sciences May 2015 1/26 Agenda: Fluid: Definition Rheology: Elementary

More information

Strain localization in a shear transformation zone model for amorphous solids

Strain localization in a shear transformation zone model for amorphous solids Strain localization in a shear transformation zone model for amorphous solids M. L. Manning,* J. S. Langer, and J. M. Carlson Department of Physics, University of California, Santa Barbara, California

More information

PHYS 101 Lecture 34 - Physical properties of matter 34-1

PHYS 101 Lecture 34 - Physical properties of matter 34-1 PHYS 101 Lecture 34 - Physical properties of matter 34-1 Lecture 34 - Physical properties of matter What s important: thermal expansion elastic moduli Demonstrations: heated wire; ball and ring; rulers

More information

Quiz 1 Introduction to Polymers (Please answer each question even if you guess)

Quiz 1 Introduction to Polymers (Please answer each question even if you guess) 080407 Quiz 1 Introduction to Polymers (Please answer each question even if you guess) This week we explored the definition of a polymer in terms of properties. 1) The flow of polymer melts and concentrated

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

Period #1 : CIVIL MATERIALS COURSE OVERVIEW

Period #1 : CIVIL MATERIALS COURSE OVERVIEW Period #1 : CIVIL MATERIALS COURSE OVERVIEW A. Materials Systems to be Addressed Metals and Alloys (steel and aluminum) Portland Cement Concrete Asphalt Cement Concrete Fiber Reinforced Composites Masonry

More information

Long-range correlations in glasses and glassy fluids, and their connection to glasses elasticity

Long-range correlations in glasses and glassy fluids, and their connection to glasses elasticity Long-range correlations in glasses and glassy fluids, and their connection to glasses elasticity Grzegorz Szamel Department of Chemistry Colorado State University Ft. Collins, CO 80523, USA Workshop on

More information

Christel Hohenegger A simple model for ketchup-like liquid, its numerical challenges and limitations April 7, 2011

Christel Hohenegger A simple model for ketchup-like liquid, its numerical challenges and limitations April 7, 2011 Notes by: Andy Thaler Christel Hohenegger A simple model for ketchup-like liquid, its numerical challenges and limitations April 7, 2011 Many complex fluids are shear-thinning. Such a fluid has a shear

More information

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali University of Sulaimani School of Pharmacy Dept. of Pharmaceutics Pharmaceutical Compounding Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

More information

Rheology of Soft Materials. Rheology

Rheology of Soft Materials. Rheology Τ Thomas G. Mason Department of Chemistry and Biochemistry Department of Physics and Astronomy California NanoSystems Institute Τ γ 26 by Thomas G. Mason All rights reserved. γ (t) τ (t) γ τ Δt 2π t γ

More information

Sub -T g Relaxation in Thin Glass

Sub -T g Relaxation in Thin Glass Sub -T g Relaxation in Thin Glass Prabhat Gupta The Ohio State University ( Go Bucks! ) Kyoto (January 7, 2008) 2008/01/07 PK Gupta(Kyoto) 1 Outline 1. Phenomenology (Review). A. Liquid to Glass Transition

More information

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Mechanical Properties of Polymers Scope MSE 383, Unit 3-1 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Structure - mechanical properties relations Time-dependent mechanical

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

Case study: molecular dynamics of solvent diffusion in polymers

Case study: molecular dynamics of solvent diffusion in polymers Course MP3 Lecture 11 29/11/2006 Case study: molecular dynamics of solvent diffusion in polymers A real-life research example to illustrate the use of molecular dynamics Dr James Elliott 11.1 Research

More information

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum By F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S.M. Fielding The European

More information

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University Dielectric Glassiness in Hole-Doped but Insulating Cuprates and Nickelates J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

More information

Structural Signatures of Mobility in Jammed and Glassy Systems

Structural Signatures of Mobility in Jammed and Glassy Systems Lisa Manning Sam Schoenholz Ekin Dogus Cubuk Brad Malone Tim Kaxiras Joerg Rottler Rob Riggleman Jennifer Rieser Doug Durian Daniel Sussman Carl Goodrich Sid Nagel Structural Signatures of Mobility in

More information

VISCOELASTIC PROPERTIES OF POLYMERS

VISCOELASTIC PROPERTIES OF POLYMERS VISCOELASTIC PROPERTIES OF POLYMERS John D. Ferry Professor of Chemistry University of Wisconsin THIRD EDITION JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents 1. The Nature of

More information

Colloidal Suspension Rheology Chapter 1 Study Questions

Colloidal Suspension Rheology Chapter 1 Study Questions Colloidal Suspension Rheology Chapter 1 Study Questions 1. What forces act on a single colloidal particle suspended in a flowing fluid? Discuss the dependence of these forces on particle radius. 2. What

More information

New from Ulf in Berzerkeley

New from Ulf in Berzerkeley New from Ulf in Berzerkeley from crystallization to statistics of density fluctuations Ulf Rørbæk Pedersen Department of Chemistry, University of California, Berkeley, USA Roskilde, December 16th, 21 Ulf

More information

For an imposed stress history consisting of a rapidly applied step-function jump in

For an imposed stress history consisting of a rapidly applied step-function jump in Problem 2 (20 points) MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0239 2.002 MECHANICS AND MATERIALS II SOLUTION for QUIZ NO. October 5, 2003 For

More information

Recent advances on glass-forming systems driven far from equilibrium

Recent advances on glass-forming systems driven far from equilibrium Eur. Phys. J. Special Topics 226, 2991 2996 (2017) EDP Sciences, Springer-Verlag 2017 DOI: 10.1140/epjst/e2017-70088-2 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Editorial Recent advances on glass-forming

More information

Linearized Theory: Sound Waves

Linearized Theory: Sound Waves Linearized Theory: Sound Waves In the linearized limit, Λ iα becomes δ iα, and the distinction between the reference and target spaces effectively vanishes. K ij (q): Rigidity matrix Note c L = c T in

More information

Modeling the Dynamic Propagation of Shear Bands in Bulk Metallic Glasses

Modeling the Dynamic Propagation of Shear Bands in Bulk Metallic Glasses Modeling the Dynamic Propagation of Shear Bands in Bulk Metallic Glasses B.J. Edwards, K. Feigl, M.L. Morrison*, B. Yang*, P.K. Liaw*, and R.A. Buchanan* Dept. of Chemical Engineering, The University of

More information

PHY 481/581. Some classical/quantum physics for the nanometer length scale.

PHY 481/581. Some classical/quantum physics for the nanometer length scale. PHY 481/581 Some classical/quantum physics for the nanometer length scale http://creativecommons.org/licenses/by-nc-sa/3.0/ 1 What is nano-science? the science of materials whose properties scale with

More information

Glass Transitions of Molecular Liquids and Room-Temperature Ionic Liquids

Glass Transitions of Molecular Liquids and Room-Temperature Ionic Liquids Glass Transitions of Molecular Liquids and Room-Temperature Ionic Liquids Osamu Yamamuro (ISSP, University of Tokyo) Coworkers Molecular liquids: T. Matsuo (Osaka Univ.), K. Takeda (Naruto Edu. Univ.),

More information

Absorbing phase transition on particle trajectories in oscillatory sheared systems near jamming

Absorbing phase transition on particle trajectories in oscillatory sheared systems near jamming Absorbing phase transition on particle trajectories in oscillatory sheared systems near jamming Department of Physics, Nagoya University Takeshi Kawasaki T. Kawasaki and L. Berthier, Phys. Rev. E 94, 022615

More information

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Dynamic Mechanical Behavior MSE 383, Unit 3-3 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Scope Why DMA & TTS? DMA Dynamic Mechanical Behavior (DMA) Superposition Principles

More information

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of Chapter 4 The Effect of Elastic Softening and Cooperativity on the Fragility of Glass-Forming Metallic Liquids Key words: Amorphous metals, Shear transformation zones, Ultrasonic measurement, Compression

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Reading Assignments Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 1 You can find the answers of some of the following

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

Papers Cited >1000X GOOGLE SCHOLAR

Papers Cited >1000X GOOGLE SCHOLAR Papers Cited >1000X GOOGLE SCHOLAR March 2019 Citations 60861 15529 h-index 111 57 i10-index 425 206 1. Title: Formation of glasses from liquids and biopolymers Source: Science, 1995 sciencemag.org Abstract

More information

Jessica Gwyther. Characterisation of Plasticised Nitrocellulose using NMR and Rheology

Jessica Gwyther. Characterisation of Plasticised Nitrocellulose using NMR and Rheology Jessica Gwyther Characterisation of Plasticised Nitrocellulose using NMR and Rheology 2 Project Aims Prepare 5 inert PBX binder formulations using nitrocellulose polymer and a series of nitroaromatic plasticiser

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics

Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics R. Carbone 1* 1 Dipartimento di Ingegneria dei Materiali e della Produzione sez. Tecnologie

More information

Out of equilibrium dynamics of complex systems

Out of equilibrium dynamics of complex systems Out of equilibrium dynamics of complex systems Cours de 3ème cycle de la Suisse Romande Leticia F. Cugliandolo Université Pierre et Marie Curie - Paris VI Laboratoire de Physique Théorique et Hautes Energies

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France Quantum (spin) glasses Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France Giulio Biroli (Saclay) Daniel R. Grempel (Saclay) Gustavo Lozano (Buenos Aires) Homero Lozza (Buenos Aires) Constantino

More information

Inhomogeneous elastic response of amorphous solids

Inhomogeneous elastic response of amorphous solids Inhomogeneous elastic response of amorphous solids Jean-Louis Barrat Université de Lyon Institut Universitaire de France Acknowledgements: Anne Tanguy, Fabien Chay Goldenberg, Léonforte, Michel Tsamados

More information

Glass Formation and Thermodynamics of Supercooled Monatomic Liquids

Glass Formation and Thermodynamics of Supercooled Monatomic Liquids pubs.acs.org/jpcb Glass Formation and Thermodynamics of Supercooled Monatomic Liquids Vo Van Hoang* Department of Physics, Institute of Technology, National University of HochiMinh City, 268 Ly Thuong

More information

Chapter 1 Fluid Characteristics

Chapter 1 Fluid Characteristics Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Guideline for Rheological Measurements

Guideline for Rheological Measurements Guideline for Rheological Measurements Typical Measurements, Diagrams and Analyses in Rheology www.anton-paar.com General Information: = Measurement = Diagram = Analysis Important Rheological Variables:

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Theoretical Approaches to the Glass Transition

Theoretical Approaches to the Glass Transition Theoretical Approaches to the Glass Transition Walter Kob Laboratoire des Colloïdes, Verres et Nanomatériaux Université Montpellier 2 http://www.lcvn.univ-montp2.fr/kob Kavli Institute for Theoretical

More information

Effect of Temperature on Materials. June 20, Kamran M. Nemati. Phase Diagram

Effect of Temperature on Materials. June 20, Kamran M. Nemati. Phase Diagram Effect of Temperature on Materials June 20, 2008 Kamran M. Nemati Phase Diagram Objective Phase diagrams are graphical representations of what phases are present in a material-system at various temperatures,

More information

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4. Entanglements Zero-shear viscosity vs. M (note change of slope) M < M e Rouse slope 3.4 M > M e Edwards degennes Doi slope 1 Berry + Fox, 1968 Question: Which factors affect the Me: T, P, M, flexibility,

More information

The Temperature Dependence of the Relaxation Time in ultraviscous liquids

The Temperature Dependence of the Relaxation Time in ultraviscous liquids The Temperature Dependence of the Relaxation Time in ultraviscous liquids Is there evidence for a dynamic divergence in data? Tina Hecksher, Albena I. Nielsen, Niels B. Olsen, and Jeppe C. Dyre DNRF Centre

More information

Non contact measurement of viscoelastic properties of biopolymers

Non contact measurement of viscoelastic properties of biopolymers Non contact measurement of viscoelastic properties of biopolymers Christelle Tisserand, Anton Kotzev, Mathias Fleury, Laurent Brunel, Pascal Bru, Gérard Meunier Formulaction, 10 impasse Borde Basse, 31240

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

THE 3D VISCOELASTIC SIMULATION OF MULTI-LAYER FLOW INSIDE FILM AND SHEET EXTRUSION DIES

THE 3D VISCOELASTIC SIMULATION OF MULTI-LAYER FLOW INSIDE FILM AND SHEET EXTRUSION DIES THE 3D VISCOELASTIC SIMULATION OF MULTI-LAYER FLOW INSIDE FILM AND SHEET EXTRUSION DIES Kazuya Yokomizo 1, Makoto Iwamura 2 and Hideki Tomiyama 1 1 The Japan Steel Works, LTD., Hiroshima Research Laboratory,

More information

Similarities and differences:

Similarities and differences: How does the system reach equilibrium? I./9 Chemical equilibrium I./ Equilibrium electrochemistry III./ Molecules in motion physical processes, non-reactive systems III./5-7 Reaction rate, mechanism, molecular

More information

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS Chapter 3 STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS We report the strong dependence of elastic properties on configurational changes in a Cu-Zr binary

More information

G. R. Strobl, Chapter 5 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). J. Ferry, "Viscoelastic Behavior of Polymers"

G. R. Strobl, Chapter 5 The Physics of Polymers, 2'nd Ed. Springer, NY, (1997). J. Ferry, Viscoelastic Behavior of Polymers G. R. Strobl, Chapter 5 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). J. Ferry, "Viscoelastic Behavior of Polymers" Chapter 3: Specific Relaxations There are many types of relaxation processes

More information

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology Application All domains dealing with soft materials (emulsions, suspensions, gels, foams, polymers, etc ) Objective

More information