The Equations of Motion in a Rotating Coordinate System. Chapter 3

Size: px
Start display at page:

Download "The Equations of Motion in a Rotating Coordinate System. Chapter 3"

Transcription

1 The Equations of Motion in a Rotating Coordinate System Chapter 3

2 Since the earth is rotating about its axis and since it is convenient to adopt a frame of reference fixed in the earth, we need to study the equations of motion in a rotating coordinate system. Before proceeding to the formal derivation, we consider briefly two concepts which arise therein: Effective gravity and Coriolis force

3 Effective Gravity g is everywhere normal to the earth s surface R g* g Ω 2 R g* R g Ω 2 R effective gravity g on a spherical earth effective gravity on an earth with a slight equatorial bulge

4 Effective Gravity If the earth were a perfect sphere and not rotating, the only gravitational component g* would be radial. Because the earth has a bulge and is rotating, the effective gravitational force g is the vector sum of the normal gravity to the mass distribution g*, together with a centrifugal force Ω 2 R, and this has no tangential component at the earth s surface. g = g * + Ω 2 R

5 The Coriolis force A line that rotates with the roundabout Ω A line at rest in an inertial system Apparent trajectory of the ball in a rotating coordinate system

6 Mathematical derivation of the Coriolis force Representation of an arbitrary vector A(t) k inertial reference system Ω k j A(t) = A 1 (t)i + A 2 (t)j + A 3 (t)k A(t) = A 1 (t)i + A 2 (t)j + A 3 (t)k rotating reference system j i i

7 The time derivative of an arbitrary vector A(t) The derivative of A(t) with respect to time da A da da da = i + j + k dt dt dt dt the subscript a denotes the derivative in an inertial reference frame In the rotating frame of reference daa da1 di = i + A dt dt dt da1 A 1 ( Ω i )... = i + + dt d = + Ω dt ( A ) 1i+...

8 Let a be any vector rotating with angular velocity Ω Ω a + da a b θ Unit vector perpendicular to Ω and a da dt = a Ω sinθ b = Ω a

9 Position vector r(t) O Want to calculate u a = d ar dt the absolute velocity of an air parcel The relative velocity in a rotating frame of reference is dr dr1 dr2 dr3 u = = i + j + k dt dt dt dt and ua = u + Ω r

10 Example ua = u + Ω r Ω V ΩR e Earth s radius This air parcel starts relative to the earth with a poleward velocity V. It begins relative to space with an additional eastwards velocity component ΩR e.

11 We need to calculate the absolute acceleration if we wish to apply Newton's second law dau a dt Measurements on the earth give only the relative velocity u and therefore the relative acceleration With A = u a dau dt a d u dt du dt du = + Ω u dt a a a du = + 2Ω u+ Ω ( Ω r) dt a ua = u + Ω r

12 absolute acceleration dau dt a du = + 2Ω u+ Ω ( Ω r) dt relative acceleration Coriolisacceleration Centripetal acceleration

13 Centripetal acceleration Position vector r is split up r = ( r. ΩΩ ) + R Ω Ω Ω R R Ω ( Ω r) = Ω ( Ω R) = Ω 2 R r Ω Ω r r The Centripetal acceleration is directed inwards towards the axis of rotation and has magnitude Ω 2 R.

14 Newton s second law in a rotating frame of reference In an inertial frame: ρ d au dt a = F In a rotating frame: density force per unit mass du ρ[ + 2Ω u + Ω ( Ω r )] = F dt

15 Alternative form du ρ = F 2 ρω u ρω ( Ω r) dt Coriolis force Centrifugal force

16 Let the total force F = g* + F be split up du ρ = F + g* 2 ρω u ρω ( Ω r) dt With g = g * + Ω 2 R Ω ( Ω r) = Ω 2 R d ρ u = F + ρ g 2 ρω u dt The centrifugal force associated with the earth s rotation no longer appears explicitly in the equation; it is contained in the effective gravity.

17 When frictional forces can be neglected, F is the pressure gradient force total pressure F = p T per unit volume d ρ u = F + ρ g 2 ρω u dt d u 1 = p + T g 2Ω dt ρ u per unit mass This is the Euler equation in a rotating frame of reference.

18 The Coriolis force does no work Ω the Coriolis force acts normal to the rotation vector and normal to the velocity. u is directly proportional to the magnitude of u and Ω. 2Ω u Note: the Coriolis force does no work because u ( 2Ω u) 0

19 Perturbation pressure, buoyancy force Define p = p ( T z ) + 0 p where dp dz 0 = gρ 0 p 0 (z) and ρ 0 (z) are the reference pressure and density fields p is the perturbation pressure Important: p 0 (z) and ρ 0 (z) are not uniquely defined g = (0, 0, g) Euler s equation becomes Du Dt ρ + 2Ω u = p + g ρ ρ ρ 1 0 the buoyancy force

20 Important: the perturbation pressure gradient and buoyancy force ρ ρ g ρ 0 are not uniquely defined. 1 ρ ρ0 But the total force p + g is uniquely defined. ρ ρ 1 ρ p Indeed 1 ρ ρ 1 ρ ρ ρ 0 p+ g = pt + g

21 A mathematical demonstration Du 1 = p ' + bˆ k Dt ρ u = 0 Momentum equation Continuity equation The divergence of the momentum equation gives: p' = ρ ρ 2 ˆ ( u u) ( bk) This is a diagnostic equation!

22 Newton s 2nd law mass acceleration = force ρ Dw Dt = p z g ρ

23 buoyancy form Put p = p ( z) + p' o ρ = ρ ( o z ) + ρ' where dp o dz = gρ o Then Dw Dt 1 p' = + ρ z b where b g ρ ρ = o ρ

24 buoyancy force is NOT unique b g ρ ρ = o ρ it depends on choice of reference density ρ o (z) but 1 p 1 p' g= + b ρ z ρ z is unique

25 Buoyancy force in a hurricane ρ () z o ρ () z o

26 z Initiation of a thunderstorm θ = constant Τ + ΔΤ T U(z)

27 tropopause negative buoyancy outflow original heated air θ = constant positive buoyancy LFC LCL inflow negative buoyancy

28 Some questions How does the flow evolve after the original thermal has reached the upper troposphere? What drives the updraught at low levels? Observation in severe thunderstorms: the updraught at cloud base is negatively buoyant! Answer: - the perturbation pressure gradient

29 positive buoyancy outflow HI p' original heated air LFC LCL LO HI inflow HI HI negative buoyancy

30 Scale analysis Assume a homogeneous fluid ρ = constant. Euler s equation becomes: Du Dt 1 + 2Ω u = p ρ scales: U L 2 2ΩU ΔP ρl Then 2 Du / Dt U / L U ~ = = 2Ω u 2ΩU 2ΩL Ro Rossby number

31 Extratropical cyclone 2Ω = 10 4 s 1 L = 106 m L U = 10 ms 1 Ro = 10 U 1 10 = = 2 Ω L

32 Tropical cyclone U = 50 m/sec 2Ω = 5 X 10 5 L = 5 x 10 5 m Ro = U 2 Ω L = = 2

33 Dust devil L L = m U = 10 ms 1 2Ω = 10 4 s 1 Ro U 10 = = 4 2Ω L 10 ( 10, 100) 3 4 = 10 10

34 Waterspout L = 100 m U = 50 ms 1 2Ω = 10 4 s 1 Ro = L

35 Aeroplane wing L = 10 m U = 200 m s 1 2Ω = 10 4 s 1 Ro =

36 The Rossby number Flow system L U m s 1 Ro Ocean circulation km 1 (or less) Extra-tropical cyclone 10 3 km Tropical cyclone 500 km 50 (or >) 1 Tornado 100 m Dust devil m Cumulonimbus cloud 1 km Aerodynamic 1-10 m Bath tub vortex 1 m

37 Summary (i) Large scale meteorological and oceanic flows are strongly constrained by rotation (Ro << 1), except possibly in equatorial regions. (ii)tropical cyclones are always cyclonic and appear to derive their rotation from the background rotation of the earth. They never occur within 5 deg. of the equator where the normal component of the earth's rotation is small. (iii) Most tornadoes are cyclonic, but why? (iv) Dust devils do not have a preferred sense of rotation as expected. (v) In aerodynamic flows, and in the bath (!), the effect of the earth's rotation may be ignored.

38 Coordinate systems and the earth's sphericity Many of the flows we shall consider have horizontal dimensions which are small compared with the earth's radius. In studying these, it is both legitimate and a great simplification to assume that the earth is locally flat and to use a rectangular coordinate system with z pointing vertically upwards. Holton ( 2.3, pp31-35) shows the precise circumstances under which such an approximation is valid. In general, the use of spherical coordinates merely refines the theory, but does not lead to a deeper understanding of the phenomena.

39 Take rectangular coordinates fixed relative to the earth and centred at a point on the surface at latitude. Ω j φ Φ j k i k i equator Äquator

40 Ω φ Ω Ω cos φ j Ω sin φ k φ f-plane or β-plane Ω = Ω cos φ j + Ω sin φ k 2 Ω u = Ω cos φ j u + Ω sin φ k u

41 In component form 2Ωv sin φ+ 2Ωw 2Ω u = 2 Ω u sin φ 2 Ω u cosφ cosφ I will show that for middle latitude, synoptic-scale weather systems such as extra-tropical cyclones, the terms involving cos φ may be neglected. 2Ω u = 2 Ω cosφj u + 2 Ω sinφk u The important term for large-scale motions

42 To a good approximation 2Ω u = 2 Ω sin φ k u = f u f = 2 Ω sin φ f = f k Coriolis parameter

43 Scale analysis of the equations for middle latitude synoptic systems Much of the significant weather in middle latitudes is associated with extra-tropical cyclones, or depressions. We shall base our scaling on such systems. Let L, H, T, U, W, P and R be scales for the horizontal size, vertical extent, time, u h, w, perturbation pressure, and density in an extra-tropical cyclone, say at 45 latitude, where f (= 2Ω sin φ ) and 2Ω cos φ are both of order and U = 10 ms ; W = 10 ms ; L= 10 m ( 10 km); H= 10 m ( 10 km); T= L/ U ~ 10 s (~ 1day); δp= 10 Pa ( 10 mb) R = 1kg m

44 horizontal momentum equations Du Dt 2Ωv sin φ+ 2Ωw cosφ= 1 ρ p x Dv Dt + 2Ωu sin φ = 1 ρ p y scales U 2 /L 2 ΩU sin φ 2ΩW cos φ δp/ρl orders Du Dt h 1 + fk uh = ρ h p

45 vertical momentum equations Dw Dt 1 pt 2Ω u cosφ = ρ z g scales UW/L 2ΩU cosφ δp T /ρη g orders negligible the atmosphere is strongly hydrostatic on the synoptic scale. But are the disturbances themselves hydrostatic?

46 Question: when we subtract the reference pressure p 0 from p T, is it still legitimate to neglect Dw/Dt etc.? vertical momentum equations Dw 1 p 2Ω u cosφ= + b Dt ρ z scales UW/L 2ΩU cosφ δp/ρη gδt/t 0 orders still negligible assume that H* H assume that δt 3 o K/300 km H* = height scale for a perturbation pressure difference δp of 10 mb

47 In summary orders Dw 1 p 2Ω u cosφ= + b Dt ρ z p 0= + b ρ z In synoptic-scale disturbances, the perturbations are in close hydrostatic balance Remember: it is small departures from this equation which drive the weak vertical motion in systems of this scale.

48 The hydrostatic approximation The hydrostatic approximation permits enormous simplifications in dynamical studies of large-scale motions in the atmosphere and oceans.

49 End of Chapter 3

Models of ocean circulation are all based on the equations of motion.

Models of ocean circulation are all based on the equations of motion. Equations of motion Models of ocean circulation are all based on the equations of motion. Only in simple cases the equations of motion can be solved analytically, usually they must be solved numerically.

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

g (z) = 1 (1 + z/a) = 1

g (z) = 1 (1 + z/a) = 1 1.4.2 Gravitational Force g is the gravitational force. It always points towards the center of mass, and it is proportional to the inverse square of the distance above the center of mass: g (z) = GM (a

More information

The Hydrostatic Approximation. - Euler Equations in Spherical Coordinates. - The Approximation and the Equations

The Hydrostatic Approximation. - Euler Equations in Spherical Coordinates. - The Approximation and the Equations OUTLINE: The Hydrostatic Approximation - Euler Equations in Spherical Coordinates - The Approximation and the Equations - Critique of Hydrostatic Approximation Inertial Instability - The Phenomenon - The

More information

Dynamic Meteorology - Introduction

Dynamic Meteorology - Introduction Dynamic Meteorology - Introduction Atmospheric dynamics the study of atmospheric motions that are associated with weather and climate We will consider the atmosphere to be a continuous fluid medium, or

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

LECTURES ON DYNAMICAL METEOROLOGY

LECTURES ON DYNAMICAL METEOROLOGY LECTURES ON DYNAMICAL METEOROLOGY Roger K. Smith Version: December 11, 2007 Contents 1 INTRODUCTION 5 1.1 Scales................................... 6 2 EQUILIBRIUM AND STABILITY 9 3 THE EQUATIONS OF MOTION

More information

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

Fundamentals of Atmospheric Modelling

Fundamentals of Atmospheric Modelling M.Sc. in Computational Science Fundamentals of Atmospheric Modelling Peter Lynch, Met Éireann Mathematical Computation Laboratory (Opp. Room 30) Dept. of Maths. Physics, UCD, Belfield. January April, 2004.

More information

Lecture D15 - Gravitational Attraction. The Earth as a Non-Inertial Reference Frame

Lecture D15 - Gravitational Attraction. The Earth as a Non-Inertial Reference Frame J. Peraire 16.07 Dynamics Fall 2004 Version 1.3 Lecture D15 - Gravitational Attraction. The Earth as a Non-Inertial Reference Frame Gravitational attraction The Law of Universal Attraction was already

More information

5.1 Fluid momentum equation Hydrostatics Archimedes theorem The vorticity equation... 42

5.1 Fluid momentum equation Hydrostatics Archimedes theorem The vorticity equation... 42 Chapter 5 Euler s equation Contents 5.1 Fluid momentum equation........................ 39 5. Hydrostatics................................ 40 5.3 Archimedes theorem........................... 41 5.4 The

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

g (z) = 1 (1 + z/a) = 1 1 ( km/10 4 km) 2

g (z) = 1 (1 + z/a) = 1 1 ( km/10 4 km) 2 1.4.2 Gravitational Force g is the gravitational force. It always points towards the center of mass, and it is proportional to the inverse square of the distance above the center of mass: g (z) = GM (a

More information

Chapter 4: Fundamental Forces

Chapter 4: Fundamental Forces Chapter 4: Fundamental Forces Newton s Second Law: F=ma In atmospheric science it is typical to consider the force per unit mass acting on the atmosphere: Force mass = a In order to understand atmospheric

More information

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their:

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their: Lecture 2 Lecture 1 Forces on a rotating planet We will describe the atmosphere and ocean in terms of their: velocity u = (u,v,w) pressure P density ρ temperature T salinity S up For convenience, we will

More information

Houze sections 7.4, 8.3, 8.5, Refer back to equations in Section 2.3 when necessary.

Houze sections 7.4, 8.3, 8.5, Refer back to equations in Section 2.3 when necessary. Thunderstorm Dynamics Houze sections 7.4, 8.3, 8.5, Refer back to equations in Section.3 when necessary. Bluestein Vol. II section 3.4.6. Review article "Dynamics of Tornadic Thunderstorms" by Klemp handout.

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

Goal: Use understanding of physically-relevant scales to reduce the complexity of the governing equations

Goal: Use understanding of physically-relevant scales to reduce the complexity of the governing equations Scale analysis relevant to the tropics [large-scale synoptic systems]* Goal: Use understanding of physically-relevant scales to reduce the complexity of the governing equations *Reminder: Midlatitude scale

More information

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by Problem Sheet 1: Due Thurs 3rd Feb 1. Primitive equations in different coordinate systems (a) Using Lagrangian considerations and starting from an infinitesimal mass element in cartesian coordinates (x,y,z)

More information

Dust devils, water spouts, tornados

Dust devils, water spouts, tornados Balanced flow Things we know Primitive equations are very comprehensive, but there may be a number of vast simplifications that may be relevant (e.g., geostrophic balance). Seems that there are things

More information

On side wall labeled A: we can express the pressure in a Taylor s series expansion: x 2. + higher order terms,

On side wall labeled A: we can express the pressure in a Taylor s series expansion: x 2. + higher order terms, Chapter 1 Notes A Note About Coordinates We nearly always use a coordinate system in this class where the vertical, ˆk, is normal to the Earth s surface and the x-direction, î, points to the east and the

More information

Dynamics Rotating Tank

Dynamics Rotating Tank Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Dynamics Rotating Tank Large scale flows on different latitudes of the rotating Earth Abstract The large scale atmospheric

More information

d v 2 v = d v d t i n where "in" and "rot" denote the inertial (absolute) and rotating frames. Equation of motion F =

d v 2 v = d v d t i n where in and rot denote the inertial (absolute) and rotating frames. Equation of motion F = Governing equations of fluid dynamics under the influence of Earth rotation (Navier-Stokes Equations in rotating frame) Recap: From kinematic consideration, d v i n d t i n = d v rot d t r o t 2 v rot

More information

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017 Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1. Introduction In this class, we will examine atmospheric phenomena that occurs at the mesoscale, including some boundary layer processes, convective storms, and hurricanes. We will emphasize

More information

Effective Depth of Ekman Layer.

Effective Depth of Ekman Layer. 5.5: Ekman Pumping Effective Depth of Ekman Layer. 2 Effective Depth of Ekman Layer. Defining γ = f/2k, we derived the solution u = u g (1 e γz cos γz) v = u g e γz sin γz corresponding to the Ekman spiral.

More information

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations Chapter 5 Shallow Water Equations So far we have concentrated on the dynamics of small-scale disturbances in the atmosphere and ocean with relatively simple background flows. In these analyses we have

More information

Chapter 6. Circular Motion and Other Applications of Newton s Laws

Chapter 6. Circular Motion and Other Applications of Newton s Laws Chapter 6 Circular Motion and Other Applications of Newton s Laws Circular Motion Two analysis models using Newton s Laws of Motion have been developed. The models have been applied to linear motion. Newton

More information

Synoptic Meteorology I: Other Force Balances

Synoptic Meteorology I: Other Force Balances Synoptic Meteorology I: Other Force Balances For Further Reading Section.1.3 of Mid-Latitude Atmospheric Dynamics by J. Martin provides a discussion of the frictional force and considerations related to

More information

Governing Equations and Scaling in the Tropics

Governing Equations and Scaling in the Tropics Governing Equations and Scaling in the Tropics M 1 ( ) e R ε er Tropical v Midlatitude Meteorology Why is the general circulation and synoptic weather systems in the tropics different to the those in the

More information

Atmospheric Dynamics: lecture 2

Atmospheric Dynamics: lecture 2 Atmospheric Dynamics: lecture 2 Topics Some aspects of advection and the Coriolis-effect (1.7) Composition of the atmosphere (figure 1.6) Equation of state (1.8&1.9) Water vapour in the atmosphere (1.10)

More information

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow The types of atmospheric flows describe here have the following characteristics: 1) Steady state (meaning that the flows do not change

More information

Circulation and Vorticity

Circulation and Vorticity Circulation and Vorticity Example: Rotation in the atmosphere water vapor satellite animation Circulation a macroscopic measure of rotation for a finite area of a fluid Vorticity a microscopic measure

More information

Lecture 12: Angular Momentum and the Hadley Circulation

Lecture 12: Angular Momentum and the Hadley Circulation Lecture 12: Angular Momentum and the Hadley Circulation September 30, 2003 We learnt last time that there is a planetary radiative drive net warming in the tropics, cooling over the pole which induces

More information

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration Lecture 10. Equations of Motion Centripetal Acceleration, Gravitation and Gravity The centripetal acceleration of a body located on the Earth's surface at a distance from the center is the force (per unit

More information

A Summary of Some Important Points about the Coriolis Force/Mass. D a U a Dt. 1 ρ

A Summary of Some Important Points about the Coriolis Force/Mass. D a U a Dt. 1 ρ A Summary of Some Important Points about the Coriolis Force/Mass Introduction Newton s Second Law applied to fluids (also called the Navier-Stokes Equation) in an inertial, or absolute that is, unaccelerated,

More information

Quick Recapitulation of Fluid Mechanics

Quick Recapitulation of Fluid Mechanics Quick Recapitulation of Fluid Mechanics Amey Joshi 07-Feb-018 1 Equations of ideal fluids onsider a volume element of a fluid of density ρ. If there are no sources or sinks in, the mass in it will change

More information

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0 ! Revised Friday, April 19, 2013! 1 Inertial Stability and Instability David Randall Introduction Inertial stability and instability are relevant to the atmosphere and ocean, and also in other contexts

More information

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water.

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water. Hurricanes: Observations and Dynamics Houze Section 10.1. Holton Section 9.7. Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371-379 (web link). http://ww2010.atmos.uiuc.edu/(gh)/guides/mtr/hurr/home.rxml

More information

GFD 2 Spring 2010 P.B. Rhines Problem set 1-solns out: 5 April back: 12 April

GFD 2 Spring 2010 P.B. Rhines Problem set 1-solns out: 5 April back: 12 April GFD 2 Spring 2010 P.B. Rhines Problem set 1-solns out: 5 April back: 12 April 1 The Gulf Stream has a dramatic thermal-wind signature : the sloping isotherms and isohalines (hence isopycnals) not only

More information

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr DeCaria References: An Introduction to Dynamic Meteorology, Holton MOMENTUM EQUATIONS The momentum equations governing the ocean or atmosphere

More information

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh z = The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh, that is, p = p h + p nh. (.1) The former arises

More information

Homework 2: Solutions GFD I Winter 2007

Homework 2: Solutions GFD I Winter 2007 Homework : Solutions GFD I Winter 007 1.a. Part One The goal is to find the height that the free surface at the edge of a spinning beaker rises from its resting position. The first step of this process

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week Radiative Transfer Black body radiation, Planck function, Wien s law Absorption, emission, opacity, optical depth Intensity, flux Radiative diffusion,

More information

MOTION IN TWO OR THREE DIMENSIONS

MOTION IN TWO OR THREE DIMENSIONS MOTION IN TWO OR THREE DIMENSIONS 3 Sections Covered 3.1 : Position & velocity vectors 3.2 : The acceleration vector 3.3 : Projectile motion 3.4 : Motion in a circle 3.5 : Relative velocity 3.1 Position

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

Lecture-XV. Noninertial systems

Lecture-XV. Noninertial systems Lecture-XV Noninertial systems Apparent Force in Rotating Coordinates The force in the ating system is where The first term is called the Coriolis force, a velocity dependent force and the second term,

More information

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015 Chapter 7: Forces and Force Balances Forces that Affect Atmospheric Motion Fundamental force - Apparent force - Pressure gradient force Gravitational force Frictional force Centrifugal force Forces that

More information

Circulation and Vorticity. The tangential linear velocity of a parcel on a rotating body is related to angular velocity of the body by the relation

Circulation and Vorticity. The tangential linear velocity of a parcel on a rotating body is related to angular velocity of the body by the relation Circulation and Vorticity 1. Conservation of Absolute Angular Momentum The tangential linear velocity of a parcel on a rotating body is related to angular velocity of the body by the relation V = ωr (1)

More information

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121)

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121) = + dw dt = 1 ρ p z g + F w (.56) Let us describe the total pressure p and density ρ as the sum of a horizontally homogeneous base state pressure and density, and a deviation from this base state, that

More information

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/7/2019

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/7/2019 Chapter 7: Forces and Force Balances Forces that Affect Atmospheric Motion Fundamental force - Apparent force - Pressure gradient force Gravitational force Frictional force Centrifugal force Forces that

More information

ESCI 342 Atmospheric Dynamics I Lesson 12 Vorticity

ESCI 342 Atmospheric Dynamics I Lesson 12 Vorticity ESCI 34 tmospheric Dynamics I Lesson 1 Vorticity Reference: n Introduction to Dynamic Meteorology (4 rd edition), Holton n Informal Introduction to Theoretical Fluid Mechanics, Lighthill Reading: Martin,

More information

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 4. Atmospheric transport Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 Forces in the atmosphere: Gravity g Pressure-gradient ap = ( 1/ ρ ) dp / dx for x-direction (also y, z directions)

More information

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation First consider a hypothetical planet like Earth, but with no continents and no seasons and for which the only friction acting on the atmosphere

More information

Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation

Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation Chapter 9 Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation 9.1 Geostrophy and scaling. We examined in the last chapter some consequences of the dynamical balances for low frequency, nearly

More information

1/25/2010. Circulation and vorticity are the two primary

1/25/2010. Circulation and vorticity are the two primary Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

ESS314. Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe. Conservation Laws

ESS314. Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe. Conservation Laws ESS314 Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe Conservation Laws The big differences between fluids and other forms of matter are that they are continuous and they deform internally

More information

ρ x + fv f 'w + F x ρ y fu + F y Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ Dv Dt + u2 tanφ + vw a a = 1 p Dw Dt u2 + v 2

ρ x + fv f 'w + F x ρ y fu + F y Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ Dv Dt + u2 tanφ + vw a a = 1 p Dw Dt u2 + v 2 Fundamental Equation in z coordinate p = ρrt or pα = RT Du uv tanφ + uw Dt a a = 1 p ρ x + fv f 'w + F x Dv Dt + u2 tanφ + vw a a = 1 p ρ y fu + F y Dw Dt u2 + v 2 = 1 p a ρ z g + f 'u + F z Dρ Dt + ρ

More information

Chapter VII. Rotating Coordinate Systems

Chapter VII. Rotating Coordinate Systems Chapter VII. Rotating Coordinate Systems 7.1. Frames of References In order to really look at particle dynamics in the context of the atmosphere, we must now deal with the fact that we live and observe

More information

By convention, C > 0 for counterclockwise flow, hence the contour must be counterclockwise.

By convention, C > 0 for counterclockwise flow, hence the contour must be counterclockwise. Chapter 4 4.1 The Circulation Theorem Circulation is a measure of rotation. It is calculated for a closed contour by taking the line integral of the velocity component tangent to the contour evaluated

More information

Introduction to Physical Oceanography Homework 3 - Solutions. 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC):

Introduction to Physical Oceanography Homework 3 - Solutions. 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC): Laure Zanna 10/17/05 Introduction to Physical Oceanography Homework 3 - Solutions 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC): (a) Looking on the web you can find a lot

More information

t tendency advection convergence twisting baroclinicity

t tendency advection convergence twisting baroclinicity RELATIVE VORTICITY EQUATION Newton s law in a rotating frame in z-coordinate (frictionless): U + U U = 2Ω U Φ α p U + U U 2 + ( U) U = 2Ω U Φ α p Applying to both sides, and noting ω U and using identities

More information

Introduction to Synoptic Scale Dynamics

Introduction to Synoptic Scale Dynamics Introduction to Synoptic Scale Dynamics Contents J. H. LaCasce, UiO 1 General dynamics 2 1.1 Derivatives................................. 2 1.2 Continuity equation............................. 3 1.3 Equations

More information

Scale Analysis of the Equations of Motion

Scale Analysis of the Equations of Motion hen are curvature terms important? Important for GCMs and large-scale (global) weather. ere, we consider sub-global scale referred to as synoptic scale. Scale Analysis of the Equations of Motion e use

More information

Coriolis force in Geophysics: an elementary introduction and examples

Coriolis force in Geophysics: an elementary introduction and examples Coriolis force in Geophysics: an elementary introduction and examples F. Vandenbrouck, L. Berthier, and F. Gheusi Laboratoire de Physique de la Matière Condensée, Collège de France, 11 place M. Berthelot,

More information

( ) (9.1.1) Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation. 9.1 Geostrophy and scaling.

( ) (9.1.1) Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation. 9.1 Geostrophy and scaling. Chapter 9 Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation 9.1 Geostrophy and scaling. We examined in the last chapter some consequences of the dynamical balances for low frequency, nearly

More information

arxiv:physics/ v1 [physics.ed-ph] 10 May 2000

arxiv:physics/ v1 [physics.ed-ph] 10 May 2000 Coriolis force in Geophysics: an elementary introduction and examples F. Vandenbrouck, L. Berthier, and F. Gheusi Laboratoire de Physique de la Matière Condensée, Collège de France, 11 place M. Berthelot,

More information

2. Conservation laws and basic equations

2. Conservation laws and basic equations 2. Conservation laws and basic equations Equatorial region is mapped well by cylindrical (Mercator) projection: eastward, northward, upward (local Cartesian) coordinates:,, velocity vector:,,,, material

More information

OCN-ATM-ESS 587. Simple and basic dynamical ideas.. Newton s Laws. Pressure and hydrostatic balance. The Coriolis effect. Geostrophic balance

OCN-ATM-ESS 587. Simple and basic dynamical ideas.. Newton s Laws. Pressure and hydrostatic balance. The Coriolis effect. Geostrophic balance OCN-ATM-ESS 587 Simple and basic dynamical ideas.. Newton s Laws Pressure and hydrostatic balance The Coriolis effect Geostrophic balance Lagrangian-Eulerian coordinate frames Coupled Ocean- Atmosphere

More information

Goals of this Chapter

Goals of this Chapter Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature in the presence of positive static stability internal gravity waves Conservation of potential vorticity in the presence

More information

Dynamics II: rotation L. Talley SIO 210 Fall, 2011

Dynamics II: rotation L. Talley SIO 210 Fall, 2011 Dynamics II: rotation L. Talley SIO 210 Fall, 2011 DATES: Oct. 24: second problem due Oct. 24: short info about your project topic Oct. 31: mid-term Nov. 14: project due Rotation definitions Centrifugal

More information

Changes in Density Within An Air are Density Velocity Column Fixed due and/or With Respect to to Advection Divergence the Earth

Changes in Density Within An Air are Density Velocity Column Fixed due and/or With Respect to to Advection Divergence the Earth The Continuity Equation: Dines Compensation and the Pressure Tendency Equation 1. General The Continuity Equation is a restatement of the principle of Conservation of Mass applied to the atmosphere. The

More information

Chapter 2. Quasi-Geostrophic Theory: Formulation (review) ε =U f o L <<1, β = 2Ω cosθ o R. 2.1 Introduction

Chapter 2. Quasi-Geostrophic Theory: Formulation (review) ε =U f o L <<1, β = 2Ω cosθ o R. 2.1 Introduction Chapter 2. Quasi-Geostrophic Theory: Formulation (review) 2.1 Introduction For most of the course we will be concerned with instabilities that an be analyzed by the quasi-geostrophic equations. These are

More information

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney Chapter 4 Motion in Two Dimensions With modifications by Pinkney Kinematics in Two Dimensions covers: the vector nature of position, velocity and acceleration in greater detail projectile motion a special

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 1. Consider a zonally symmetric circulation (i.e., one with no longitudinal variations) in the atmosphere. In the inviscid upper troposphere,

More information

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9 The atmosphere in motion: forces and wind AT350 Ahrens Chapter 9 Recall that Pressure is force per unit area Air pressure is determined by the weight of air above A change in pressure over some distance

More information

Meteorology 6150 Cloud System Modeling

Meteorology 6150 Cloud System Modeling Meteorology 6150 Cloud System Modeling Steve Krueger Spring 2009 1 Fundamental Equations 1.1 The Basic Equations 1.1.1 Equation of motion The movement of air in the atmosphere is governed by Newton s Second

More information

GEFD SUMMER SCHOOL Some basic equations and boundary conditions (This is mostly a summary of standard items from fluids textbooks.

GEFD SUMMER SCHOOL Some basic equations and boundary conditions (This is mostly a summary of standard items from fluids textbooks. GEFD SUMMER SCHOOL Some basic equations and boundary conditions (This is mostly a summary of standard items from fluids textbooks.) The Eulerian description is used; so the material derivative D/Dt = /

More information

Introduction to Atmospheric Circulation

Introduction to Atmospheric Circulation Introduction to Atmospheric Circulation Start rotating table Cloud Fraction Dice Results from http://eos.atmos.washington.edu/erbe/ from http://eos.atmos.washington.edu/erbe/ from http://eos.atmos.washington.edu/erbe/

More information

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force Lecture 3 Lecture 1 Basic dynamics Equations of motion - Newton s second law in three dimensions Acceleration = Pressure Coriolis + gravity + friction gradient + force force This set of equations is the

More information

10 Shallow Water Models

10 Shallow Water Models 10 Shallow Water Models So far, we have studied the effects due to rotation and stratification in isolation. We then looked at the effects of rotation in a barotropic model, but what about if we add stratification

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Chapter 7. Geophysical Fluid Dynamics of Coastal Region

Chapter 7. Geophysical Fluid Dynamics of Coastal Region 1 Lecture Notes on Fluid Dynamics (1.63J/2.21J) by Chiang C. Mei, 2006 Chapter 7. Geophysical Fluid Dynamics of Coastal egion [ef]: Joan Brown and six others (Open Univeristy course team on oceanography):

More information

Introduction to Mesoscale Meteorology

Introduction to Mesoscale Meteorology Introduction to Mesoscale Meteorology Overview Scale Definitions Synoptic Synoptic derived from Greek synoptikos meaning general view of the whole. Also has grown to imply at the same time or simultaneous.

More information

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail. Will treat projectile motion and uniform circular

More information

1/18/2011. From the hydrostatic equation, it is clear that a single. pressure and height in each vertical column of the atmosphere.

1/18/2011. From the hydrostatic equation, it is clear that a single. pressure and height in each vertical column of the atmosphere. Lecture 3: Applications of Basic Equations Pressure as Vertical Coordinate From the hydrostatic equation, it is clear that a single valued monotonic relationship exists between pressure and height in each

More information

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Planetary Atmospheres Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Photochemistry We can characterize chemical reactions in the atmosphere in the following way: 1. Photolysis:

More information

References: Parcel Theory. Vertical Force Balance. ESCI Cloud Physics and Precipitation Processes Lesson 3 - Stability and Buoyancy Dr.

References: Parcel Theory. Vertical Force Balance. ESCI Cloud Physics and Precipitation Processes Lesson 3 - Stability and Buoyancy Dr. References: ESCI 340 - Cloud Physics and Precipitation Processes Lesson 3 - Stability and Buoyancy Dr. DeCaria Glossary of Meteorology, 2nd ed., American Meteorological Society A Short Course in Cloud

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Introduction to Atmospheric Circulation

Introduction to Atmospheric Circulation Introduction to Atmospheric Circulation Start rotating table Start heated bottle experiment Scientific Practice Observe nature Develop a model*/hypothesis for what is happening Carry out experiments Make

More information

The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute

The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute Facts about the atmosphere The atmosphere is kept in place on Earth by gravity The Earth-Atmosphere system

More information

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith.

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts The material in this section is based largely on Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts 2 Atmospheric Fronts A front is the sloping interfacial region of

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation (WAPE: General Circulation of the Atmosphere and Variability) François Lott, flott@lmd.ens.fr http://web.lmd.jussieu.fr/~flott 1) Mean climatologies and equations of motion a)thermal,

More information

EESC V2100 The Climate System spring 2004 Lecture 4: Laws of Atmospheric Motion and Weather

EESC V2100 The Climate System spring 2004 Lecture 4: Laws of Atmospheric Motion and Weather EESC V2100 The Climate System spring 2004 Lecture 4: Laws of Atmospheric Motion and Weather Yochanan Kushnir Lamont Doherty Earth Observatory of Columbia University Palisades, NY 10964, USA kushnir@ldeo.columbia.edu

More information

7 Balanced Motion. 7.1 Return of the...scale analysis for hydrostatic balance! CSU ATS601 Fall 2015

7 Balanced Motion. 7.1 Return of the...scale analysis for hydrostatic balance! CSU ATS601 Fall 2015 7 Balanced Motion We previously discussed the concept of balance earlier, in the context of hydrostatic balance. Recall that the balanced condition means no accelerations (balance of forces). That is,

More information

EATS Notes 1. Some course material will be online at

EATS Notes 1. Some course material will be online at EATS 3040-2015 Notes 1 14 Aug 2015 Some course material will be online at http://www.yorku.ca/pat/esse3040/ HH = Holton and Hakim. An Introduction to Dynamic Meteorology, 5th Edition. Most of the images

More information

Ocean Modeling - EAS Chapter 2. We model the ocean on a rotating planet

Ocean Modeling - EAS Chapter 2. We model the ocean on a rotating planet Ocean Modeling - EAS 8803 We model the ocean on a rotating planet Rotation effects are considered through the Coriolis and Centrifugal Force The Coriolis Force arises because our reference frame (the Earth)

More information

Module 9 Weather Systems

Module 9 Weather Systems Module 9 Weather Systems In this module the theory of atmospheric dynamics is applied to different weather phenomena. The first section deals with extratropical cyclones, low and high pressure areas of

More information