Protein-stabilised emulsions

Size: px
Start display at page:

Download "Protein-stabilised emulsions"

Transcription

1 Proteinstabilised emulsions Ranjan Sharma 1

2 Emulsion definition An emulsion consists of two immiscible liquids (generally oil and water) with one liquid forming the continueous phase while the other the dispersed phase. Oilinwater (O/W) Waterinoil (W/O) Waterinoilinwater (double emulsion, W/O/W) Oilinwaterinoil (double emulsion, O/W/O) 2

3 Examples O/W milk, cream, mayonnaise, soups and sauces W/O butter and margarine 3

4 Oilinwater emulsions Coarse Fine Salad dressing Mayonnaise Raw milk Homogenised/ Recombined milk UHT beverage Canned/ Retorted beverage 4 Demanding more physical stability

5 O/W Chocolate milk and infant formulae 5

6 O/W Complete nutritional formula 6

7 O/W Mayonnaise 7

8 W/O butter and margarine 8

9 Two & threephase emulsions water o water w w oil o 9

10 Emulsion formation Oilsoluble/dispersible ingredient Oil Water Watersoluble/dispersible ingredients Blend tank Homogenisation Packaging Further heating 10 Additives

11 Emulsion formation Oilsoluble/dispersible ingredient Oil Water Watersoluble/dispersible ingredients Important variables Blend tank Homogenisation Packaging Further heating 11 Additives

12 Sequence of events During homogenisation, fat globules with submicron size are formed Milk proteins migrate to the newly formed fat globule surfaces Capability to form a stable emulsion is determined by the ability of the protein to unfold at the fatwater interface Protein load affects the stability of emulsion towards heating and storage 12

13 Setup for reconstitution of protein ingredient Agitator Recirculation line Water Powder Reconstitution tank Powderwater Blending unit 13

14 Homogenising devices Highspeed blender Colloid mills Highpressure valve homogeniser Ultrasonic homogeniser Microfludiser Membranebased homogeniser 14

15 Homogenising devices Highspeed blender Colloid mills Highpressure valve homogeniser Ultrasonic homogeniser Microfludiser Membranebased homogeniser 15

16 Homogenisation efficiency ΔE min E H = x 100 ΔE total E H homogenisation efficiency ΔE min Minimum amount of energy theoretically required to form emulsion = ΔAγ (interfacial area and interfacial tension) ΔE total Actual amount of enegy expended during homogenisation 16

17 Homogenising valve Valve pressure Impact ring Homogenised product Seat Unhomogenised product 17

18 Twostage homogeniser Stage 2 Homogenised product Unhomogenised product Stage 1 18

19 Effect of homogenisation on fat globules in milk Natural milk Homogenized milk 10 mm 10 mm 19

20 Casein micelles and whey proteins at oilwater interface Fat globule Casein micelle Sharma (1993) nm

21 TEM of an oilwater emulsion Fat globule Casein micelle Sharma (1993) 21

22 Particle size distribution A stable emulsion Frequency (%) Particle size (um) 22

23 Particle size distribution unstable emulsion 20 Volume frequency (%) Particle size (µm) 23

24 Protein adsorption Spherical interface (emulsion or foam) Flat interface (soild surface, e.g. Stainless steel tank) 24

25 PHYSICOCHEMICAL PROPERTIES OF MILK PROTEINS CASEIN WHEY PROTEIN Strong hydrophobic regions Low cysteine High ester phosphates Little or no secondary structure Unstable in acidic conditions Micelles in native form Random coil in dissociated form Balance in hydrophobic and hydrophilic residues Contains cysteine and cystine Globular, much helical No ester phosphate Easily heat denatured Stable in mild acidic conditions Present as soluble aggregates (<10 nm) 25

26 Selective Chemical Composition and PhysicoChemical Attributes of Milk Protein Products Attribute Milk protein Sodium caseinate Whey protein concentrate concentrate Moisture (%) Total protein (N*6.38, %) Casein (%) Whey protein (%) Calcium (%) Potassium (%) Phosphorus (%) Protein state Casein micelles, Soluble aggregates Soluble whey soluble whey protein of casein proteins 26

27 Kinetics of protein adsorption Diffusioncontrolled (Ward & Tordai, 1946) dγ dt = C 0 (D/Πt) 1/2 Γ surface protein concentration, t time D diffusion coefficient 27

28 Kinetics of protein adsorption Diffusioncontrolled (Ward & Tordai, 1946) Total adsorbed protein Γ = 2C 0 (Dt/Π) 1/2 28

29 Kinetics of protein adsorption Convectioncontrolled (Walstra, 1983) Γ (t) = KC 0 d g (1+d p /d g ) 3 t C 0 is the bulk protein concentration, d g and d p are the fatglobule and proteinparticle sizes, respectively, and K is a constant 29

30 Protein load Γ = Protein at the oil droplet surface (mg) Total droplet surface area (m 2 ) 30

31 Protein load at oilwater interface Protein Protein load (mg/m 2 ) α s Casein 34.2 βcasein κcasein 4.2 Casein micelle 20 Sodium caseinate Skim milk powder 1023 βlactoglobulin

32 Factors affecting protein load Volume of oil Protein concentration Homogenisation temperature Homogenisation pressure Aggregation state of protein Pretreatment of protein, i.e. Hydrolysis or crosslinking 32

33 Types of protein adsorption Reversible and irreversible adsorption Competitive adsorption 33

34 Basic emulsion characteristics Thermodynamically unstable Possible to make kinetically stable 34

35 Creaming Emulsion 35 Flocculation Inversion Coalescence Emulsion instability Oil separation

36 Colloidal interactions Van der Waals Interactions Electrostatic interactions Polymeric steric interactions Depletion interactions Hydrophobic interactions Hydration intrations Thermal fluctuation interactions Total interaction potential 36

37 van der Waals interactions δ δ+ δ δ+ Induction δ δ+ δ δ+ Rotation δ δ+ δ δ+ Dispersion 37

38 38 Electrostatic doublelayer forces

39 Polymeric steric interactions Water Oil Surfactant Flexible polymer Globular polymer 39

40 Depletion interactions Droplet 1 Droplet 2 Particle excluded From distance r c Colloidal particle 40

41 Hydrophobic interactions oil Water Adsorbed protein Nonpolar group Clathratelike structure 41

42 Other interactions Hydration interactions Thermal fluctuation interaction Bridging flocculation Hydrodynamic interactions 42

43 DLVO Theory for colloidal stability + Electrostatic repulsion Interaction energy van der Waals attraction Total interaction 0 Distance of separation (nm) 25 43

44 Colloidal forces important for emulsion stability Type of force Character Origin Influenced by van der Waals Attraction Permanent & fluctuating dipoles Refractive index Dielectric constant Electrostatic Repulsion Surface charge Ionic strength, ph Steric Repulsion Adsorbed polymers Polymer coverage & solubility Bridging Attraction Adsorbed Polymer coverage polymers Depletion Attraction Nonadsorbed polymers Micelles Molecular weight Polymer polydispersity Polyelectrolyt es Repulsion or attraction Adsorbed polyelectrolytes Ionic strength, polyelectrolyte coverage 44

45 Colloidal forces important for emulsion stability Type of force Character Origin Influenced by Hydrophobic Attraction Waterwater affinity Hydration Repulsion Dehydration of polar group Protrusion Repulsion Reduction in movement of emulsifiers normal to the interface Solvent properties, surface hydrophobicity Emulsifier head group, crystallinity Fluidity of the layer, headgroup size, Oil/water interfacial tension Bergenstahl A & Claesson PM (1997) Surface forces in emulsion. In Food Emulsions (Friberg S & Larsson K, eds), pp 57109, Marcel Dekker, NY 45

46 Structural organisation of molecules in liquids Thermodynamics of mixing Potential energy change on mixing Entropy change on mixing Free energy change on mixing 46

47 Structural organisation of molecules in liquids Thermodynamics of mixing Immiscible liquid Miscible liquid 47

48 Overall interactions Continuous phase Dispersed phase h r 48

49 Overall interaction Attractive interactions dominate at all separations Repulsive interactions dominate at all separations Attractive interactions dominate at larger separations, but repulsive interactions dominate at short separations Repulsive interactions dominate at large separations, but attractive interactions dominate at short separation 49

50 Interparticle pair potential Energy required to bring two emulsion droplets from an infinite distance apart w (h) = w attractive (h) + w repulsive (h) 50

51 Interparticle pair potential Energy required to bring two emulsion droplets from an infinite distance apart to a surfacetosurface separation of h 51

52 Attractive interactions dominate at all separations w R 0 w Total 50 w A h (nm) 10

53 Repulsive interactions dominate at all separations w R 0 w Total 50 w A h (nm) 10

54 Attractive interactions dominate at large separations, but repulsive interactions dominate at short separations w R 0 w Total 50 w A h (nm) 10

55 Repulsive interactions dominate at large separations, but attractive interactions dominate at short separations w R 0 w Total 50 w A h (nm) 10

56 Characterisation of emulsions Emulsifying properties of proteins Emulsifying activity Emulsion capacity Surface hydrophobicity Emulsion stability Emulsion droplet size Protein load Creaming and oil separation Heat stability Emulsion rheology Emulsion microstructure 56

57 Recommeded reading Food Emulsions: Principles, practice and techniques by D.J. McClements, CRC Press, Boca Raton, USA, 1999 Food Emulsions edited by Friberg, S.E. And Larsson, L, Marvel Dekker, Inc, New York, 1997 Emulsions and Emulsion stability, edited by Sjöblom, J, Marvel Dekker, Inc, New York,

3 rd Food Emulsions Short Course November 13 th & 14 th, 2008 University of Massachusetts. David Julian McClements University of Massachusetts

3 rd Food Emulsions Short Course November 13 th & 14 th, 2008 University of Massachusetts. David Julian McClements University of Massachusetts 3 rd Food Emulsions Short Course November 13 th & 14 th, 2008 University of Massachusetts David Julian McClements University of Massachusetts Program Objectives Review Basic Principles of Emulsion Science

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Applied Surfactants: Principles and Applications

Applied Surfactants: Principles and Applications Applied Surfactants: Principles and Applications Tadros, Tharwat F. ISBN-13: 9783527306299 Table of Contents Preface. 1 Introduction. 1.1 General Classification of Surface Active Agents. 1.2 Anionic Surfactants.

More information

CHEMISTRY PHYSICAL. of FOODS INTRODUCTION TO THE. CRC Press. Translated by Jonathan Rhoades. Taylor & Francis Croup

CHEMISTRY PHYSICAL. of FOODS INTRODUCTION TO THE. CRC Press. Translated by Jonathan Rhoades. Taylor & Francis Croup Christos Ritzoulis Translated by Jonathan Rhoades INTRODUCTION TO THE PHYSICAL CHEMISTRY of FOODS CRC Press Taylor & Francis Croup Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis

More information

Emulsion Droplets: Characteristics and Importance

Emulsion Droplets: Characteristics and Importance Emulsion Droplets: Characteristics and Importance Jochen Weiss *Food Structure and Functionality Laboratories Department of Food Science & Biotechnology University of Hohenheim Garbenstrasse 21, 7599 Stuttgart,

More information

1 General Introduction

1 General Introduction 1 1 General Introduction Several classes of formulations of disperse systems are encountered in the chemical industry, including suspensions, emulsions, suspoemulsions (mixtures of suspensions and emulsions),

More information

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Lecture 3 Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Adsorption at Gas-Liquid interface Measurements of equilibrium adsorption surface tension measurements (Wilhelmy plate) surface analysis

More information

Fundamentals of Interfacial Science Adsorption of surfactants

Fundamentals of Interfacial Science Adsorption of surfactants Fundamentals of Interfacial Science This brief introduction into interfacial phenomena is thought to help users of interfacial measuring technique to better understand what instrument is most suitable

More information

THE INFLUENCE OF XANTHAN AND CREAMING AND FLOCCULATION OF AN OIL-IN-WATER EMULSION CONTAINING SOY PROTEIN

THE INFLUENCE OF XANTHAN AND CREAMING AND FLOCCULATION OF AN OIL-IN-WATER EMULSION CONTAINING SOY PROTEIN Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil Vol. 19, No. 04, pp. 411-417, October - December 2002 THE INFLUENCE OF XANTHAN AND λ-carrageenan ON THE CREAMING AND FLOCCULATION

More information

Colloid & Interface Science Case Study Model Answers

Colloid & Interface Science Case Study Model Answers Colloid & Interface Science Case Study Model Answers Distance Learning Course in Cosmetic Science Society of Cosmetic Scientists Common Features Formulations were examples of lyophobic colloidal systems

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

Colloidal Suspension Rheology Chapter 1 Study Questions

Colloidal Suspension Rheology Chapter 1 Study Questions Colloidal Suspension Rheology Chapter 1 Study Questions 1. What forces act on a single colloidal particle suspended in a flowing fluid? Discuss the dependence of these forces on particle radius. 2. What

More information

STABILITY OF VARIOUS BEVERAGE EMULSIONS

STABILITY OF VARIOUS BEVERAGE EMULSIONS Application paper (2009) 1-7 Food STABILITY OF VARIOUS BEVERAGE EMULSIONS Abstract Beverage emulsions are very common on the market as they comprise all dairy based drinks and many of the soft drinks,

More information

Protein Stabilization of Emulsions and Foams SRINIV

Protein Stabilization of Emulsions and Foams SRINIV R: Concise Reviews in Food Science E: Food Engineering & Physical Properties JFS R: Concise Reviews/Hypotheses in Food Science Protein Stabilization of Emulsions and Foams SRINIV RINIVASAN DAMODARAN ABSTRACT

More information

Emulsion Processing - Homogenization -

Emulsion Processing - Homogenization - Emulsion Processing - Homogenization - Jochen Weiss *Food Structure and Functionality Laboratories Department of Food Science & Biotechnology University of Hohenheim Garbenstrasse 21, 70599 Stuttgart,

More information

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry Colloid stability István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry www.kolloid.unideb.hu (Stability of lyophilic colloids see: macromolecular solutions) Stabilities 1.

More information

Contents XVII. Preface

Contents XVII. Preface V Preface XVII 1 General Introduction 1 1.1 Suspensions 1 1.2 Latexes 2 1.3 Emulsions 2 1.4 Suspoemulsions 3 1.5 Multiple Emulsions 3 1.6 Nanosuspensions 4 1.7 Nanoemulsions 4 1.8 Microemulsions 5 1.9

More information

Introduction to Emulsion Technology, Emulsifiers and Stability

Introduction to Emulsion Technology, Emulsifiers and Stability Introduction to Emulsion Technology, Emulsifiers and Stability By: Dr. Lisa Zychowski 1. Emulsions An emulsion is a dispersed system consisting of at least two immiscible liquid phases. The dispersed liquid

More information

R =! Aco! What is formulation?

R =! Aco! What is formulation? 1 / 36! AIChE 1rst International Conference on Upstream Engineering and Flow Assurance Houston April 1-4, 2012 2 / 36! Physico-chemical Formulation! Emulsion Properties vs Formulation! Applications! Jean-Louis

More information

1. Chemisorption is highly specific in nature. It occurs only if there is a possibility of chemical bonding between the adsorbent and the adsorbate.

1. Chemisorption is highly specific in nature. It occurs only if there is a possibility of chemical bonding between the adsorbent and the adsorbate. Question 5.1: Write any two characteristics of Chemisorption. 1. Chemisorption is highly specific in nature. It occurs only if there is a possibility of chemical bonding between the adsorbent and the adsorbate.

More information

Classification of emulsifiers and stabilizers

Classification of emulsifiers and stabilizers EMULSIONS An emulsion is a mixture of two immiscible substances whereby one substance (the dispersed phase) is dispersed in the other (the continuous phase). Example oil and water. Emulsions normally have

More information

EMULSION AND NANOEMULSION

EMULSION AND NANOEMULSION EMULSION AND NANOEMULSION SCIENCE AND TECHNOLOGY Malmö Sweden The Öresund bridge, Malmö Copenhagen EMULSION AND NANOEMULSION SCIENCE AND TECHNOLOGY Emulsion and Nanoemulsion formation Selection of emulsifiers

More information

Colloid Science Principles, methods and applications

Colloid Science Principles, methods and applications Colloid Science Principles, methods and applications Second Edition Edited by TERENCE COSGROVE School of Chemistry, University of Bristol, Bristol, UK WILEY A John Wiley and Sons, Ltd, Publication Contents

More information

Colloid stability. Lyophobic sols. Stabilization of colloids.

Colloid stability. Lyophobic sols. Stabilization of colloids. Colloid stability. Lyophobic sols. Stabilization of colloids. Lyophilic and lyophobic sols Sols (lyosols) are dispersed colloidal size particles in a liquid medium (=solid/liquid dispersions) These sols

More information

A Fourier Transform Infrared Spectroscopy Study of the Effect of Temperature on Soy Lecithin-Stabilized Emulsions

A Fourier Transform Infrared Spectroscopy Study of the Effect of Temperature on Soy Lecithin-Stabilized Emulsions A Fourier Transform Infrared Spectroscopy Study of the Effect of Temperature on Soy Lecithin-Stabilized Emulsions J.M. Whittinghill, J. Norton, and A. Proctor* Department of Food Science, University of

More information

Contents. Preface XIII

Contents. Preface XIII V Contents Preface XIII 1 General Introduction 1 1.1 Fundamental Knowledge Required for Successful Dispersion of Powders into Liquids 1 1.1.1 Wetting of Powder into Liquid 1 1.1.2 Breaking of Aggregates

More information

Colloidal dispersion

Colloidal dispersion Dispersed Systems Dispersed systems consist of particulate matter, known as the dispersed phase, distributed throughout a continuous or dispersion medium. The dispersed material may range in size from

More information

Impact of Fat and Water Crystallization on the Stability of Hydrogenated Palm Oil-in-Water Emulsions Stabilized by a Nonionic Surfactant

Impact of Fat and Water Crystallization on the Stability of Hydrogenated Palm Oil-in-Water Emulsions Stabilized by a Nonionic Surfactant Impact of Fat and Water Crystallization on the Stability of Hydrogenated Palm Oil-in-Water Emulsions Stabilized by a Nonionic Surfactant PARITA THANASUKARN, RUNGNAPHAR PONGSAWATMANIT, AND D. JULIAN MCCLEMENTS*,

More information

Structural Design Principles for Improved Food Performance: Nanolaminated Biopolymer Structures in Foods

Structural Design Principles for Improved Food Performance: Nanolaminated Biopolymer Structures in Foods Chapter 1 Structural Design Principles for Improved Food Performance: Nanolaminated Biopolymer Structures in Foods Downloaded via 148.251.232.83 on March 30, 2019 at 10:15:45 (UTC). See https://pubs.acs.org/sharingguidelines

More information

Emulfeel SSC Plus INCI NAME CAS # EINECS (I)/ELINCS (L) C12-15 Alkyl Benzoate (I) Cetearyl Alcohol (I)

Emulfeel SSC Plus INCI NAME CAS # EINECS (I)/ELINCS (L) C12-15 Alkyl Benzoate (I) Cetearyl Alcohol (I) Emulfeel SSC Plus DESCRIPTION Lipid structuring in the presence of surfactants and polymer COMPOSITION INCI NAME CAS # EINECS (I)/ELINCS (L) C12-15 Alkyl Benzoate 68411-27-8 270-112-4 (I) Cetearyl Alcohol

More information

Chapter 7. Pickering Stabilisation ABSTRACT

Chapter 7. Pickering Stabilisation ABSTRACT Chapter 7 Pickering Stabilisation ABSTRACT In this chapter we investigate the interfacial properties of Pickering emulsions. Based upon findings that indicate these emulsions to be thermodynamically stable,

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

Nanoemulsions versus microemulsions: terminology, differences, and similarities

Nanoemulsions versus microemulsions: terminology, differences, and similarities Soft Matter View Article Online / Journal Homepage / Table of Contents for this issue Dynamic Article Links C < Cite this: Soft Matter, 2012, 8, 1719 www.rsc.org/softmatter Nanoemulsions versus microemulsions:

More information

Module 4: "Surface Thermodynamics" Lecture 21: "" The Lecture Contains: Effect of surfactant on interfacial tension. Objectives_template

Module 4: Surface Thermodynamics Lecture 21:  The Lecture Contains: Effect of surfactant on interfacial tension. Objectives_template The Lecture Contains: Effect of surfactant on interfacial tension file:///e /courses/colloid_interface_science/lecture21/21_1.htm[6/16/2012 1:10:36 PM] Surface Thermodynamics: Roles of Surfactants and

More information

Studying the Effect of Steric Layer Thickness on Emulsion Stability

Studying the Effect of Steric Layer Thickness on Emulsion Stability Studying the Effect of Steric Layer Thickness on Emulsion Stability Dr Tim J. Wooster, Professor Mary A. Augustin, Food Science Australia (CSIRO) of Chemistry, Monash University, Victoria 3800, Australia

More information

NOVEL EMULSION-BASED DELIVERY SYSTEMS

NOVEL EMULSION-BASED DELIVERY SYSTEMS NOVEL EMULSION-BASED DELIVERY SYSTEMS A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Jian Zhang IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

Edible Nanoemulsions: Fabrication, Properties, and Functional Performance

Edible Nanoemulsions: Fabrication, Properties, and Functional Performance University of Massachusetts Amherst From the SelectedWorks of D. Julian McClements 2011 Edible Nanoemulsions: Fabrication, Properties, and Functional Performance D. Julian McClements, University of Massachusetts

More information

Module 8: "Stability of Colloids" Lecture 37: "" The Lecture Contains: DLVO Theory. Effect of Concentration. Objectives_template

Module 8: Stability of Colloids Lecture 37:  The Lecture Contains: DLVO Theory. Effect of Concentration. Objectives_template The Lecture Contains: DLVO Theory Effect of Concentration file:///e /courses/colloid_interface_science/lecture37/37_1.htm[6/16/2012 1:02:12 PM] Studying the stability of colloids is an important topic

More information

COLLOID CHEMISTRY MD. KHAIRUL ISLAM

COLLOID CHEMISTRY MD. KHAIRUL ISLAM COLLOID CHEMISTRY MD. KHAIRUL ISLAM HISTORICAL BACKGROUND Thomas Graham (1861) observed that crystalline substances such as sugar, urea, and sodium chloride passed through the membrane, while others like

More information

Intermolecular and Surface Forces

Intermolecular and Surface Forces Intermolecular and Surface Forces ThirH FHitinn '' I I 111 \J& LM* КтЛ I Km I W I 1 Jacob N. Israelachvili UNIVERSITY OF CALIFORNIA SANTA BARBARA, CALIFORNIA, USA AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

Emulsions, Microemulsions and Foams (Part I)

Emulsions, Microemulsions and Foams (Part I) NPTEL Chemical Engineering Interfacial Engineering Module 6: Lecture 1 Emulsions, Microemulsions and Foams (Part I) Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati,

More information

Monolayers. Factors affecting the adsorption from solution. Adsorption of amphiphilic molecules on solid support

Monolayers. Factors affecting the adsorption from solution. Adsorption of amphiphilic molecules on solid support Monolayers Adsorption as process Adsorption of gases on solids Adsorption of solutions on solids Factors affecting the adsorption from solution Adsorption of amphiphilic molecules on solid support Adsorption

More information

PHRC 4110 Pharmaceutics I

PHRC 4110 Pharmaceutics I CO01: Use interpretive tools for proper data handling CO01.01: Describe basic mathematics and statistic to interpret pharmaceutical data CO01.02: Work with exponents, powers, roots, logarithms, and antilogarithms

More information

Kinetic And Oxidative Stability Of Oil-In-Water Emulsions Prepared With Denatured Soy Whey Protiens And Soy Soluble Polysaccharides

Kinetic And Oxidative Stability Of Oil-In-Water Emulsions Prepared With Denatured Soy Whey Protiens And Soy Soluble Polysaccharides Ryerson University Digital Commons @ Ryerson Theses and dissertations 1-1-2013 Kinetic And Oxidative Stability Of Oil-In-Water Emulsions Prepared With Denatured Soy Whey Protiens And Soy Soluble Polysaccharides

More information

Preparation and Characterization of Oil-in-Water and Water-in-Oil Emulsions. Prepared. For

Preparation and Characterization of Oil-in-Water and Water-in-Oil Emulsions. Prepared. For 1 Preparation and Characterization of Oil-in-Water and Water-in-Oil Emulsions Prepared For Dr. Reza Foudazi, Ph.D. Chemical and Materials Engineering New Mexico State University By Muchu Zhou May 10, 2016

More information

This is a repository copy of Influence of ph value and locust bean gum concentration on the stability of sodium caseinate-stabilized emulsions.

This is a repository copy of Influence of ph value and locust bean gum concentration on the stability of sodium caseinate-stabilized emulsions. This is a repository copy of Influence of ph value and locust bean gum concentration on the stability of sodium caseinate-stabilized emulsions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/85091/

More information

SIMULATION OF DYNAMICS OF ADSORTION OF MIXED PROTEIN-SURFACTANT ON A BUBBLE SURFACE

SIMULATION OF DYNAMICS OF ADSORTION OF MIXED PROTEIN-SURFACTANT ON A BUBBLE SURFACE SIMULATION OF DYNAMICS OF ADSORTION OF MIXED PROTEIN-SURFACTANT ON A BUBBLE SURFACE Denny Vitasari 1*, Paul Grassia 2, Peter Martin 2 1 Chemical Engineering Department, Universitas Muhammadiyah Surakarta

More information

Modern Aspects of Emulsion Science

Modern Aspects of Emulsion Science Modern Aspects of Emulsion Science Edited by Bernard P. Binks Department of Chemistry, University ofhull, UK THE ROYAL SOCIETY OF CHEMISTRY Information Services Chapter 1 Emulsions - Recent Advances in

More information

DESIGN OF POLYMERIC DISPERSANTS FOR LOW AND NO VOC APPLICATIONS

DESIGN OF POLYMERIC DISPERSANTS FOR LOW AND NO VOC APPLICATIONS DESIGN OF POLYMERIC DISPERSANTS FOR LOW AND NO VOC APPLICATIONS Jeff Norris, Tom Annable, Matt Dunn, Antonio Lopez Lubrizol Advanced Materials, Inc. USA PIGMENT DISPERSION AND STABILIZATION Polymeric dispersants

More information

COLLOIDAL SOLUTIONS. Department of Medical Chemistry Pomeranian Medical University

COLLOIDAL SOLUTIONS. Department of Medical Chemistry Pomeranian Medical University COLLOIDAL SOLUTIONS Department of Medical Chemistry Pomeranian Medical University 1 COMPONENTS OF THE SYSTEM -chemicals which create the system. They create different type of mixtures - which makes the

More information

NSW Higher School Certificate Senior Science 9.2 Lifestyle Chemistry

NSW Higher School Certificate Senior Science 9.2 Lifestyle Chemistry NSW Higher School Certificate Senior Science 9.2 Lifestyle Chemistry Section 2 Cleaning Products 9.2 Lifestyle Chemistry Section 2 ::: Cleaning Products 9.2.2 A wide range of cleaning products are made

More information

Protein-Stabilized Emulsions and Whipped Emulsions: Aggregation and Rheological Aspects

Protein-Stabilized Emulsions and Whipped Emulsions: Aggregation and Rheological Aspects ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 6, 28 Protein-Stabilized Emulsions and Whipped Emulsions: Aggregation and Rheological Aspects Eric Dickinson*, Brent S. Murray and Kirsty E. Allen

More information

INVESTIGATING THE KINETICS OF WATER-IN-CRUDE OIL EMULSION STABILITY

INVESTIGATING THE KINETICS OF WATER-IN-CRUDE OIL EMULSION STABILITY INVESTIGATING THE KINETICS OF WATER-IN-CRUDE OIL EMULSION STABILITY Bamikole J. Adeyemi and Aliyu A. Sulaimon Department of Petroleum Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh,

More information

Stability of Sub-Micron Oil-in-Water Emulsions Produced by Ultra High Pressure Homogenization and Sodium Caseinate as Emulsifier

Stability of Sub-Micron Oil-in-Water Emulsions Produced by Ultra High Pressure Homogenization and Sodium Caseinate as Emulsifier A publication of 1813 CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

Properties of Emulsions Based In Soybean Oil Stabilized By Different Proteins

Properties of Emulsions Based In Soybean Oil Stabilized By Different Proteins Properties of Emulsions Based In Soybean Oil Stabilized By Different Proteins Vanya Gandova 1, Dessislav Balev 2 1 Inorganic and Physical Chemistry Department, University of Food Technologies, Plovdiv,

More information

Protein separation and characterization

Protein separation and characterization Address:800 S Wineville Avenue, Ontario, CA 91761,USA Website:www.aladdin-e.com Email USA: tech@aladdin-e.com Email EU: eutech@aladdin-e.com Email Asia Pacific: cntech@aladdin-e.com Protein separation

More information

CHAPTER :COLLOIDS. Subject: Physical Pharmacy. Subject code:phcy102

CHAPTER :COLLOIDS. Subject: Physical Pharmacy. Subject code:phcy102 CHAPTER :COLLOIDS Subject: Physical Pharmacy Subject code:phcy102 INSTRUCTOR Dr. Jagadeesh G Hiremath Assistant Professor in Pharmaceutics College of Pharmacy & Nursing University of Nizwa P.O. Box 33,

More information

DLVO Theory and Non-DLVO Forces

DLVO Theory and Non-DLVO Forces NPTEL Chemical Engineering Interfacial Engineering Module 3: Lecture 5 DLVO Theory and Non-DLVO Forces Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati, Guwahati 781039

More information

Part 2: Water in Foods

Part 2: Water in Foods FDSC500 (Water) Part 2: Water in Foods 1. The structure of water and solutions a) Bulk Properties of Solutions Probably the main bulk property of a solution we can readily vary in foods is ph (=-log 10

More information

BIBC 100. Structural Biochemistry

BIBC 100. Structural Biochemistry BIBC 100 Structural Biochemistry http://classes.biology.ucsd.edu/bibc100.wi14 Papers- Dialogue with Scientists Questions: Why? How? What? So What? Dialogue Structure to explain function Knowledge Food

More information

Dispersion systems. Dispersion system = dispersed phase in a continuum phase (medium) s/l, l/l,... According to the size of the dispersed phase:

Dispersion systems. Dispersion system = dispersed phase in a continuum phase (medium) s/l, l/l,... According to the size of the dispersed phase: Dispersion systems 1/20 Dispersion system = dispersed phase in a continuum phase (medium) s/l, l/l,... According to the size of the dispersed phase: coarse dispersion (suspension), > 1 µm colloid 1 µm

More information

Pickering Stabilization of Oil-Water Interfaces by Heated B-lactoglobulin/Pectin Particles

Pickering Stabilization of Oil-Water Interfaces by Heated B-lactoglobulin/Pectin Particles Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations 2013 Pickering Stabilization of Oil-Water Interfaces by Heated B-lactoglobulin/Pectin Particles Laura Kathryn Zimmerer Purdue

More information

Guidelines for the characterization of dispersion stability

Guidelines for the characterization of dispersion stability Provläsningsexemplar / Preview TECHNICAL REPORT ISO/TR 13097 First edition 2013-06-15 Guidelines for the characterization of dispersion stability Lignes directrices pour la caractérisation de la stabilité

More information

Solvent does the dissolving (acetone) Solute the substance being dissolved (Styrofoam ) Soluble able to be dissolved

Solvent does the dissolving (acetone) Solute the substance being dissolved (Styrofoam ) Soluble able to be dissolved Solvent does the dissolving (acetone) Solute the substance being dissolved (Styrofoam ) Soluble able to be dissolved Like dissolves Like Ionic & polar compounds dissolve each other. Nonpolar dissolves

More information

Interfacial Phenomena

Interfacial Phenomena Physical Pharmacy Lecture 4 Interfacial Phenomena Assistant Lecturer in Pharmaceutics Overview Liquid interfaces Surface tension Interfacial tension Surface free energy Measurement of tensions Spreading

More information

MIXTURES AND DISSOLVING. CE/Honors Chemistry Unit 10

MIXTURES AND DISSOLVING. CE/Honors Chemistry Unit 10 MIXTURES AND DISSOLVING CE/Honors Chemistry Unit 10 TYPES OF MIXTURES Solution: homogeneous mixture of two or more substances in a single phase Two parts: solvent (greater amt) and solute Does not separate

More information

Interfacial forces and friction on the nanometer scale: A tutorial

Interfacial forces and friction on the nanometer scale: A tutorial Interfacial forces and friction on the nanometer scale: A tutorial M. Ruths Department of Chemistry University of Massachusetts Lowell Presented at the Nanotribology Tutorial/Panel Session, STLE/ASME International

More information

Stability of colloidal systems

Stability of colloidal systems Stability of colloidal systems Colloidal stability DLVO theory Electric double layer in colloidal systems Processes to induce charges at surfaces Key parameters for electric forces (ζ-potential, Debye

More information

Surface interactions part 1: Van der Waals Forces

Surface interactions part 1: Van der Waals Forces CHEM-E150 Interfacial Phenomena in Biobased Systems Surface interactions part 1: Van der Waals Forces Monika Österberg Spring 018 Content Colloidal stability van der Waals Forces Surface Forces and their

More information

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

EMULSIFYING PROPERTIES OF MILK PROTEINS INFLUENCED BY ULTRASOUND PROCESS

EMULSIFYING PROPERTIES OF MILK PROTEINS INFLUENCED BY ULTRASOUND PROCESS EMULSIFYING PROPERTIES OF MILK PROTEINS INFLUENCED BY ULTRASOUND PROCESS G.F. Furtado 1a, L. Consoli 1b, M.D. Hubinger 1c, R.L. Cunha 1d 1- Department of Food Engineering University of Campinas Zip Code:

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

Colloid stability. Lyophobic sols. Stabilization of colloids. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry

Colloid stability. Lyophobic sols. Stabilization of colloids. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Colloid stability. Lyophobic sols. Stabilization of colloids. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Lyophilic and lyophobic sols Sols (lyosols) are dispersed colloidal

More information

CHEMISTRY Ch. 14 Notes: Mixtures and Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

CHEMISTRY Ch. 14 Notes: Mixtures and Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. CHEMISTRY Ch. 14 Notes: Mixtures and Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 14.1 notes I. Types of mixtures (mixture a physical blend of substances)

More information

Section 1 What Is a Solution? Chapter 13. Mixtures

Section 1 What Is a Solution? Chapter 13. Mixtures Mixtures Mixtures can either be heterogeneous or homogeneous. The particles of a heterogeneous mixture are large enough to see under a microscope. In a homogeneous mixture, however, the particles are molecule-sized,

More information

Heat Capacity of Water A) heat capacity amount of heat required to change a substance s temperature by exactly 1 C

Heat Capacity of Water A) heat capacity amount of heat required to change a substance s temperature by exactly 1 C CHEMISTRY Ch. 13 Notes: Water and Its Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 13.1 Notes I. Water Molecule Characteristics POLAR molecule (a

More information

Critical Micellization Concentration Determination using Surface Tension Phenomenon

Critical Micellization Concentration Determination using Surface Tension Phenomenon Critical Micellization Concentration Determination using Phenomenon 1. Introduction Surface-active agents (surfactants) were already known in ancient times, when their properties were used in everyday

More information

Max-Planck-Institut für Kolloid und Grenzflächenforschung Abteilung Biomaterialien

Max-Planck-Institut für Kolloid und Grenzflächenforschung Abteilung Biomaterialien Max-Planck-Institut für Kolloid und Grenzflächenforschung Abteilung Biomaterialien Dynamic and Equilibrium Adsorption Behaviour of ß-lactoglobulin at the Solution/Tetradecane Interface: Effect of Solution

More information

Surfactants. Oil does not mix with water; surface tension. Document prepared by Hervé This le 27th December 2010

Surfactants. Oil does not mix with water; surface tension. Document prepared by Hervé This le 27th December 2010 Surfactants Document prepared by Hervé This le 27th December 2010 Oil does not mix with water; surface tension Why do we use soap in order to wash one's hands? Why do we pub soap in a cloth washing machine?

More information

Physical Final Exam

Physical Final Exam Physical 2 2014 Final Exam 1) When benzoic acid is added to an oil and water emulsion it will distribute itself as follows: a) dissolve only in water b) dissolve only in oil c) it will disperse in both

More information

Theory of Flocculation Reprint with Authorization by David L. Forbes

Theory of Flocculation Reprint with Authorization by David L. Forbes TECHNICAL PUBLICATION INFORMATION & STRATEGY FOR THE FACILITY MANAGER Theory of Flocculation Reprint with Authorization by David L. Forbes Introduction The efficiency of most solid/liquid separation processes

More information

Water and Aqueous Systems

Water and Aqueous Systems Water and Aqueous Systems The Water Molecule: a Review Water is a simple tri-atomic molecule, H 2 O Each O-H bond is highly polar, because of the high electronegativity of the oxygen (N, O, F, and Cl have

More information

FOOD MATRIX ARRANGEMENTS BASED ON WATER MOLECULE INTERACTION

FOOD MATRIX ARRANGEMENTS BASED ON WATER MOLECULE INTERACTION Original scientific paper UDC 546.216:613.2 FOOD MATRIX ARRANGEMENTS BASED ON WATER MOLECULE INTERACTION Tadeusz Matuszek 1* 1 Mechanical Engineering Faculty, Gdansk University of Technology, 11/12 G.

More information

Module 8: "Stability of Colloids" Lecture 38: "" The Lecture Contains: Calculation for CCC (n c )

Module 8: Stability of Colloids Lecture 38:  The Lecture Contains: Calculation for CCC (n c ) The Lecture Contains: Calculation for CCC (n c ) Relation between surface charge and electrostatic potential Extensions to DLVO theory file:///e /courses/colloid_interface_science/lecture38/38_1.htm[6/16/2012

More information

Chemistry-STD-XII Science Question Bank with Solution Surface Chemistry

Chemistry-STD-XII Science Question Bank with Solution Surface Chemistry Adsorption Question 1 Chemistry-STD-XII Science Question Bank with Solution Surface Chemistry Question 2 Question 3 List conditions optimum for enzymatic reactions. Conditions optimum for enzymatic reactions

More information

COLLOIDAL DISPERSIONS

COLLOIDAL DISPERSIONS COLLOIDAL DISPERSIONS Marlyn D. Laksitorini Lab. of Physical Pharmacy and Biopharmaceutics Dept.Pharmaceutics Gadjah Mada School of Pharmacy References Overview 1. Type of Dispersion 2. Example of Colloidal

More information

Particle-stabilized foams

Particle-stabilized foams Particle-stabilized foams Brent S. Murray, Bernie P. Binks*, Eric Dickinson, Zhiping Du, Rammile Ettelaie & Thomas Kostakis Food Colloids Group Procter Department of Food Science, University of Leeds,

More information

Solid-liquid interface

Solid-liquid interface Lecture Note #9 (Spring, 2017) Solid-liquid interface Reading: Shaw, ch. 6 Contact angles and wetting Wetting: the displacement from a surface of one fluid by another. A gas is displaced by a liquid at

More information

The University of Jordan. Pharmaceutical Technology II ( ) Office number . Office hours Day/Time Sunday Monday Tuesday Wednesday Thursday

The University of Jordan. Pharmaceutical Technology II ( ) Office number  . Office hours Day/Time Sunday Monday Tuesday Wednesday Thursday The University of Jordan Faculty of Pharmacy Program: Pharmacy Department of Pharmaceutics and Pharmaceutical Technology 2013/2014, 1 st semester Pharmaceutical Technology II (1202333) Credit hours 2 Level

More information

Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants

Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants Fuquan Tu, Bum Jun Park and Daeyeon Lee*. Description of the term notionally swollen droplets When particles are adsorbed

More information

FLOW ASSURANCE: DROP COALESCENCE IN THE PRESENCE OF SURFACTANTS

FLOW ASSURANCE: DROP COALESCENCE IN THE PRESENCE OF SURFACTANTS FLOW ASSURANCE: DROP COALESCENCE IN THE PRESENCE OF SURFACTANTS Vishrut Garg and Osman A. Basaran Davidson School of Chemical Engineering Purdue University With special thanks to: Krish Sambath (now at

More information

Interfacial tension, measurement, effect of surfactant on oil/water interface

Interfacial tension, measurement, effect of surfactant on oil/water interface Interfacial tension, measurement, effect of surfactant on oil/water interface infusion mounting, solutions prepared from Na-oleate (M = 304,5), NaDS (Na dodecyl sulfate, M=288,4), NaDBS (Na dodecyl benzene

More information

::: Application Report

::: Application Report Interfacial Shear Rheology of Coffee Samples Explore the secrets of a perfect crema! This application report presents typical measurements on the film formation and on the interfacial rheological properties

More information

Stabilization of Model Beverage Cloud Emulsions Using Protein Polysaccharide Electrostatic Complexes Formed at the Oil Water Interface

Stabilization of Model Beverage Cloud Emulsions Using Protein Polysaccharide Electrostatic Complexes Formed at the Oil Water Interface Stabilization of Model Beverage Cloud Emulsions Using Protein Polysaccharide Electrostatic Complexes Formed at the Oil Water Interface THEPKUNYA HARNSILAWAT, RUNGNAPHAR PONGSAWATMANIT, AND DAVID J. MCCLEMENTS*,

More information

Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields

Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL 19, 211 Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields Hye-Jin Ahn and Ki-Won

More information

Chapter-2 (Page 22-37) Physical and Chemical Properties of Water

Chapter-2 (Page 22-37) Physical and Chemical Properties of Water Chapter-2 (Page 22-37) Physical and Chemical Properties of Water Introduction About 70% of the mass of the human body is water. Water is central to biochemistry for the following reasons: 1- Biological

More information

Lec.1 Chemistry Of Water

Lec.1 Chemistry Of Water Lec.1 Chemistry Of Water Biochemistry & Medicine Biochemistry can be defined as the science concerned with the chemical basis of life. Biochemistry can be described as the science concerned with the chemical

More information

Properties of Solutions

Properties of Solutions Properties of Solutions The States of Matter The state a substance is in at a particular temperature and pressure depends on two antagonistic entities: The kinetic energy of the particles The strength

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

Application of Rheology in Food Engineering; Concentrated Food Emulsions and Dispersions

Application of Rheology in Food Engineering; Concentrated Food Emulsions and Dispersions 6 Application of Rheology in Food Engineering; Concentrated Food Emulsions and Dispersions 6.1 Introduction Traditionally, foods have been classified as hard solids, soft solids and liquids. Some examples

More information