Conference Proceedings Paper Vortex Motion State of the Dry Atmosphere with Nonzero Velocity Divergence

Size: px
Start display at page:

Download "Conference Proceedings Paper Vortex Motion State of the Dry Atmosphere with Nonzero Velocity Divergence"

Transcription

1 Conference Proceedings Paper Vortex Motion State of the Dry Atmosphere with Nonzero Velocity Divergence Robert Zakinyan Arthur Zakinyan* Roman Ryzhkov and Julia Semenova Published: 17 July 017 Department of General and Theoretical Physics Institute of Mathematics and Natural Sciences North Caucasus Federal University 1 Pushkin Street Stavropol Russia; zakinyan@mailru (RZ); romandesignllc@gmailcom (RR); brilliance_wave@mailru (JS) * Correspondence: zakinyanar@mailru; Tel: Abstract: In the present work an analytical model of the vortex motion elementary state of the dry atmosphere with nonzero air velocity divergence is constructed It is shown that the air parcel moves along the open curve trajectory of spiral geometry It is found that for the case of nonzero velocity divergence the atmospheric elementary state presents an unlimited sequence of vortex cells transiting from one to another On the other hand at zero divergence the elementary state presents a pair of connected vortices and the trajectory is a closed curve If in some cells the air parcel moves upward then in the adjacent cells it will move downward and vice versa At reaching the cell middle height the parcel reverses the direction of rotation When parcel moves upward the motion is of anticyclonic type in the lower part of the vortex cell and of the cyclonic type in the upper part When parcel moves downward the motion is of anticyclonic type in the upper part of the vortex cell and of the cyclonic type in the lower part Keywords: atmosphere dynamics equation; circulation of the atmosphere vortex state of the atmosphere velocity divergence velocity vortex 1 Introduction It is well known that the geostrophic state is a two-dimensional basic state for large scale atmospheric motion [1 3] But the atmospheric motions are three-dimensional In the geostrophic state the motion cannot be convergence or divergence and there is no vertical motion [4 5] Because of surface frictional force wind blows and the motion is certainly upward or downward due to the continuous equation Spiral structures of vortices in the atmosphere in different scales take place in these cases Exact solutions of the Navier-Stokes equations for a three-dimensional vortex have been found out [6 8] of greater attracting is Sullivan's two-cell vortex solution because the flow not only spirals in toward the axis and out along it but also has a region of reverse flow near the axis A theoretical model of the vortex state of the atmosphere has been elaborated in [9 10] where the three-dimensional atmospheric vortex motion has been analyzed by considering dynamical equation thermodynamical equation including Coriolis force pressure gradient force and viscous force It should be noted that a nondivergent motion has been studied in [9 10] In this paper we further develop the theoretical model of the vortex motion state of the atmosphere The main goal of the study is to take proper account of the divergence term in the equations of motion Main Equations In the local coordinate system the atmospheric state is described by the set of equations [1 3]: The nd International Electronic Conference on Atmospheric Sciences (ECAS 017) July 017; Sciforum Electronic Conference Series Vol 017

2 The nd International Electronic Conference on Atmospheric Sciences (ECAS 017) July 017; Sciforum Electronic Conference Series Vol 017 u u u u 1 p + u + + w = +ν u+ ω0z ω0yw y ρ v v (1) v v v v 1 p + u + + w = +ν ω u y ρ y v v 0z () 1 p + u + + w = g+ν w+ ω0 yu y ρ v (3) Δ T + v Δ T =κ Δ T (4) u + v + = α( γa γ ) w+α u ΔT +α ΔT +αw ΔT y y v (5) Here Δ T = T T ; T T are the air temperatures of disturbed and undisturbed atmosphere correspondingly The atmosphere statics equation: p p = 0 = 0 y Let the atmospheric parameters have the form: = + T T( z) ( xyzt) p p z p xyzt 1 p g = 0 ρ Δ = Δ +θ Δ T =Δ0T Δγ z Δγ = γa γ The air density has the form ρ = ρ( 1 αδ T ) Neglecting the advective terms and proceeding to the dimensionless quantities the set of equations can be written as u p u u u = Ro Ro y v w (6) L H v p 1 1 v v v = u t y Ro L x y z (7) p 1 1 w w w = + Ri Δ T + u+ + + Ro H y (8) 1 θ = w + θ + θ + θ Pr y (9) Here v u + + =α γa γa y Differentiating by y and x and subtracting Eq (1) from Eq () we get Ω = D + Ω+ Ro Ro y L Hw (10) H

3 The nd International Electronic Conference on Atmospheric Sciences (ECAS 017) July 017; Sciforum Electronic Conference Series Vol v u u v Ω= D = + y y is the vertical vorticity and horizontal divergence correspondingly Analogously differentiating and summing the Eqs (6) and (7) we get 5 Thus we have D p p Ω 1 1 = D x y RoL RoH Ω D = Ω+ RoL RoH y (11) D Ω p p 1 1 = + + D Ro L x y RoH (1) p 1 1 = + Ri θ+ w+ u Ro H (13) 1 θ = w + θ (14) Pr v u + + =αh ( γa γa) w y (15) Consider the atmospheric stationary state Neglecting the advective terms the Eqs (11) (15) can be transformed: D 1 1 = Ω+ Ro Ro L H y (16) Ω p p 1 1 = + + D Ro L x y RoH (17) p 1 1 0= + Ri θ+ w+ u Ro H (18) 0 = w + θ (19) D+ =αh( γa γa) w (0) Excluding Ω D θ p we get the required partial differential equation: Where 3 ( Ra) w u ( Ta) w Ro x y H ( A a)( Ta) w w αh γ γ + = Ro Ro Ro y H H L (1)

4 The nd International Electronic Conference on Atmospheric Sciences (ECAS 017) July 017; Sciforum Electronic Conference Series Vol κ H N Ra = Ri = ν U Ra is the Rayleigh number Ta is the Taylor number Ta = () Ro L Solution of the Main Equations Assume that w has the form: w = X ( x) Y( y) W( z) X ( x) = cos kx Y( y) = cos ky W ( z ) W ( n z ) Substituting Eq (3) into Eq (1) we get 3 k Ra k + n n Taw+ + u+ Ro H y = 0 sin (3) ( ) 0 sin cos cos k + n W kn kx ky nz Ro H αh ( γa γ a) ( k + n ) + Ta n cos kx cos ky cos( n z) = 61 6 We seek the expression of u in the form: Substituting we get kn cos kx sin ky cos( n z) Ro Ro L H u = A sin kx cos ky + B cos kx sin ky + C cos kx cos ky cos n z Ro 3 0 k Ra n Ta k + n W cos kx cos ky sin nz k( ka n )( k + n ) sin kx cos ky cos ( nz) Ro H 0 k k + n B + cos sin cos Ro Ro kn W kx ky n z H L H 63 From here we have A a Ta k k + n C+αH γ γ k + n + n Ro H 3 k + n + n Ta Racr = k cos kx cos ky cos n z = 0 n n A = B = k Ro L k k + n 64 Finally Ro H ( A a) 1 n Ta ( n C = αh γ γ + + k k k n + ) 4

5 The nd International Electronic Conference on Atmospheric Sciences (ECAS 017) July 017; Sciforum Electronic Conference Series Vol 017 u n n = sin kx cos ky cos kx sin ky + C cos kx cos ky cos nz W 0 k Ro L k( k + n ) v = cos kx sin ky αh ( γa γa) sin ( nz ) n cos( n z) + k n n cos kx + C sin ky cos ky cos nz k Ro L k( k n + ) (4) (5) w W kx ky n z = 0 (6) cos cos sin Figure 1 shows the velocity field in accordance with Eqs (4) (6) It is seen that the air parcel motion have a three-dimensional spiral structure Figure 1 Velocity field of the vortex motion Figure shows the calculated air parcel trajectory in accordance with Eqs (4) (6) 69 5

6 The nd International Electronic Conference on Atmospheric Sciences (ECAS 017) July 017; Sciforum Electronic Conference Series Vol (b) (a) Figure The air parcel trajectory (a) At non-zero divergence; (b) The divergence is equal to zero As is seen from Figure a the air parcel trajectory is an unclosed curve In other words the parcel passes from one vortex cell to another Thus one can see that the basic state of the atmosphere in the case of non-zero divergence is a sequence of connected vortex cells On the other hand at zero divergence the air parcel trajectory is a closed curve and the atmospheric state is a pair of connected vortices (Figure b) The expression for the velocity divergence can be obtained from Eq (0): D =αh( γa γa) w = cos kx cos ky αh γa γa sin nz n cos nz The expression for the temperature disturbance can be obtained from Eq (19): θ= cos kx cos ky sin nz k + n The expression for the pressure disturbance can be obtained from Eq (18): ( + ) k n Ri p = cos kx cos ky cos( n z) + k + n n n n sin kx cos ky sin ky C cos ky cos kx + k Ro L k( k + n ) 79 ( n z) sin Ro H n The expression for the vorticity can be obtained from Eq (17): ( k + n ) RoL Ri Ω= k cos kx cos ky cos( n z) + n k + n 6

7 The nd International Electronic Conference on Atmospheric Sciences (ECAS 017) July 017; Sciforum Electronic Conference Series Vol 017 n n k Ro L sin kx cos ky sin ky C cos ky cos kx + k Ro L k( k + n ) sin ( n z) Ro H n + ( ) cos cos sin cos Ro L 0 A a W k + n kx ky α H γ γ n z n n z RoL k cos kx cos ky sin ( n z) RoH Figures 3 and 4 show the fields of vorticity temperature divergence and pressure at the altitudes z = 05 (lower part of the vortex cell) and z = 15 (upper part of the vortex cell) correspondingly Ω (a) θ (b) D p (c) (d) Figure 3 The calculated fields of vorticity (a) temperature (b) divergence (c) and pressure (d) in lower part of the vortex cell (at z = 05 ) 7

8 The nd International Electronic Conference on Atmospheric Sciences (ECAS 017) July 017; Sciforum Electronic Conference Series Vol 017 Ω (a) θ (b) D p (c) (d) Figure 4 The calculated fields of vorticity (a) temperature (b) divergence (c) and pressure (d) in upper part of the vortex cell (at z = 15 ) As is seen if the motion field in the lower part of the cell has a cyclonic vorticity then in the upper part it has an anticyclonic vorticity and vice versa The cyclonic center is heated; the anticyclonic center is cooled The temperature field correlates with the pressure field 4 Conclusions In the present study the mathematical model of the stationary three-dimensional vortex state of the atmosphere at nonzero divergence has been developed The expressions for the vortex velocity components have been derived It is shown that at zero divergence the elementary state of the atmosphere presents a pair of connected vortices and the air parcel trajectory is a closed curve For the case of nonzero velocity divergence the atmospheric elementary state presents an unlimited sequence of vortex cells transiting from one to another and the air parcel trajectory is an unclosed curve The pressure isolines are unclosed at nonzero divergence The centers of cyclonic vorticity velocity divergence and temperature maximum in the lower part of the cell coincide with the pressure ridge The center of anticyclonic vorticity in the upper part of the cell coincides with the pressure hollow Author Contributions: Robert Zakinyan planned and supervised the research co-performed the theoretical analysis co-wrote the paper; Arthur Zakinyan co-performed the theoretical analysis co-wrote the paper; Roman Ryzhkov and Julia Semenova co-performed the theoretical analysis Conflicts of Interest: The authors declare no conflict of interest 8

9 The nd International Electronic Conference on Atmospheric Sciences (ECAS 017) July 017; Sciforum Electronic Conference Series Vol ferences 1 Holton JR An Introduction to Dynamic Meteorology; Elsevier 004 Gill AE Atmosphere-Ocean Dynamics; Academic Press: San Diego CA USA Pedlosky J Geophysical Fluid Dynamics; Springer: New York NY USA Lilly DK The development and maintenance of rotation in convective storms In: Intense Atmospheric Vortices; Bengtssoon L Lighthill J Eds; Springer-Verlag: Berlin Germany Kurihara Y Influence of environmental condition on the genesis of tropic storm In: Intense Atmospheric Vortices; Bengtssoon L Lighthill J Eds; Springer-Verlag: Berlin Germany Burgers JM Application of a model system to illustrate some point of the statistical theory of free turbulence Proc Acad Sci Amsterdam Burgers JM Mathematical model illustrating the theory of turbulence Adv Appl Mech Sullivan R D A two-cell vortex solution of the Navier-Stokes equation J Aero/Space Sci Shida L Guojun X Shikuo L Fuming L The 3D spiral structure pattern in the atmosphere Adv Atmos Sci Shida L Shikuo L Zuntao F Guojun X Fuming L Chinese J Geophys by the authors; licensee MDPI Basel Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( 9

Proceedings Vortex Motion State of the Dry Atmosphere with Nonzero Velocity Divergence

Proceedings Vortex Motion State of the Dry Atmosphere with Nonzero Velocity Divergence Proceedings Vortex Motion State of the Dry Atmosphere with Nonzero Velocity Divergence Robert Zakinyan, Arthur Zakinyan *, Roman Ryzhkov and Julia Semenova Department of General and Theoretical Physics,

More information

Vortex Motion State of the Dry Atmosphere with Nonzero Velocity Divergence

Vortex Motion State of the Dry Atmosphere with Nonzero Velocity Divergence atmosphere Article Vortex Motion State of Dry Atmosphere with Nonzero Velocity Divergence Robert Zakinyan, Arthur Zakinyan * ID, Roman Ryzhkov Julia Semenova Department of General Theoretical Physics,

More information

Class exercises Chapter 3. Elementary Applications of the Basic Equations

Class exercises Chapter 3. Elementary Applications of the Basic Equations Class exercises Chapter 3. Elementary Applications of the Basic Equations Section 3.1 Basic Equations in Isobaric Coordinates 3.1 For some (in fact many) applications we assume that the change of the Coriolis

More information

w u v (here w is the vertical velocity

w u v (here w is the vertical velocity Conference Proceedings Paper On the Isobaric Surface Shape in the Geostrophic State of the Atmosphere Robert Zakinyan, Arthur Zakinyan * and Roman Ryzhkov Published: 5 July 206 Department of General and

More information

ESCI 342 Atmospheric Dynamics I Lesson 12 Vorticity

ESCI 342 Atmospheric Dynamics I Lesson 12 Vorticity ESCI 34 tmospheric Dynamics I Lesson 1 Vorticity Reference: n Introduction to Dynamic Meteorology (4 rd edition), Holton n Informal Introduction to Theoretical Fluid Mechanics, Lighthill Reading: Martin,

More information

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017 Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

On Derivation and Interpretation of Kuo Eliassen Equation

On Derivation and Interpretation of Kuo Eliassen Equation 1 On Derivation and Interpretation of Kuo Eliassen Equation Jun-Ichi Yano 1 1 GAME/CNRM, Météo-France and CNRS, 31057 Toulouse Cedex, France Manuscript submitted 22 September 2010 The Kuo Eliassen equation

More information

Governing Equations and Scaling in the Tropics

Governing Equations and Scaling in the Tropics Governing Equations and Scaling in the Tropics M 1 ( ) e R ε er Tropical v Midlatitude Meteorology Why is the general circulation and synoptic weather systems in the tropics different to the those in the

More information

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0 ! Revised Friday, April 19, 2013! 1 Inertial Stability and Instability David Randall Introduction Inertial stability and instability are relevant to the atmosphere and ocean, and also in other contexts

More information

Turbulent Rotating Rayleigh-Bénard Convection: DNS and SPIV Measurements

Turbulent Rotating Rayleigh-Bénard Convection: DNS and SPIV Measurements Turbulent Rotating Rayleigh-Bénard Convection: DNS and SPIV Measurements Rudie Kunnen 1 Herman Clercx 1,2 Bernard Geurts 1,2 1 Fluid Dynamics Laboratory, Department of Physics Eindhoven University of Technology

More information

21 Rotating flows. Lecture 21 Spring J Nonlinear Dynamics II: Continuum Systems The Taylor-Proudman theorem

21 Rotating flows. Lecture 21 Spring J Nonlinear Dynamics II: Continuum Systems The Taylor-Proudman theorem 8.354J Nonlinear Dynamics II: Continuum Systems Lecture 2 Spring 205 2 Rotating flows In our above discussion of airfoils, we have neglected viscosity which led to d Alembert s paradox. To illustrate further

More information

Tropical Cyclone Intensification

Tropical Cyclone Intensification Tropical Cyclone Intensification Theories for tropical cyclone intensification and structure CISK (Charney and Eliassen 1964) Cooperative Intensification Theory (Ooyama 1969). WISHE (Emanuel 1986, Holton

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

196 7 atmospheric oscillations:

196 7 atmospheric oscillations: 196 7 atmospheric oscillations: 7.4 INTERNAL GRAVITY (BUOYANCY) WAVES We now consider the nature of gravity wave propagation in the atmosphere. Atmospheric gravity waves can only exist when the atmosphere

More information

d v 2 v = d v d t i n where "in" and "rot" denote the inertial (absolute) and rotating frames. Equation of motion F =

d v 2 v = d v d t i n where in and rot denote the inertial (absolute) and rotating frames. Equation of motion F = Governing equations of fluid dynamics under the influence of Earth rotation (Navier-Stokes Equations in rotating frame) Recap: From kinematic consideration, d v i n d t i n = d v rot d t r o t 2 v rot

More information

1/25/2010. Circulation and vorticity are the two primary

1/25/2010. Circulation and vorticity are the two primary Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

Using simplified vorticity equation,* by assumption 1 above: *Metr 430 handout on Circulation and Vorticity. Equations (4) and (5) on that handout

Using simplified vorticity equation,* by assumption 1 above: *Metr 430 handout on Circulation and Vorticity. Equations (4) and (5) on that handout Rossby Wave Equation A. Assumptions 1. Non-divergence 2. Initially, zonal flow, or nearly zonal flow in which u>>v>>w. 3. Initial westerly wind is geostrophic and does not vary along the x-axis and equations

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

Prototype Instabilities

Prototype Instabilities Prototype Instabilities David Randall Introduction Broadly speaking, a growing atmospheric disturbance can draw its kinetic energy from two possible sources: the kinetic and available potential energies

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

Houze sections 7.4, 8.3, 8.5, Refer back to equations in Section 2.3 when necessary.

Houze sections 7.4, 8.3, 8.5, Refer back to equations in Section 2.3 when necessary. Thunderstorm Dynamics Houze sections 7.4, 8.3, 8.5, Refer back to equations in Section.3 when necessary. Bluestein Vol. II section 3.4.6. Review article "Dynamics of Tornadic Thunderstorms" by Klemp handout.

More information

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany WAVES IN THE OCEANS Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany Keywords: Wind waves, dispersion, internal waves, inertial oscillations, inertial waves,

More information

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water.

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water. Hurricanes: Observations and Dynamics Houze Section 10.1. Holton Section 9.7. Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371-379 (web link). http://ww2010.atmos.uiuc.edu/(gh)/guides/mtr/hurr/home.rxml

More information

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed

More information

ATMOSPHERIC MOTION I (ATM S 441/503 )

ATMOSPHERIC MOTION I (ATM S 441/503 ) http://earth.nullschool.net/ ATMOSPHERIC MOTION I (ATM S 441/503 ) INSTRUCTOR Daehyun Kim Born in 1980 B.S. 2003 Ph.D. 2010 2010-2013 2014- Assistant Professor at Dept. of Atmospheric Sciences Office:

More information

Dynamics Rotating Tank

Dynamics Rotating Tank Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Dynamics Rotating Tank Large scale flows on different latitudes of the rotating Earth Abstract The large scale atmospheric

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Atmospheric Dynamics: lecture 2

Atmospheric Dynamics: lecture 2 Atmospheric Dynamics: lecture 2 Topics Some aspects of advection and the Coriolis-effect (1.7) Composition of the atmosphere (figure 1.6) Equation of state (1.8&1.9) Water vapour in the atmosphere (1.10)

More information

Dynamics and Kinematics

Dynamics and Kinematics Geophysics Fluid Dynamics () Syllabus Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3,

More information

Geophysics Fluid Dynamics (ESS228)

Geophysics Fluid Dynamics (ESS228) Geophysics Fluid Dynamics (ESS228) Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3, 4,

More information

Atmospheric dynamics and meteorology

Atmospheric dynamics and meteorology Atmospheric dynamics and meteorology B. Legras, http://www.lmd.ens.fr/legras III Frontogenesis (pre requisite: quasi-geostrophic equation, baroclinic instability in the Eady and Phillips models ) Recommended

More information

Atmospheric Dynamics Fall 2008

Atmospheric Dynamics Fall 2008 Atmospheric Dynamics Fall 2008 AT601, the first semester of Atmospheric Dynamics, is based on the course notes available over the web and on the highly recommended texts listed below. The course notes

More information

Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification

Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification Stamen Dolaptchiev & Rupert Klein Potsdam Institute for Climate Impact Research

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability Jeffrey B. Weiss; notes by Duncan Hewitt and Pedram Hassanzadeh June 18, 2012 1 Introduction 1.1 What

More information

Stratospheric Dynamics and Coupling with Troposphere and Mesosphere

Stratospheric Dynamics and Coupling with Troposphere and Mesosphere WDS'13 Proceedings of Contributed Papers, Part III, 6 66, 13. ISBN 978-8-7378-5-8 MATFYZPRESS Stratospheric Dynamics and Coupling with Troposphere and Mesosphere P. Šácha Charles University in Prague,

More information

By convention, C > 0 for counterclockwise flow, hence the contour must be counterclockwise.

By convention, C > 0 for counterclockwise flow, hence the contour must be counterclockwise. Chapter 4 4.1 The Circulation Theorem Circulation is a measure of rotation. It is calculated for a closed contour by taking the line integral of the velocity component tangent to the contour evaluated

More information

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Planetary Atmospheres Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Photochemistry We can characterize chemical reactions in the atmosphere in the following way: 1. Photolysis:

More information

The Equations of Motion in a Rotating Coordinate System. Chapter 3

The Equations of Motion in a Rotating Coordinate System. Chapter 3 The Equations of Motion in a Rotating Coordinate System Chapter 3 Since the earth is rotating about its axis and since it is convenient to adopt a frame of reference fixed in the earth, we need to study

More information

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Entropy 011, 13, 100-1033; doi:10.3390/e1305100 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Mounir

More information

Meteorology Lecture 15

Meteorology Lecture 15 Meteorology Lecture 15 Robert Fovell rfovell@albany.edu 1 Important notes These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his Meteorology course, published by The Great

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 9 by Andrew Wells We have so far considered boundary layers adjacent to physical boundaries. However, it is also possible to find boundary layers

More information

Goal: Use understanding of physically-relevant scales to reduce the complexity of the governing equations

Goal: Use understanding of physically-relevant scales to reduce the complexity of the governing equations Scale analysis relevant to the tropics [large-scale synoptic systems]* Goal: Use understanding of physically-relevant scales to reduce the complexity of the governing equations *Reminder: Midlatitude scale

More information

Proceedings Analytical Calculation of Falling Droplets from Cylindrical Capillaries

Proceedings Analytical Calculation of Falling Droplets from Cylindrical Capillaries Proceedings Analytical Calculation of Falling Droplets from Cylindrical Capillaries Sebastian Hummel *, Martin Bogner, Michael Haub, Joachim Sägebarth and Hermann Sandmaier University of Stuttgart/Chair

More information

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must Lecture 5: Waves in Atmosphere Perturbation Method With this method, all filed variables are separated into two parts: (a) a basic state part and (b) a deviation from the basic state: Perturbation Method

More information

Effective Depth of Ekman Layer.

Effective Depth of Ekman Layer. 5.5: Ekman Pumping Effective Depth of Ekman Layer. 2 Effective Depth of Ekman Layer. Defining γ = f/2k, we derived the solution u = u g (1 e γz cos γz) v = u g e γz sin γz corresponding to the Ekman spiral.

More information

2. Conservation laws and basic equations

2. Conservation laws and basic equations 2. Conservation laws and basic equations Equatorial region is mapped well by cylindrical (Mercator) projection: eastward, northward, upward (local Cartesian) coordinates:,, velocity vector:,,,, material

More information

Models of ocean circulation are all based on the equations of motion.

Models of ocean circulation are all based on the equations of motion. Equations of motion Models of ocean circulation are all based on the equations of motion. Only in simple cases the equations of motion can be solved analytically, usually they must be solved numerically.

More information

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force Lecture 3 Lecture 1 Basic dynamics Equations of motion - Newton s second law in three dimensions Acceleration = Pressure Coriolis + gravity + friction gradient + force force This set of equations is the

More information

Quick Recapitulation of Fluid Mechanics

Quick Recapitulation of Fluid Mechanics Quick Recapitulation of Fluid Mechanics Amey Joshi 07-Feb-018 1 Equations of ideal fluids onsider a volume element of a fluid of density ρ. If there are no sources or sinks in, the mass in it will change

More information

Fundamentals of Weather and Climate

Fundamentals of Weather and Climate Fundamentals of Weather and Climate ROBIN McILVEEN Environmental Science Division Institute of Environmental and Biological Sciences Lancaster University CHAPMAN & HALL London Glasgow Weinheim New York

More information

Dynamics of the Extratropical Response to Tropical Heating

Dynamics of the Extratropical Response to Tropical Heating Regional and Local Climate Modeling and Analysis Research Group R e L o C l i m Dynamics of the Extratropical Response to Tropical Heating (1) Wegener Center for Climate and Global Change (WegCenter) and

More information

Vorticity and Dynamics

Vorticity and Dynamics Vorticity and Dynamics In Navier-Stokes equation Nonlinear term ω u the Lamb vector is related to the nonlinear term u 2 (u ) u = + ω u 2 Sort of Coriolis force in a rotation frame Viscous term ν u = ν

More information

A note concerning the Lighthill sandwich model of tropical cyclones

A note concerning the Lighthill sandwich model of tropical cyclones Applied Mathematics A note concerning the Lighthill sandwich model of tropical cyclones G.I. Barenblatt, A.J. Chorin, V.M. Prostokishin The authors dedicate this work to the glowing memory of the great

More information

Dynamic Meteorology (Atmospheric Dynamics)

Dynamic Meteorology (Atmospheric Dynamics) Lecture 1-2012 Dynamic Meteorology (Atmospheric Dynamics) Lecturer: Aarnout van Delden Office: BBG, room 615 a.j.vandelden@uu.nl http://www.staff.science.uu.nl/~delde102/index.php Students (background

More information

= vorticity dilution + tilting horizontal vortices + microscopic solenoid

= vorticity dilution + tilting horizontal vortices + microscopic solenoid 4.4 Vorticity Eq 4.4.1 Cartesian Coordinates Because ζ = ˆk V, gives D(ζ + f) x minus [v momentum eq. in Cartesian Coordinates] y [u momentum eq. in Cartesian Coordinates] = vorticity dilution + tilting

More information

Quasi-Geostrophic Implications

Quasi-Geostrophic Implications Chapter 10 Quasi-Geostrophic Implications When you look at a weather chart with all its isolines and plotted data, you need a framework upon which to interpret what you see. Quasi-geostrophic theory provides

More information

The effect of turbulence and gust on sand erosion and dust entrainment during sand storm Xue-Ling Cheng, Fei Hu and Qing-Cun Zeng

The effect of turbulence and gust on sand erosion and dust entrainment during sand storm Xue-Ling Cheng, Fei Hu and Qing-Cun Zeng The effect of turbulence and gust on sand erosion and dust entrainment during sand storm Xue-Ling Cheng, Fei Hu and Qing-Cun Zeng State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric

More information

Balance. in the vertical too

Balance. in the vertical too Balance. in the vertical too Gradient wind balance f n Balanced flow (no friction) More complicated (3- way balance), however, better approximation than geostrophic (as allows for centrifugal acceleration

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is transport and mixing of air properties, especially in the

More information

Geostrophic and Quasi-Geostrophic Balances

Geostrophic and Quasi-Geostrophic Balances Geostrophic and Quasi-Geostrophic Balances Qiyu Xiao June 19, 2018 1 Introduction Understanding how the atmosphere and ocean behave is important to our everyday lives. Techniques such as weather forecasting

More information

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport is which can also be written as (14.1) i.e., #Q x,y

More information

Quasi-geostrophic ocean models

Quasi-geostrophic ocean models Quasi-geostrophic ocean models March 19, 2002 1 Introduction The starting point for theoretical and numerical study of the three dimensional large-scale circulation of the atmosphere and ocean is a vorticity

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow The types of atmospheric flows describe here have the following characteristics: 1) Steady state (meaning that the flows do not change

More information

Fundamentals of Atmospheric Modelling

Fundamentals of Atmospheric Modelling M.Sc. in Computational Science Fundamentals of Atmospheric Modelling Peter Lynch, Met Éireann Mathematical Computation Laboratory (Opp. Room 30) Dept. of Maths. Physics, UCD, Belfield. January April, 2004.

More information

Ocean dynamics: the wind-driven circulation

Ocean dynamics: the wind-driven circulation Ocean dynamics: the wind-driven circulation Weston Anderson March 13, 2017 Contents 1 Introduction 1 2 The wind driven circulation (Ekman Transport) 3 3 Sverdrup flow 5 4 Western boundary currents (western

More information

GEF 1100 Klimasystemet. Chapter 7: Balanced flow

GEF 1100 Klimasystemet. Chapter 7: Balanced flow GEF1100 Autumn 2016 27.09.2016 GEF 1100 Klimasystemet Chapter 7: Balanced flow Prof. Dr. Kirstin Krüger (MetOs, UiO) 1 Lecture Outline Ch. 7 Ch. 7 Balanced flow 1. Motivation 2. Geostrophic motion 2.1

More information

On the Motion of a Typhoon (I)*

On the Motion of a Typhoon (I)* On the Motion of a Typhoon (I)* By S. Syono Geophysical Institute, Tokyo University (Manuscript received 2 November 1955) Abstract Solving barotropic vorticity equation, the motion of a disturbance of

More information

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017 Lecture 5: Waves in Atmosphere Perturbation Method Properties of Wave Shallow Water Model Gravity Waves Rossby Waves Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature

More information

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 4. Atmospheric transport Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 Forces in the atmosphere: Gravity g Pressure-gradient ap = ( 1/ ρ ) dp / dx for x-direction (also y, z directions)

More information

Winds and Currents in the Oceans

Winds and Currents in the Oceans Winds and Currents in the Oceans Atmospheric Processes Density of air is controlled by temperature, pressure, and moisture content. 1. Warm air is less dense than cold air and moist air is less dense than

More information

Rapidly Rotating Rayleigh-Bénard Convection

Rapidly Rotating Rayleigh-Bénard Convection Rapidly Rotating Rayleigh-Bénard Convection Edgar Knobloch Department of Physics University of California at Berkeley 27 February 2008 Collaborators: Keith Julien, Applied Mathematics, Univ. of Colorado,

More information

OPTIMIZATION OF HEAT TRANSFER ENHANCEMENT IN PLANE COUETTE FLOW

OPTIMIZATION OF HEAT TRANSFER ENHANCEMENT IN PLANE COUETTE FLOW OPTIMIZATION OF HEAT TRANSFER ENHANCEMENT IN PLANE COUETTE FLOW Shingo Motoki, Genta Kawahara and Masaki Shimizu Graduate School of Engineering Science Osaka University 1-3 Machikaneyama, Toyonaka, Osaka

More information

Meteorology Lecture 21

Meteorology Lecture 21 Meteorology Lecture 21 Robert Fovell rfovell@albany.edu 1 Important notes These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his Meteorology course, published by The Great

More information

Quasi-Geostrophic ω-equation. 1. The atmosphere is approximately hydrostatic. 2. The atmosphere is approximately geostrophic.

Quasi-Geostrophic ω-equation. 1. The atmosphere is approximately hydrostatic. 2. The atmosphere is approximately geostrophic. Quasi-Geostrophic ω-equation For large-scale flow in the atmosphere, we have learned about two very important characteristics:. The atmosphere is approximately hydrostatic.. The atmosphere is approximately

More information

Maximum Entropy Production Principle: Where is the positive feedback?

Maximum Entropy Production Principle: Where is the positive feedback? Maximum Entropy Production Principle: Where is the positive feedback? Remi Tailleux Department of Meteorology, U. of Reading HHH - 30 November 2009 Outline The context: Horizontal convection Formulation

More information

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations Chapter 5 Shallow Water Equations So far we have concentrated on the dynamics of small-scale disturbances in the atmosphere and ocean with relatively simple background flows. In these analyses we have

More information

Eliassen-Palm Theory

Eliassen-Palm Theory Eliassen-Palm Theory David Painemal MPO611 April 2007 I. Introduction The separation of the flow into its zonal average and the deviations therefrom has been a dominant paradigm for analyses of the general

More information

Circulation and Vorticity

Circulation and Vorticity Circulation and Vorticity Example: Rotation in the atmosphere water vapor satellite animation Circulation a macroscopic measure of rotation for a finite area of a fluid Vorticity a microscopic measure

More information

8 Mechanisms for tropical rainfall responses to equatorial

8 Mechanisms for tropical rainfall responses to equatorial 8 Mechanisms for tropical rainfall responses to equatorial heating More reading: 1. Hamouda, M. and Kucharski, F. (2019) Ekman pumping Mechanism driving Precipitation anomalies in Response to Equatorial

More information

1/18/2011. From the hydrostatic equation, it is clear that a single. pressure and height in each vertical column of the atmosphere.

1/18/2011. From the hydrostatic equation, it is clear that a single. pressure and height in each vertical column of the atmosphere. Lecture 3: Applications of Basic Equations Pressure as Vertical Coordinate From the hydrostatic equation, it is clear that a single valued monotonic relationship exists between pressure and height in each

More information

Needs work : define boundary conditions and fluxes before, change slides Useful definitions and conservation equations

Needs work : define boundary conditions and fluxes before, change slides Useful definitions and conservation equations Needs work : define boundary conditions and fluxes before, change slides 1-2-3 Useful definitions and conservation equations Turbulent Kinetic energy The fluxes are crucial to define our boundary conditions,

More information

Convection of Moist Saturated Air: Analytical Study. Robert Zakinyan, Arthur Zakinyan *, Roman Ryzhkov and Kristina Avanesyan

Convection of Moist Saturated Air: Analytical Study. Robert Zakinyan, Arthur Zakinyan *, Roman Ryzhkov and Kristina Avanesyan atmosphere Article Convection of Moist Saturated Air: Analytical Study Robert Zakinyan, Arthur Zakinyan *, Roman Ryzhkov and Kristina Avanesyan Received: 9 October 015; Accepted: 30 December 015; Published:

More information

PV Thinking. What is PV thinking?

PV Thinking. What is PV thinking? PV Thinking CH 06 What is PV thinking? Two main approaches to solving fluid flow problems:. We can integrate the momentum, continuity and thermodynamic equations (the primitive equations) directly.. In

More information

Understanding inertial instability on the f-plane with complete Coriolis force

Understanding inertial instability on the f-plane with complete Coriolis force Understanding inertial instability on the f-plane with complete Coriolis force Abstract Vladimir Zeitlin Laboratory of Dynamical Meteorology, University P. and M. Curie and Ecole Normale Supérieure, Paris,

More information

Vorticity in natural coordinates

Vorticity in natural coordinates Vorticity in natural coordinates (see Holton pg 95, section 4.2.) Let s consider the vertical vorticity component only, i.e. ζ kˆ ω, we have ω u dl kˆ ω lim --- lim ----------------- curve is in xy plane

More information

On the effect of forward shear and reversed shear baroclinic flows for polar low developments. Thor Erik Nordeng Norwegian Meteorological Institute

On the effect of forward shear and reversed shear baroclinic flows for polar low developments. Thor Erik Nordeng Norwegian Meteorological Institute On the effect of forward shear and reversed shear baroclinic flows for polar low developments Thor Erik Nordeng Norwegian Meteorological Institute Outline Baroclinic growth a) Normal mode solution b) Initial

More information

Instabilities due a vortex at a density interface: gravitational and centrifugal effects

Instabilities due a vortex at a density interface: gravitational and centrifugal effects Instabilities due a vortex at a density interface: gravitational and centrifugal effects Harish N Dixit and Rama Govindarajan Abstract A vortex placed at an initially straight density interface winds it

More information

PHYS 432 Physics of Fluids: Instabilities

PHYS 432 Physics of Fluids: Instabilities PHYS 432 Physics of Fluids: Instabilities 1. Internal gravity waves Background state being perturbed: A stratified fluid in hydrostatic balance. It can be constant density like the ocean or compressible

More information

Can a Simple Two-Layer Model Capture the Structure of Easterly Waves?

Can a Simple Two-Layer Model Capture the Structure of Easterly Waves? Can a Simple Two-Layer Model Capture the Structure of Easterly Waves? Cheryl L. Lacotta 1 Introduction Most tropical storms in the Atlantic, and even many in the eastern Pacific, are due to disturbances

More information

Dynamic Meteorology 1

Dynamic Meteorology 1 Dynamic Meteorology 1 Lecture 14 Sahraei Department of Physics, Razi University http://www.razi.ac.ir/sahraei Buys-Ballot rule (Northern Hemisphere) If the wind blows into your back, the Low will be to

More information

ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification

ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification References: A Global View of Tropical Cyclones, Elsberry (ed.) Global Perspectives on Tropical Cylones:

More information

where p oo is a reference level constant pressure (often 10 5 Pa). Since θ is conserved for adiabatic motions, a prognostic temperature equation is:

where p oo is a reference level constant pressure (often 10 5 Pa). Since θ is conserved for adiabatic motions, a prognostic temperature equation is: 1 Appendix C Useful Equations Purposes: Provide foundation equations and sketch some derivations. These equations are used as starting places for discussions in various parts of the book. C.1. Thermodynamic

More information

ISSN Article

ISSN Article Entropy 23, 5, 28-299; doi:.339/e5628 OPEN ACCESS entropy ISSN 99-43 www.mdpi.com/journal/entropy Article Analysis of Entropy Generation Rate in an Unsteady Porous Channel Flow with Navier Slip and Convective

More information

Chapter 5. Sound Waves and Vortices. 5.1 Sound waves

Chapter 5. Sound Waves and Vortices. 5.1 Sound waves Chapter 5 Sound Waves and Vortices In this chapter we explore a set of characteristic solutions to the uid equations with the goal of familiarizing the reader with typical behaviors in uid dynamics. Sound

More information

Isentropic Analysis. Much of this presentation is due to Jim Moore, SLU

Isentropic Analysis. Much of this presentation is due to Jim Moore, SLU Isentropic Analysis Much of this presentation is due to Jim Moore, SLU Utility of Isentropic Analysis Diagnose and visualize vertical motion - through advection of pressure and system-relative flow Depict

More information

Wind-driven Western Boundary Ocean Currents in Terran and Superterran Exoplanets

Wind-driven Western Boundary Ocean Currents in Terran and Superterran Exoplanets Wind-driven Western Boundary Ocean Currents in Terran and Superterran Exoplanets By Edwin Alfonso-Sosa, Ph.D. Ocean Physics Education, Inc. 10-Jul-2014 Introduction Simple models of oceanic general circulation

More information