Nonequilibrium transitions in glassy flows II. Peter Schall University of Amsterdam

Size: px
Start display at page:

Download "Nonequilibrium transitions in glassy flows II. Peter Schall University of Amsterdam"

Transcription

1 Nonequilibrium transitions in glassy flows II Peter Schall University of Amsterdam

2 Flow of glasses 1st Lecture Glass Phenomenology Basic concepts: Free volume, Dynamic correlations

3 Apply Shear Glass?

4 Soft Glasses Visco-elastic properties colloidal glass Microscopic structure / dynamics foam Atoms DNA Polymers gel Granular a m

5 Average Flow and Fluctuations Non-affine displacements 1. Subtract linear profile Δ 2. Compare with neighbors Δ Δ

6 Non-affine displacements z y x shear d(t- t) d(t) Affine transformation Γ d aff (t) = d(t- t) + Γ d(t- t) neighbors D 2 min = (d aff (t) d(t)) 2 Falk and Langer, PRE Affine non-affine

7 Non-affine displacements Subtract linear profile Affine fit Subtract coarse grained Lost nearest neighbors Chikkadi, Schall, Phys Rev E (212)

8 Spatial Correlations Δ = : difference vector : spatial average A : any non-affine measure Α(r) Α(r+ )

9 Power-law Correlations z x 3 D 2 min Correlation -1 y 1 6 z / d 15 r 1.5 C D 2min (r) Z(µm) α x / d X(µm) V. Chikkadi, G.Wegdam, B. Niehuis, P.S., PRL 211 V. Chikkadi, P.S., PRE 212 r/σ System Size Power-law scaling up to system size

10 Power-law Correlations z x 3 D 2 min Correlation -1 y 1 6 z / d 15 r 1.5 C D 2min (r) Z(µm) α x / d Origin X(µm) System? r/σ V. Chikkadi, G.Wegdam, B. Niehuis, P.S., PRL 211 V. Chikkadi, P.S., PRE 212 Power-law scaling up to system size Size

11 Power-law Correlations z y z / µm x Shear strain x / µm ε xz Induce Local Quadrupole ε ~ 1/r 3 x V. Chikkadi, G.Wegdam, B. Nienhuis, P.S., PRL 211 V. Chikkadi, P.S., PRE 212

12 Power-law Correlations z y z / µm x Shear strain x / µm ε xz Elasticity Induce Local Strain Quadrupole Field ε ~ 1/r 3 x V. Chikkadi, G.Wegdam, B. Nienhuis, P.S., PRL 211 V. Chikkadi, P.S., PRE 212 Elastic continuum

13 Elastic Correlations Displacements Elastic continuum (Hutchinson 26) Strain Field

14 Homogeneous flow z x Shear strain ε xz Quadrupolar Strain Correlation Symmetry: Signature of Elasticity y 6 z / d.2 z / µm x / d V. Chikkadi, G.Wegdam, B. Nienhuis, P.S., PRL 211 V. Chikkadi, P.S., PRE 212 Elastic interactions x / µm Self organization of STZ

15 Yielding Approaching yielding. γ c γ γ c A. Ghosh, V. Chikkadi, S. Zapperi, P. Schall, in preparation (216)

16 Yielding Fractal clusters Cluster evolution Percolation? Log(Gyration radius) Fraction in largest cluster Log(cluster size) Cluster size Strain γ A. Ghosh, V. Chikkadi, Fraction S. Zapperi, of activep. particles Schall, in preparation (216)

17 towards faster flow γ. Diffusion rate t D -1 Driven Flow 1 Fluid.49 Supercooled Fluid Viscous Flow.58 Glass.64 φ Critical Scaling

18 1. Transition to Driven flows Homogeneous Inhomogeneous 6 4 z / µm 4 2 z / µm x / µm 1 x / µm 1 V. Chikkadi et al. Phys. Rev. Lett. (211) γ τ

19 z/µm z/µm z/µm Shear banding transition z / d Nature of this transition? 2-15 z / d z / d γτ x/µm x/d

20 Shear bandingno transition quadrupolar symmetry liquid like Z Fundamental Solid Liquid transition -1 1 Z(µm) 2 Origin? X(µm) -1 V. Chikkadi, G.Wegdam, B. Niehuis, P.S., PRL 211 V. Chikkadi, P.S., PRE 212 Quadrupolar -1 1 X symmetry Z 1 solid like

21 Structural transition? Pair correlation function. Shear band Static band g(r) r

22 First order transition diffusion time scale 1-1 x 2 / µm t t(γ 2 /γ 1 ) γ = t γ i Discontinuity in diffusion time scale! V. Chikkadi, et al. Phys. Rev. Lett. (214) P. Schall, Harvard University

23 First order transition? P(ζ) Order Parameter ζ ζ 1 ζ 2 ζ What is the right order parameter? ζ : Time evolution

24 First order transition? (<K>/N)/ µm 2 s γ / s * * ζ = <K> t obs /s / t obs f(ζ) δ r i V. Chikkadi, et al. Phys. Rev. Lett. (214) ζ /< ζ > Dynamic Order Parameter (Garrahan, Chandler 29) N K = i=1 t obs t= δr i 2 ζ /< ζ > ζ /< ζ > ζ /< ζ > extensive in Space AND Time First order transition in 4D space-time ζ 1 ζ 2

25 Mechanical Spectroscopy strain stress Oscillatory Rheology time Linear Response:. stress = G γ sin(ωt) + G γ cos(ωt) storage modulus loss modulus

26 Origin of yielding? Mechanical Spectroscopy log G log G Failure strain Linear Response:. stress = G γ sin(ωt) + G γ cos(ωt) storage modulus loss modulus

27 Simultaneous X-ray + Rheology Rheology Struct. Fact. S(q) G G D. Denisov, T. Dang, B. Struth, P.S., Sci. Rep. (213)

28 Simultaneous X-ray + Rheology Yielding: Oscillatory Shear 1 5 Rheology Structure G and G, Pa Strain γ γ Solid and liquid-like structure factor Denisov et al. Sci. Rep. (215)

29 Simultaneous X-ray + Rheology Yielding: Oscillatory Shear 1 5 Rheology γ Structure G and G, Pa γ Strain γ γ 1 Sharp transition! Denisov et al. Sci. Rep. (215) π/2 π 3π/2 2π angle C(α) -1 1

30 Simultaneous X-ray + Rheology Yielding: Oscillatory Shear Rheology + Struct. Order parameter Correlation of C( β=π) Sharp drop of Order parameter Strain γ Shear-induced First-order transition Denisov et al. Sci. Rep. (215) G and G

31 towards lower density γ. Diffusion rate t D -1 Driven Flow Fluid 2.49 Supercooled Fluid Viscous Flow.58 Glass.64 φ

32 Foam Simulations unjammed jammed φ ~.74 φ ~ 1 V. Cikkadi, E. Woldhuis, M. van Hecke, P. Schall (EPL 215)

33 2. Transition to low density unjammed jammed V. Cikkadi, E. Woldhuis, M. van Hecke, P. Schall (EPL 215)

34 2. Transition to low density Pair correlation of active spots V. Cikkadi, E. Woldhuis, M. van Hecke, P. Schall (EPL 215)

35 Conclusions Slow flow of glasses long-range correlated, critical state Material failure (yielding, banding) Nonequilibrium transitions (1st and 2nd order) Evidence of Universality Dynamic or thermodynamic transitions?

36 Thanks to... Vijay Chikkadi (PhD, now Post doc) Dmitry Denisov (Post Doc) Soft Matter Group Amsterdam

Flow of Glasses. Peter Schall University of Amsterdam

Flow of Glasses. Peter Schall University of Amsterdam Flow of Glasses Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10 14 sec Time scale Liquid!

More information

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam

Nonequilibrium transitions in glassy flows. Peter Schall University of Amsterdam Nonequilibrium transitions in glassy flows Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10

More information

cooperative motion in sheared granular matter Takahiro Hatano

cooperative motion in sheared granular matter Takahiro Hatano cooperative motion in sheared granular matter Takahiro Hatano (Earthquake Research Institute, University of Tokyo) amorphous particulate systems: structure? 2D granular matter close to jamming spontaneous

More information

Granular materials (Assemblies of particles with dissipation )

Granular materials (Assemblies of particles with dissipation ) Granular materials (Assemblies of particles with dissipation ) Saturn ring Sand mustard seed Ginkaku-ji temple Sheared granular materials packing fraction : Φ Inhomogeneous flow Gas (Φ = 012) Homogeneous

More information

Lecture 4: viscoelasticity and cell mechanics

Lecture 4: viscoelasticity and cell mechanics Teaser movie: flexible robots! R. Shepherd, Whitesides group, Harvard 1 Lecture 4: viscoelasticity and cell mechanics S-RSI Physics Lectures: Soft Condensed Matter Physics Jacinta C. Conrad University

More information

Rheological properties of polymer melt between rapidly oscillating plates: - an application of multiscale modeling -

Rheological properties of polymer melt between rapidly oscillating plates: - an application of multiscale modeling - http://multiscale.jp Rheological properties of polymer melt between rapidly oscillating plates: - an application of multiscale modeling - Ryoichi Yamamoto and Shugo Yasuda Dept. Chemical Engineering, Kyoto

More information

Statistical Mechanics of Jamming

Statistical Mechanics of Jamming Statistical Mechanics of Jamming Lecture 1: Timescales and Lengthscales, jamming vs thermal critical points Lecture 2: Statistical ensembles: inherent structures and blocked states Lecture 3: Example of

More information

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Outline Laponite Basic background. Laponite in suspension Bonn et al.,

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001 Chemical Engineering 160/260 Polymer Science and Engineering Lecture 14: Amorphous State February 14, 2001 Objectives! To provide guidance toward understanding why an amorphous polymer glass may be considered

More information

The yielding transition in periodically sheared binary glasses at finite temperature. Nikolai V. Priezjev

The yielding transition in periodically sheared binary glasses at finite temperature. Nikolai V. Priezjev The yielding transition in periodically sheared binary glasses at finite temperature Nikolai V. Priezjev 5 March, 2018 Department of Mechanical and Materials Engineering Wright State University Movies,

More information

Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids Atsushi Ikeda Fukui Institute for Fundamental Chemistry, Kyoto University Atsushi Ikeda & Ludovic Berthier Phys. Rev. E 92,

More information

Supplementary Information. Text S1:

Supplementary Information. Text S1: Supplementary Information Text S1: In order to characterize the change in visco-elastic response in the course of a shear thickening transition in a controlled shear stress flow, on a fresh sample of for

More information

Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses

Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses Dynamics of Supercooled Liquids The Generic Phase Diagram for Glasses A normal liquid will crystallize at a melting temperature T m as it is cooled via a first-order phase transition (see figure above).

More information

Absorbing phase transition on particle trajectories in oscillatory sheared systems near jamming

Absorbing phase transition on particle trajectories in oscillatory sheared systems near jamming Absorbing phase transition on particle trajectories in oscillatory sheared systems near jamming Department of Physics, Nagoya University Takeshi Kawasaki T. Kawasaki and L. Berthier, Phys. Rev. E 94, 022615

More information

JMBC Workshop Statics and dynamics of soft and granular materials

JMBC Workshop Statics and dynamics of soft and granular materials JMBC Workshop Statics and dynamics of soft and granular materials Drienerburght, University of Twente, February 25 - March 1, 2013 Speakers: Dirk van der Ende - Nico Gray - Detlef Lohse - Stefan Luding

More information

Experimental Colloids I (and I)

Experimental Colloids I (and I) Experimental Colloids I (and I) Dave Weitz Harvard http://www.seas.harvard.edu/projects/weitzlab Boulder Summer School 7/24/17 Experimental Colloids I (and I) Dave Weitz Harvard http://www.seas.harvard.edu/projects/weitzlab

More information

Effective Temperatures in Driven Systems near Jamming

Effective Temperatures in Driven Systems near Jamming Effective Temperatures in Driven Systems near Jamming Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Tom Haxton Yair Shokef Tal Danino Ian Ono Corey S. O Hern Douglas Durian

More information

Inhomogeneous elastic response of amorphous solids

Inhomogeneous elastic response of amorphous solids Inhomogeneous elastic response of amorphous solids Jean-Louis Barrat Université de Lyon Institut Universitaire de France Acknowledgements: Anne Tanguy, Fabien Chay Goldenberg, Léonforte, Michel Tsamados

More information

This false color image is taken from Dan Howell's experiments. This is a 2D experiment in which a collection of disks undergoes steady shearing.

This false color image is taken from Dan Howell's experiments. This is a 2D experiment in which a collection of disks undergoes steady shearing. This false color image is taken from Dan Howell's experiments. This is a 2D experiment in which a collection of disks undergoes steady shearing. The red regions mean large local force, and the blue regions

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

arxiv: v1 [cond-mat.soft] 16 Jan 2014

arxiv: v1 [cond-mat.soft] 16 Jan 2014 Correlations of plasticity in sheared glasses Fathollah Varnik, 1,2, Suvendu Mandal, 1 Vijaykumar Chikkadi, 3 Dmitry Denisov, 3 Peter Olsson, 4 Daniel Vågberg, 4 Dierk Raabe, 1 and Peter Schall 3 1 Max-Planck

More information

Rheology of Soft Materials. Rheology

Rheology of Soft Materials. Rheology Τ Thomas G. Mason Department of Chemistry and Biochemistry Department of Physics and Astronomy California NanoSystems Institute Τ γ 26 by Thomas G. Mason All rights reserved. γ (t) τ (t) γ τ Δt 2π t γ

More information

Linearized Theory: Sound Waves

Linearized Theory: Sound Waves Linearized Theory: Sound Waves In the linearized limit, Λ iα becomes δ iα, and the distinction between the reference and target spaces effectively vanishes. K ij (q): Rigidity matrix Note c L = c T in

More information

T. Egami. Model System of Dense Random Packing (DRP)

T. Egami. Model System of Dense Random Packing (DRP) Introduction to Metallic Glasses: How they are different/similar to other glasses T. Egami Model System of Dense Random Packing (DRP) Hard Sphere vs. Soft Sphere Glass transition Universal behavior History:

More information

Length Scales Related to Alpha and Beta Relaxation in Glass Forming Liquids

Length Scales Related to Alpha and Beta Relaxation in Glass Forming Liquids Length Scales Related to Alpha and Beta Relaxation in Glass Forming Liquids Chandan Dasgupta Centre for Condensed Matter Theory Department of Physics, Indian Institute of Science With Smarajit Karmakar

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

Lecture Note October 1, 2009 Nanostructure characterization techniques

Lecture Note October 1, 2009 Nanostructure characterization techniques Lecture Note October 1, 29 Nanostructure characterization techniques UT-Austin PHYS 392 T, unique # 5977 ME 397 unique # 1979 CHE 384, unique # 151 Instructor: Professor C.K. Shih Subjects: Applications

More information

Interfacial dynamics

Interfacial dynamics Interfacial dynamics Interfacial dynamics = dynamic processes at fluid interfaces upon their deformation Interfacial rheological properties: elasticity, viscosity, yield stress, Relation between macroscopic

More information

Lecture 8: Tissue Mechanics

Lecture 8: Tissue Mechanics Computational Biology Group (CoBi), D-BSSE, ETHZ Lecture 8: Tissue Mechanics Prof Dagmar Iber, PhD DPhil MSc Computational Biology 2015/16 7. Mai 2016 2 / 57 Contents 1 Introduction to Elastic Materials

More information

arxiv: v1 [cond-mat.soft] 10 Feb 2017

arxiv: v1 [cond-mat.soft] 10 Feb 2017 Direct observation of percolation in the yielding transition of colloidal glasses arxiv:1702.03225v1 [cond-mat.soft] 10 Feb 2017 Antina Ghosh 1,2, Zoe Budrikis 3, Vijayakumar Chikkadi 1,2, Alessandro L.

More information

Colloidal Suspension Rheology Chapter 1 Study Questions

Colloidal Suspension Rheology Chapter 1 Study Questions Colloidal Suspension Rheology Chapter 1 Study Questions 1. What forces act on a single colloidal particle suspended in a flowing fluid? Discuss the dependence of these forces on particle radius. 2. What

More information

Visualizing the strain evolution during the indentation of colloidal glasses

Visualizing the strain evolution during the indentation of colloidal glasses Visualizing the strain evolution during the indentation of colloidal glasses Y. Rahmani, R. Koopman, D. Denisov and P. Schall Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904,

More information

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum By F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S.M. Fielding The European

More information

Tuning granular matter rheology using externally supplied vibrations

Tuning granular matter rheology using externally supplied vibrations Flowing Matter 2017 23-27 January 2017 PORTO Tuning granular matter rheology using externally supplied vibrations Laboratory : LEMTA, Nancy (France) Team «Rheophysics and hydrodynamics of complex fluids»

More information

THE PHYSICS OF FOAM. Boulder School for Condensed Matter and Materials Physics. July 1-26, 2002: Physics of Soft Condensed Matter. 1.

THE PHYSICS OF FOAM. Boulder School for Condensed Matter and Materials Physics. July 1-26, 2002: Physics of Soft Condensed Matter. 1. THE PHYSICS OF FOAM Boulder School for Condensed Matter and Materials Physics July 1-26, 2002: Physics of Soft Condensed Matter 1. Introduction Formation Microscopics 2. Structure Experiment Simulation

More information

Supplementary Figure 1: Approach to the steady state. Energy vs. cycle for different

Supplementary Figure 1: Approach to the steady state. Energy vs. cycle for different ( = ) -6.9-6.94 (a) N = 8 < y.2 (T = 1).4 (T = 1).6 (T = 1).7 (T = 1) ( = ) -6.94 (b).8 (T = 1).9 (T = 1).12 (T = 1).14 (T = 1).8 (T =.466).9 (T =.466).12 (T =.466).14 (T =.466) > y n * 12 8 (c) N = 8

More information

Nonlinear viscoelasticity of metastable complex fluids

Nonlinear viscoelasticity of metastable complex fluids EUROPHYSICS LETTERS 15 September 2006 Europhys. Lett., 75 (6), pp. 915 921 (2006) DOI: 10.1209/epl/i2006-10203-9 Nonlinear viscoelasticity of metastable complex fluids K. Miyazaki 1, H. M. Wyss 2, D. A.

More information

Direct observation of dynamical heterogeneities near the attraction driven glass

Direct observation of dynamical heterogeneities near the attraction driven glass Direct observation of dynamical heterogeneities near the attraction driven glass Maria Kilfoil McGill University Co-worker: Yongxiang Gao, PhD student http://www.physics.mcgill.ca/~kilfoil Dynamical heterogeneity

More information

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan Department of Chemical Engineering University of Texas@Austin Origins of Mechanical and Rheological Properties of Polymer Nanocomposites Venkat Ganesan $$$: NSF DMR, Welch Foundation Megha Surve, Victor

More information

GEM4 Summer School OpenCourseWare

GEM4 Summer School OpenCourseWare GEM4 Summer School OpenCourseWare http://gem4.educommons.net/ http://www.gem4.org/ Lecture: Microrheology of a Complex Fluid by Dr. Peter So. Given August 10, 2006 during the GEM4 session at MIT in Cambridge,

More information

Glass Transition as the Rheological Inverse of Gelation

Glass Transition as the Rheological Inverse of Gelation NNF Summer reading group, July 18 th 2017 Glass Transition as the Rheological Inverse of Gelation ACS Macromolecules 46, 2425-2432 (2013) H Henning Winter Department of Chemical Engineering and Department

More information

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future?

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future? Modeling Random Wet 2D Foams with Controlled Polydispersity Back to the Future? Andy Kraynik Sandia National Labs (retired) CEAS, University of Manchester University of Erlangen-Nuremberg Simon Cox Aberystwyth

More information

Jamming and the Anticrystal

Jamming and the Anticrystal Jamming and the Anticrystal Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Carl Goodrich Corey S. O Hern Leo E. Silbert Vincenzo Vitelli Ning Xu Sidney Nagel UPenn Yale SIUC

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Standard Solids and Fracture Fluids: Mechanical, Chemical Effects Effective Stress Dilatancy Hardening and Stability Mead, 1925

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

Network formation in viscoelastic phase separation

Network formation in viscoelastic phase separation INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 15 (2003) S387 S393 PII: S0953-8984(03)54761-0 Network formation in viscoelastic phase separation Hajime Tanaka,

More information

Supplementary Material Materials and Methods Experiment The phase state of several binary mixtures of stars was investigated in squalene, a nearly athermal, non-volatile solvent. In most cases, experiments

More information

Workshop on Sphere Packing and Amorphous Materials July 2011

Workshop on Sphere Packing and Amorphous Materials July 2011 2254-16 Workshop on Sphere Packing and Amorphous Materials 25-29 July 2011 Random Spring Networks vs. Soft Sphere Packings: Jamming Meets Percolation Wouter G. ELLENBROEK Eindhoven Technical University,

More information

Athermal, Quasi-static Deformation of Amorphous Materials

Athermal, Quasi-static Deformation of Amorphous Materials Athermal, Quasi-static Deformation of Amorphous Materials Anaël Lemaître 1 and Craig Maloney 2 1 Institut Navier France 2 Department of Physics UC Santa Barbara Phys. Rev. Lett. 93, 016001 (2004) Phys.

More information

Structural Signatures of Mobility in Jammed and Glassy Systems

Structural Signatures of Mobility in Jammed and Glassy Systems Lisa Manning Sam Schoenholz Ekin Dogus Cubuk Brad Malone Tim Kaxiras Joerg Rottler Rob Riggleman Jennifer Rieser Doug Durian Daniel Sussman Carl Goodrich Sid Nagel Structural Signatures of Mobility in

More information

RHEOLOGICAL COEFFICIENTS FOR MEDIA WITH MECHANICAL RELAXATION PHENOMENA

RHEOLOGICAL COEFFICIENTS FOR MEDIA WITH MECHANICAL RELAXATION PHENOMENA Communications to SIMAI Congress, ISSN 187-915, Vol. (7) DOI: 1.1685/CSC6157 RHEOLOGICAL COEFFICIENTS FOR MEDIA WITH MECHANICAL RELAXATION PHENOMENA A. CIANCIO, V. CIANCIO Department of Mathematics, University

More information

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology Application All domains dealing with soft materials (emulsions, suspensions, gels, foams, polymers, etc ) Objective

More information

University Graz / Austria Institut für Chemie Volker Ribitsch

University Graz / Austria Institut für Chemie Volker Ribitsch University Graz / Austria Institut für Chemie Volker Ribitsch 1 Rheology Oscillatory experiments Dynamic experiments Deformation of materials under non-steady conditions in the linear viscoelastic range

More information

3.320 Lecture 23 (5/3/05)

3.320 Lecture 23 (5/3/05) 3.320 Lecture 23 (5/3/05) Faster, faster,faster Bigger, Bigger, Bigger Accelerated Molecular Dynamics Kinetic Monte Carlo Inhomogeneous Spatial Coarse Graining 5/3/05 3.320 Atomistic Modeling of Materials

More information

Measurements of the yield stress in frictionless granular systems

Measurements of the yield stress in frictionless granular systems Measurements of the yield stress in frictionless granular systems Ning Xu 1 and Corey S. O Hern 1,2 1 Department of Mechanical Engineering, Yale University, New Haven, Connecticut 06520-8284, USA 2 Department

More information

Local shear transformations in deformed and quiescent hard-sphere colloidal glasses

Local shear transformations in deformed and quiescent hard-sphere colloidal glasses PHYSICAL REVIEW E 90, 042305 (2014) Local shear transformations in deformed and quiescent hard-sphere colloidal glasses K. E. Jensen * Department of Physics, Harvard University, Cambridge, Massachusetts

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

Pre-yield non-affine fluctuations and a hidden critical point in strained crystals

Pre-yield non-affine fluctuations and a hidden critical point in strained crystals Supplementary Information for: Pre-yield non-affine fluctuations and a hidden critical point in strained crystals Tamoghna Das, a,b Saswati Ganguly, b Surajit Sengupta c and Madan Rao d a Collective Interactions

More information

Quiz 1. Introduction to Polymers

Quiz 1. Introduction to Polymers 100406 Quiz 1. Introduction to Polymers 1) Polymers are different than low-molecular weight oligomers. For example an oligomeric polyethylene is wax, oligomeric polystyrene is similar to naphthalene (moth

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

MODELING GEOMATERIALS ACROSS SCALES

MODELING GEOMATERIALS ACROSS SCALES MODELING GEOMATERIALS ACROSS SCALES JOSÉ E. ANDRADE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AFOSR WORKSHOP ON PARTICULATE MECHANICS JANUARY 2008 COLLABORATORS: DR XUXIN TU AND MR KIRK ELLISON

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

Dynamics of materials with X-ray Photon Correlation Spectroscopy - Opportunities and detector requirements

Dynamics of materials with X-ray Photon Correlation Spectroscopy - Opportunities and detector requirements Dynamics of materials with X-ray Photon Correlation Spectroscopy - Opportunities and detector requirements Quasi-static speckles from colloidal suspension near random compact packing volume fraction Speckles

More information

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 214 Supplementary material to On the rheology of pendular gels and morphological developments in

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 19. Home Page. Title Page. Page 1 of 36.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 19. Home Page. Title Page. Page 1 of 36. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 19 Page 1 of 36 12. Equilibrium and Elasticity How do objects behave under applied external forces? Under

More information

arxiv: v2 [cond-mat.soft] 20 Nov 2013

arxiv: v2 [cond-mat.soft] 20 Nov 2013 Mechanical and microscopic properties of the reversible plastic regime in a D jammed material Nathan C. Keim and Paulo E. Arratia Department of Mechanical Engineering and Applied Mechanics, University

More information

Local Anisotropy In Globally Isotropic Granular Packings. Kamran Karimi Craig E Maloney

Local Anisotropy In Globally Isotropic Granular Packings. Kamran Karimi Craig E Maloney Local Anisotropy In Globally Isotropic Granular Packings Kamran Karimi Craig E Maloney Granular Materials 2 A Granular Material Is A Conglomeration Of Discrete Solid, Natural Macroscopic Particles Characterized

More information

XPCS and Shear Flow. Wesley Burghardt Department of Chemical & Biological Engineering Northwestern University

XPCS and Shear Flow. Wesley Burghardt Department of Chemical & Biological Engineering Northwestern University XPCS and Shear Flow Wesley Burghardt Department of Chemical & Biological Engineering Northwestern University Outline Background: XPCS & rheology XPCS during shear Unidirectional shear flow Oscillatory

More information

EPJ E. Soft Matter and Biological Physics. EPJ.org. Rheological properties vs. local dynamics in model disordered materials at low temperature

EPJ E. Soft Matter and Biological Physics. EPJ.org. Rheological properties vs. local dynamics in model disordered materials at low temperature EPJ E Soft Matter and Biological Physics EPJ.org your physics journal Eur. Phys. J. E (24) 37: 43 DOI.4/epje/i24-443- Rheological properties vs. local dynamics in model disordered materials at low temperature

More information

Non contact measurement of viscoelastic properties of biopolymers

Non contact measurement of viscoelastic properties of biopolymers Non contact measurement of viscoelastic properties of biopolymers Christelle Tisserand, Anton Kotzev, Mathias Fleury, Laurent Brunel, Pascal Bru, Gérard Meunier Formulaction, 10 impasse Borde Basse, 31240

More information

Local shear transformations in deformed and quiescent hardsphere colloidal glasses

Local shear transformations in deformed and quiescent hardsphere colloidal glasses Local shear transformations in deformed and quiescent hardsphere colloidal glasses The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Theory of Force Transmission and Rigidity in Granular Aggregates. A Different kind of NonEquilibrium System

Theory of Force Transmission and Rigidity in Granular Aggregates. A Different kind of NonEquilibrium System Theory of Force Transmission and Rigidity in Granular Aggregates A Different kind of NonEquilibrium System Dapeng Bi Sumantra Sarkar Kabir Ramola Jetin Thomas Bob Behringer, Jie Ren Dong Wang Jeff Morris

More information

One- and two-particle microrheology in solutions of actin, fd-virus and inorganic rods

One- and two-particle microrheology in solutions of actin, fd-virus and inorganic rods Microrheology of Biopolymers (ITP Complex Fluids Program 3/05/02) One- and two-particle microrheology in solutions of actin, fd-virus and inorganic rods Christoph Schmidt Vrije Universiteit Amsterdam Collaborators:

More information

Long-range correlations in glasses and glassy fluids, and their connection to glasses elasticity

Long-range correlations in glasses and glassy fluids, and their connection to glasses elasticity Long-range correlations in glasses and glassy fluids, and their connection to glasses elasticity Grzegorz Szamel Department of Chemistry Colorado State University Ft. Collins, CO 80523, USA Workshop on

More information

Sheared foam as a supercooled liquid?

Sheared foam as a supercooled liquid? EUROPHYSICS LETTERS 1 January 2000 Europhys. Lett., 49 (1), pp. 68 74 (2000) Sheared foam as a supercooled liquid? S. A. Langer 1 and A. J. Liu 2 1 Information Technology Laboratory, NIST - Gaithersburg,

More information

Strain localization in a shear transformation zone model for amorphous solids

Strain localization in a shear transformation zone model for amorphous solids Strain localization in a shear transformation zone model for amorphous solids M. L. Manning,* J. S. Langer, and J. M. Carlson Department of Physics, University of California, Santa Barbara, California

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel Rheology of cellulose solutions Puu-23.6080 - Cellulose Chemistry Michael Hummel Contents Steady shear tests Viscous flow behavior and viscosity Newton s law Shear thinning (and critical concentration)

More information

A microscopic view of the yielding transition in concentrated emulsions

A microscopic view of the yielding transition in concentrated emulsions A microscopic view of the yielding transition in concentrated emulsions Soft Matter, (2014), DOI: 10.1039/c4sm00531g arxiv:1403.4433 Elizabeth D. Knowlton 1, David J. Pine 1, Luca Cipelletti 2 1 Center

More information

Relaxation decoupling in metallic glassy state

Relaxation decoupling in metallic glassy state Relaxation decoupling in metallic glassy state P. Luo 1, P. Wen 1, H. Y. Bai 1, B. Ruta 2, and W. H. Wang 1 * 1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. 2 ESRF-The European

More information

Density Functional Modeling of Nanocrystalline Materials

Density Functional Modeling of Nanocrystalline Materials Density Functional Modeling of Nanocrystalline Materials A new approach for modeling atomic scale properties in materials Peter Stefanovic Supervisor: Nikolas Provatas 70 / Part 1-7 February 007 Density

More information

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from Chapter 1. Introduction 1.1 Some Characteristics of Fluids We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from scientific or engineering point of view. In

More information

Fluid avalanches: from hairgel to quicksand and landslides

Fluid avalanches: from hairgel to quicksand and landslides Fluid avalanches: from hairgel to quicksand and landslides Daniel Bonn (LPS de l ENS-Paris and WZI-Amsterdam) with: N. Huang, J. Meunier (ENS) E. Khaldoun, S. Jabbari, E. Eiser, G. Wegdam (WZI- Julie Amsterdam)

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali University of Sulaimani School of Pharmacy Dept. of Pharmaceutics Pharmaceutical Compounding Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

More information

Quiz 1 Introduction to Polymers

Quiz 1 Introduction to Polymers 090109 Quiz 1 Introduction to Polymers In class we discussed the definition of a polymer first by comparing polymers with metals and ceramics and then by noting certain properties of polymers that distinguish

More information

Rheology of concentrated hard-sphere suspensions

Rheology of concentrated hard-sphere suspensions Rheology of concentrated hard-sphere suspensions Complex behaviour in a simple system Wilson Poon School of Physics & Astronomy, The University of Edinburgh Rut Besseling Lucio Isa ( ETH, Zürich) Khoa

More information

RHEOLASER LAB MICRORHEOLOGY & END USE PROPERTIES ANALYSIS. MICRORHEOLOGY

RHEOLASER LAB MICRORHEOLOGY & END USE PROPERTIES ANALYSIS.  MICRORHEOLOGY RHEOLASER LAB & END USE PROPERTIES ANALYSIS A NEW RHEOLOGY APPROACH TO CHARACTERISE END-USE PROPERTIES THE FIRST READY TO USE & END-USE PROPERTIES ANALYSER Rheolaser Rheolaser is the first Lab ready-to-use

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/22836 holds various files of this Leiden University dissertation. Author: Woldhuis, Erik Title: Foam rheology near the jamming transition Issue Date: 2013-12-11

More information

Review of Last Class 1

Review of Last Class 1 Review of Last Class 1 X-Ray diffraction of crystals: the Bragg formulation Condition of diffraction peak: 2dd sin θθ = nnλλ Review of Last Class 2 X-Ray diffraction of crystals: the Von Laue formulation

More information

How to measure the shear viscosity properly?

How to measure the shear viscosity properly? testxpo Fachmesse für Prüftechnik 10.-13.10.2016 How to measure the shear viscosity properly? M p v Rotation Capillary Torsten Remmler, Malvern Instruments Outline How is the Shear Viscosity defined? Principle

More information

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004 Elements of Polymer Structure and Viscoelasticity David M. Parks Mechanics and Materials II 2.002 February 18, 2004 Outline Elements of polymer structure Linear vs. branched; Vinyl polymers and substitutions

More information

A new interpretation for the dynamic behavior of complex fluids at the sol-gel transition using the fractional calculus

A new interpretation for the dynamic behavior of complex fluids at the sol-gel transition using the fractional calculus A new interpretation for the dynamic behavior of complex fluids at the sol-gel transition using the fractional calculus By Stephane Warlus and Alain Ponton Rheol. Acta (009) 48:51-58 Chris Dimitriou NNF

More information

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering University of Liège Aerospace & Mechanical Engineering Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE Van Dung NGUYEN Innocent NIYONZIMA Aerospace & Mechanical engineering

More information

Soft glassy rheology & trap models

Soft glassy rheology & trap models Soft glasses, rheology, and trap models Peter Sollich A Barra, M E Cates, S M Fielding, P Hébraud, F Lequeux King s College London Ask me questions before dinner Though I d rather stay here... What s glassy

More information

ENAS 606 : Polymer Physics

ENAS 606 : Polymer Physics ENAS 606 : Polymer Physics Professor Description Course Topics TA Prerequisite Class Office Hours Chinedum Osuji 302 Mason Lab, 432-4357, chinedum.osuji@yale.edu This course covers the static and dynamic

More information

Thermal properties of Engineering Materials

Thermal properties of Engineering Materials Thermal properties of Engineering Materials Engineering materials are important in everyday life because of their versatile structural properties. Other than these properties, they do play an important

More information

Nonlinear rheology of Laponite suspensions under an external drive

Nonlinear rheology of Laponite suspensions under an external drive Nonlinear rheology of Laponite suspensions under an external drive Bérengère Abou, a) Daniel Bonn, and J. Meunier Laboratoire de Physique Statistique, UMR CNRS 8550, Ecole Normale Supérieure, 24, Rue Lhomond,

More information

Disordered Structures. Part 2

Disordered Structures. Part 2 Disordered Structures Part 2 Composites and mixtures Consider inhomogeneities on length scales > 10-20 Å Phase separation two (or multi-) phase mixtures Mixtures of particles of different kinds - solids,

More information

Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks

Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2018 Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks Tom Golde, 1 Constantin

More information