Theoretical Dynamics September 16, Homework 2. Taking the point of support as the origin and the axes as shown, the coordinates are

Size: px
Start display at page:

Download "Theoretical Dynamics September 16, Homework 2. Taking the point of support as the origin and the axes as shown, the coordinates are"

Transcription

1 Teoretical Dynaics Septeber 16, 2010 Instructor: Dr. Toas Coen Hoework 2 Subitte by: Vivek Saxena 1 Golstein 1.22 Taking te point of support as te origin an te axes as sown, te coorinates are x 1, y 1 = l 1 sin θ 1, l 1 cos θ 1 1 x 2, y 2 = l 1 sin θ 1 l 2 sin θ 2, l 1 cos θ 1 l 2 cos θ 2 2 Te Lagrangian is L = T V 3 were T = 1 2 1ẋ 2 ẏ ẋ ẏ 2 2 = 1 2 1l 2 1 θ l 2 1 θ 2 l 2 2 θ 2 2 2l 1 l 2 θ1 θ2 cosθ θ 2 4 an V = 1 gl 1 cos θ 1 2 gl 1 cos θ l 2 cos θ 2 5 So, L = l 2 1 θ l 2 2 θ l 1 l 2 θ1 θ2 cosθ θ gl 1 cos θ 2 gl 1 cos θ l 2 cos θ

2 Te erivatives are θ 1 = 2 l 2 1 θ 1 2 l 1 l 2 θ2 cosθ θ 2, θ 2 = 2 l 2 2 θ 2 2 l 1 l 2 θ1 cosθ θ 2 7 θ 1 = 2 l 1 l 2 θ1 θ2 sinθ θ 2 1 gl 1 sin θ 1 2 gl 1 sin θ 1, θ 1 θ 2 Te Euler-Lagrange equations are tat is, θ 2 = 2 l 1 l 2 θ1 θ2 sinθ θ 2 2 gl 2 sin θ 2 = 2 l 2 1 θ 1 2 l 1 l 2 θ2 cosθ θ l 1 l 2 θ2 θ θ 2 sinθ θ 2 9 = 2 l 2 2 θ 2 2 l 1 l 2 θ1 cosθ θ l 1 l 2 θ1 θ θ 2 sinθ θ 2 10 θ 1 θ 2 θ 1 = 0 θ 2 = 0 2 l 2 1 θ 1 2 l 1 l 2 θ2 cosθ θ l 1 l 2 θ2 2 sinθ θ gl 1 sin θ 1 = Golstein l 2 1 θ 2 2 l 1 l 2 θ1 cosθ θ l 1 l 2 θ2 1 sinθ θ gl 2 sin θ 2 = Kinetic Energy T = 1 2 Mẋ2 1 2 ẋ2 2 + ẏ Potential Energy V = gy

3 Constraint: Lagrangian: Constraine Lagrangian: Gx 1, x 2, y 2 = y 2 x 2 x 1 tan α = 0 15 L = T V = 1 2 Mẋ2 1 2 ẋ2 2 + ẏ 2 2 gy 2 16 L c = T V λg = 1 2 Mẋ2 1 2 ẋ2 2 + ẏ 2 2 gy 2 λ[y 2 x 2 x 1 tan α] 17 Te Euler-Lagrange equation, give Aing 21 an 22 we get ẋ 1 ẋ 2 ẏ 2 x 1 = 0 18 x 2 = 0 19 y 2 = 0 20 Mẍ λ tan α = 0 21 ẍ 2 λ tan α = 0 22 ÿ 2 + g + λ = 0 23 Mẍ ẍ 2 = 0 24 wic upon one integration wrt tie, yiels te expecte result tat te linear oentu of te block + wege syste in te X-irection is constant. Multiplying 23 trougout by tan α, using 15 to write ÿ 2 = ẍ 2 ẍ 1 tan α an substituing λ tan α = Mẍ 1 fro 21 we get ẍ 2 ẍ 1 tan α + g + λ = 0 = M + ẍ 1 tan 2 α + g tan α Mẍ 1 = 0 So, ẍ 1 = g tan α M M tan 2 25 g tan α ẍ 2 = M tan 2 26 ÿ 2 = g tan 2 α M M tan 2 27 g λ = M tan 2 28 Te signs are consistent: as te particle escens te slope of te wege, it oves to te left in te lab frae, as te wege oves to te rigt, conserving linear oentu in te orizontal irection. Also, as /M 0, we recover te solution for a particle oving own a stationary wege: ẍ 1 = 0, ẍ 2 = g sin α cos α, ÿ 2 = g sin 2 α so tat te acceleration of te particle along te incline is ẍ2 2 + ÿ2 2 = g sin α. 2-3

4 Work one by te constraint forces Te tree constraint forces are F x1 = λ G g tan α = λ tan α = x 1 M tan 2 F x2 = λ G g tan α = λ tan α = x 2 M tan 2 F y2 = λ G g = λ = y 2 M tan 2 Te accelerations foun above are constant, so te velocity varies linearly wit tie. Assuing tat at t = 0, te wege an particle bot ave zero velocity, te work one by te constraint force on te wege is W 1 = F x1 x 1 = 1 2 F x 1 ẍ 1 t 2 = 1 2 g tan α M tan 2 2 M g tan α M tan 2 t 2 32 = 1 M g2 tan 2 α [ 2 M tan 2 ] 2 t2 33 Siilarly, te work one by te constraint force on te particle is W 2 = F x2 x 2 + F y2 y 2 = 1 2 F x 2 ẍ 2 t F y 2 ÿ 2 t 2 = 1 g tan α g tan α 2 M tan 2 M tan 2 t g 2 M tan 2 g tan 2 α M M tan 2 = 1 g 2 tan 2 α [ 2 tan 2 ] 2 t = 1 2 M 2 [ M M g 2 tan 2 α [ M tan 2 ] 2 t2 M g2 tan 2 α tan 2 ] 2 t2 34 We note tat W W 2 = 0, confiring te fact tat te total work one on te syste by te constraint forces in tie t is zero. Tis is consistent wit te fact tat te constraint forces are internal to te syste, an te constraint G = 0 is inepenent of tie. t 2 2-4

5 3 Golstein 13.4 Te given Lagrangian ensity is L = 2 8π 2 ψ ψ + V ψ ψ + 4πi ψ ψ ψ ψ 35 Te Euler-Lagrange equation for ψ is µ µ ψ ψ = 0 36 tat is, Te erivatives are Substituting into 37, we get or ψ 4πi ψ + + ψ ψ = 0 37 Π = ψ = 4πi ψ = 4πi ψ ψ ψ ψ = = 2 8π 2 ψ 2 8π 2 2 ψ ψ = V ψ 4πi ψ 2 8π 2 2 ψ V ψ + 4πi ψ = 0 38 i ψ 2π = 2 8π 2 2 ψ + V ψ 39 wic is Scroinger s equation. Te oentu canonically conjugate to ψ is So, te Hailtonian ensity is Π = ψ = 4πi ψ 40 H = Π ψ + Π ψ L 41 = 4πi ψ ψ 4πi ψ ψ 2 8π 2 ψ ψ V ψ ψ 4πi ψ ψ + 4πi ψ ψ = 2 8π 2 ψ ψ V ψ ψ

6 4 Proble 1 Te equations of otion are ẍ + ω 2 x = 0 43 ÿ + αω 2 y = 0 44 Part a Te energy is So, E Hence te energy is conserve. Part b Hence is conserve. Part c E = 1 2 ẋ2 + ẏ ω2 x 2 + αy 2 45 = ẋẍ + ẏÿ + ω 2 xẋ + αyẏ = ẋ ω 2 x + ẏ αω 2 y + ω 2 xẋ + αyẏ using 43 an 44 = 0 46 = ẋẍ ẏÿ + ω 2 xẋ αyẏ = ẋ ω 2 x ẏ αω 2 y + ω 2 xẋ αyẏ using 43 an 44 = 0 47 It can be sown tat for a olonoic ecanical syste, te kinetic energy is always a bilinear for of te generalize coorinates, aking ters of te for / q necessarily linear in te generalize velocities, wenever te potential is inepenent of te generalize velocity. In particular, for te given Lagrangian, ẋ ẏ = ẋ 48 = ẏ 49 Since Q 1 x, y; ɛ an Q 2 x, y; ɛ are point transforations, tey are inepenent of velocities. Terefore te quantity Γ = Q 1 ẋ ɛ + Q 2 ɛ=0 ẏ ɛ 50 ɛ=0 = ẋ Q 1 ɛ + ẏ Q 2 ɛ=0 ɛ 51 ɛ=0 necessarily linear in te velocities, ẋ an ẏ. 2-6

7 Part As justifie above, any invariant quantity resulting fro te syetry of te Lagrangian uner a point transforation is necessarily linear in te velocities. Since is a quaratic for in te velocities, we cannot fin a point transforation wic leaves te Lagrangian invariant an correspons to a Noeterian conserve current tat is equal to. Tis proves tat wile every invariance of a Lagrangian uner a continuous point transforation yiels an associate conserve quantity, te converse is not necessarily true. For olonoic ecanical systes, te stronger stateent is: For every invariance of a Lagrangian uner a continuous point transforation, tere is an associate conserve quantity linear in te generalize oenta, an vice versa. Part e For α = 1, te syste becoes an isotropic aronic oscillator in 2D wit te Lagrangian, Due to rotational syetry, te angular oentu L = 1 2 ẋ2 + ẏ ω2 x 2 + y 2 52 J z = xẏ ẋy 53 is an invariant, wic is of te for Γ. As J z is linear in te velocities, it cannot be written as a linear cobination of E an wic ave no linear ters in ẋ an ẏ at all. 5 Proble 2 Part a Te action is S = L = x L 54 Te Lagragian ensity is not explicitly epenent on te fiel, but only on its erivatives. So, te variation in te action is δs = δ x L 55 = x δl 56 = x t φ δ tφ + x φ δ xφ 57 = x µ φ δ µφ for µ = 0, 1 58 [ ] = x µ µ φ δφ µ δφ 59 µ φ = x µ δφ 60 µ φ 2-7

8 since te first ter in 60 can be converte to a surface integral over te bounary of te 1-spacetie region, were δφ = 0 over te bounary. So, Hailton s principle δs = 0 yiels te Euler-Lagrange equation µ = 0 61 µ φ or Part b + t t φ x x φ = 0 62 = 2 t c 2 2 xφx, t = 0 63 Fro te inverse Lorentz transforations, t = γ t + βc x 64 x = γ x + βct 65 we ave t = t t t + x t x = γ t + γβc x x = t x t + x x x = γβ c t + γ x So, te Lagrangian ensity in te transfore frae is [ L = 1 2 ] 2 2 t c 2 x [ = γ 2 + γ 2 β 2 c 2 + 2γ 2 βc 2 t x t x c 2 γ 2 β 2 2 ] 2 c 2 + γ 2 + 2γ2 β t x c t x [ = 1 2 ] 2 γ 2 1 β 2 γ 2 c 2 1 β 2 2 t x [ = 1 2 ] 2 c 2 as γ = 1 2 t x 1 β 2 = L Hence te Lagrangian ensity is invariant uner te Lorentz transforation. 2-8

9 Part c x = = x x t x γ γβ c x t t x 71 t γβc γ x = γ 2 1 β 2 x = x 72 So te volue eleent in 1-spacetie is Lorentz invariant. Since te Lagrangian ensity is also Lorentz invariant, terefore te action S = x L is also a Lorentz invariant quantity. Part Te Euler-Lagrange equation is obtaine by extreizing te action, i.e. via δs = 0. As L, te 1- spacetie volue eleent as well as te Lagrangian ensity L are all Lorentz invariant quantities, δs = δ x L = 0 δs = δ x L = 0 = δs 73 Repeating te steps carrie out in part a wit all quantities replace by teir prie counterparts, we arrive at te Euler Lagrange equation, t + t φ x = 0 74 x φ in te transfore frae. Tis proves tat te Euler-Lagrange equations are for invariant, i.e. covariant. In particular, using 67 an 68 we ave so tat 2 φ t 2 = γ 2 t 2 φ + 2γ 2 βc xtφ 2 + γ 2 β 2 c 2 x φ x 2 = γ2 β 2 c 2 2 t φ + 2γ2 β 2 c xtφ + γ 2 β 2 c x φ t 2 c2 2 φ x 2 = γ 2 1 β 2 2 t φ γ 2 1 β 2 2 x 77 So, we conclue tat te Euler-Lagrange equation is also invariant. = 2 φ t 2 c2 2 φ x

10 6 Proble 3 Te oifie action is S = = = L 79 [ 1 2 ẋ2 q φ Λ ] + A + Λ ẋ 80 L + q Λ q Λ ẋ 81 = S + q = S + q = S + q = S Λ q Λ q t= Λ q Λ ẋ 82 x Λ 83 t= Λ 84 So, uner a tie epenent gauge transforation, te action is left invariant, inepenent of te pat

Problem Set II Solutions

Problem Set II Solutions Physics 31600 R. Wal Classical Mechanics Autun, 2002 Proble Set II Solutions 1) Let L(q, q; t) be a Lagrangian [where, as in class, q stans for (q 1,..., q n )]. Suppose we introuce new coorinates (Q 1

More information

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 [1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly along a horizontal surface, as shown in Fig. 1. The unstretched

More information

SOLUTIONS for Homework #3

SOLUTIONS for Homework #3 SOLUTIONS for Hoework #3 1. In the potential of given for there is no unboun states. Boun states have positive energies E n labele by an integer n. For each energy level E, two syetrically locate classical

More information

P235 Midterm Examination Prof. Cline

P235 Midterm Examination Prof. Cline P235 Mier Exaination Prof. Cline THIS IS A CLOSED BOOK EXAMINATION. Do all parts of all four questions. Show all steps to get full credit. 7:00-10.00p, 30 October 2009 1:(20pts) Consider a rocket fired

More information

Tutorial Exercises: Incorporating constraints

Tutorial Exercises: Incorporating constraints Tutorial Exercises: Incorporating constraints 1. A siple pendulu of length l ass is suspended fro a pivot of ass M that is free to slide on a frictionless wire frae in the shape of a parabola y = ax. The

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

Lecture 27: Generalized Coordinates and Lagrange s Equations of Motion

Lecture 27: Generalized Coordinates and Lagrange s Equations of Motion Lecture 27: Generalize Coorinates an Lagrange s Equations of Motion Calculating T an V in terms of generalize coorinates. Example: Penulum attache to a movable support 6 Cartesian Coorinates: (X, Y, Z)

More information

and from it produce the action integral whose variation we set to zero:

and from it produce the action integral whose variation we set to zero: Lagrange Multipliers Monay, 6 September 01 Sometimes it is convenient to use reunant coorinates, an to effect the variation of the action consistent with the constraints via the metho of Lagrange unetermine

More information

What is the instantaneous acceleration (2nd derivative of time) of the field? Sol. The Euler-Lagrange equations quickly yield:

What is the instantaneous acceleration (2nd derivative of time) of the field? Sol. The Euler-Lagrange equations quickly yield: PHYSICS 75: The Standard Model Midter Exa Solution Key. [3 points] Short Answer (6 points each (a In words, explain how to deterine the nuber of ediator particles are generated by a particular local gauge

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) *

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) * OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) * Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

Assignment 2. Tyler Shendruk October 8, Hamilton s Principle - Lagrangian and Hamiltonian dynamics.

Assignment 2. Tyler Shendruk October 8, Hamilton s Principle - Lagrangian and Hamiltonian dynamics. Assignent Tyler Shendruk October 8, 010 1 Marion and Thornton Chapter 7 Hailton s Principle - Lagrangian and Hailtonian dynaics. 1.1 Proble 7.9 y z x l θ α Figure 1: A disk rolling down an incline plane.

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

arxiv: v1 [cond-mat.supr-con] 12 Feb 2015

arxiv: v1 [cond-mat.supr-con] 12 Feb 2015 Moentu-energy tensor associate to the quasiparticles in anisotropic superconuctors L. A. Peña Arila, W. Herrera, an Virgilio niño Departaento e física, Universia Nacional e Colobia, Bogotá, Colobia arxiv:150.03577v1

More information

1 Graded problems. PHY 5246: Theoretical Dynamics, Fall November 23 rd, 2015 Assignment # 12, Solutions. Problem 1

1 Graded problems. PHY 5246: Theoretical Dynamics, Fall November 23 rd, 2015 Assignment # 12, Solutions. Problem 1 PHY 546: Theoretical Dynaics, Fall 05 Noveber 3 rd, 05 Assignent #, Solutions Graded probles Proble.a) Given the -diensional syste we want to show that is a constant of the otion. Indeed,.b) dd dt Now

More information

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March EN4: Dynaics and ibrations Midter Exaination Tuesday Marc 4 14 Scool of Engineering Brown University NAME: General Instructions No collaboration of any kind is peritted on tis exaination. You ay bring

More information

Classical Mechanics Review (Louisiana State University Qualifier Exam)

Classical Mechanics Review (Louisiana State University Qualifier Exam) Review Louisiana State University Qualifier Exam Jeff Kissel October 22, 2006 A particle of mass m. at rest initially, slides without friction on a wedge of angle θ and and mass M that can move without

More information

G j dq i + G j. q i. = a jt. and

G j dq i + G j. q i. = a jt. and Lagrange Multipliers Wenesay, 8 September 011 Sometimes it is convenient to use reunant coorinates, an to effect the variation of the action consistent with the constraints via the metho of Lagrange unetermine

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Final Exam Classical Mechanics

Final Exam Classical Mechanics Final Ea Classical Mechanics. Consider the otion in one diension of a article subjected to otential V= (where =constant). Use action-angle variables to find the eriod of the otion as a function of energ.

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Calculus of variations - Lecture 11

Calculus of variations - Lecture 11 Calculus of variations - Lecture 11 1 Introuction It is easiest to formulate the problem with a specific example. The classical problem of the brachistochrone (1696 Johann Bernoulli) is the search to fin

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2015 fall

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2015 fall UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mecanics and Field Teory 015 fall Set 1 for 16/17. November 015 Problem 68: Te Lagrangian for

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x)

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x) Derivative Rules Using te efinition of te erivative of a function is quite teious. Let s prove some sortcuts tat we can use. Recall tat te efinition of erivative is: Given any number x for wic te limit

More information

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 Free rotation of a rigi boy 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 1 Introuction In this section, we escribe the motion of a rigi boy that is free to rotate

More information

MATH 1A Midterm Practice September 29, 2014

MATH 1A Midterm Practice September 29, 2014 MATH A Midterm Practice September 9, 04 Name: Problem. (True/False) If a function f : R R is injective, ten f as an inverse. Solution: True. If f is injective, ten it as an inverse since tere does not

More information

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators Physics B: Solution to HW # 6 ) Born-Oppenheier for Coupled Haronic Oscillators This proble is eant to convince you of the validity of the Born-Oppenheier BO) Approxiation through a toy odel of coupled

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

PHYS 601 HW3 Solution

PHYS 601 HW3 Solution 3.1 Norl force using Lgrnge ultiplier Using the center of the hoop s origin, we will describe the position of the prticle with conventionl polr coordintes. The Lgrngin is therefore L = 1 2 ṙ2 + 1 2 r2

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL IFFERENTIATION FIRST ERIVATIVES Te simplest difference formulas are based on using a straigt line to interpolate te given data; tey use two data pints to estimate te derivative. We assume tat

More information

Derivatives. if such a limit exists. In this case when such a limit exists, we say that the function f is differentiable.

Derivatives. if such a limit exists. In this case when such a limit exists, we say that the function f is differentiable. Derivatives 3. Derivatives Definition 3. Let f be a function an a < b be numbers. Te average rate of cange of f from a to b is f(b) f(a). b a Remark 3. Te average rate of cange of a function f from a to

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

PhyzExamples: Advanced Electrostatics

PhyzExamples: Advanced Electrostatics PyzExaples: Avance Electrostatics Pysical Quantities Sybols Units Brief Definitions Carge or Q coulob [KOO lo]: C A caracteristic of certain funaental particles. Eleentary Carge e 1.6 10 19 C Te uantity

More information

ROTATIONAL MOTION FROM TRANSLATIONAL MOTION

ROTATIONAL MOTION FROM TRANSLATIONAL MOTION ROTATIONAL MOTION FROM TRANSLATIONAL MOTION Velocity Acceleration 1-D otion 3-D otion Linear oentu TO We have shown that, the translational otion of a acroscopic object is equivalent to the translational

More information

MATH 155A FALL 13 PRACTICE MIDTERM 1 SOLUTIONS. needs to be non-zero, thus x 1. Also 1 +

MATH 155A FALL 13 PRACTICE MIDTERM 1 SOLUTIONS. needs to be non-zero, thus x 1. Also 1 + MATH 55A FALL 3 PRACTICE MIDTERM SOLUTIONS Question Find te domain of te following functions (a) f(x) = x3 5 x +x 6 (b) g(x) = x+ + x+ (c) f(x) = 5 x + x 0 (a) We need x + x 6 = (x + 3)(x ) 0 Hence Dom(f)

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I October 12, 2016 8:30 am LAST NAME: FIRST NAME: STUDENT NUMBER: SIGNATURE: (I understand tat ceating is a serious offense DO NOT WRITE IN THIS TABLE

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim .1 DERIVATIVES OF POLYNOIALS AND EXPONENTIAL FUNCTIONS c =c slope=0 0 FIGURE 1 Te grap of ƒ=c is te line =c, so fª()=0. In tis section we learn ow to ifferentiate constant functions, power functions, polnomials,

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

(a) As a reminder, the classical definition of angular momentum is: l = r p

(a) As a reminder, the classical definition of angular momentum is: l = r p PHYSICS T8: Standard Model Midter Exa Solution Key (216) 1. [2 points] Short Answer ( points each) (a) As a reinder, the classical definition of angular oentu is: l r p Based on this, what are the units

More information

SIMG Solution Set #5

SIMG Solution Set #5 SIMG-303-0033 Solution Set #5. Describe completely te state of polarization of eac of te following waves: (a) E [z,t] =ˆxE 0 cos [k 0 z ω 0 t] ŷe 0 cos [k 0 z ω 0 t] Bot components are traveling down te

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

221A Lecture Notes Notes on Classica Mechanics I

221A Lecture Notes Notes on Classica Mechanics I 1A Lecture Notes Notes on Classica Mechanics I 1 Precursor: Fermat s Principle in Geometric Optics In geometric optics, you talk about how light rays go. In homogeneous meiums, the light rays go straight.

More information

Solutions Manual for Precalculus An Investigation of Functions

Solutions Manual for Precalculus An Investigation of Functions Solutions Manual for Precalculus An Investigation of Functions David Lippman, Melonie Rasmussen 1 st Edition Solutions created at Te Evergreen State College and Soreline Community College 1.1 Solutions

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

Lagrangian and Hamiltonian Dynamics

Lagrangian and Hamiltonian Dynamics Lagrangian an Hamiltonian Dynamics Volker Perlick (Lancaster University) Lecture 1 The Passage from Newtonian to Lagrangian Dynamics (Cockcroft Institute, 22 February 2010) Subjects covere Lecture 2: Discussion

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

106 PHYS - CH6 - Part2

106 PHYS - CH6 - Part2 106 PHYS - CH6 - Part Conservative Forces (a) A force is conservative if work one by tat force acting on a particle moving between points is inepenent of te pat te particle takes between te two points

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Mathematics 123.3: Solutions to Lab Assignment #5

Mathematics 123.3: Solutions to Lab Assignment #5 Matematics 3.3: Solutions to Lab Assignment #5 Find te derivative of te given function using te definition of derivative. State te domain of te function and te domain of its derivative..: f(x) 6 x Solution:

More information

2.3 Algebraic approach to limits

2.3 Algebraic approach to limits CHAPTER 2. LIMITS 32 2.3 Algebraic approac to its Now we start to learn ow to find its algebraically. Tis starts wit te simplest possible its, and ten builds tese up to more complicated examples. Fact.

More information

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions Introduction to Robotics (CS3A) Handout (Winter 6/7) Hoework #5 solutions. (a) Derive a forula that transfors an inertia tensor given in soe frae {C} into a new frae {A}. The frae {A} can differ fro frae

More information

Note that an that the liit li! k+? k li P!;! h (k)? ((k? )) li! i i+? i + U( i ) is just a Rieann su representation of the continuous integral h h j +

Note that an that the liit li! k+? k li P!;! h (k)? ((k? )) li! i i+? i + U( i ) is just a Rieann su representation of the continuous integral h h j + G5.65: Statistical Mechanics Notes for Lecture 5 I. THE FUNCTIONAL INTEGRAL REPRESENTATION OF THE PATH INTEGRAL A. The continuous liit In taking the liit P!, it will prove useful to ene a paraeter h P

More information

The distance between City C and City A is just the magnitude of the vector, namely,

The distance between City C and City A is just the magnitude of the vector, namely, Pysics 11 Homework III Solutions C. 3 - Problems 2, 15, 18, 23, 24, 30, 39, 58. Problem 2 So, we fly 200km due west from City A to City B, ten 300km 30 nort of west from City B to City C. (a) We want te

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

Gravitation & Cosmology. Exercises # µ x = 0 (1)

Gravitation & Cosmology. Exercises # µ x = 0 (1) Gravitation & Cosmology. Exercises # 4.1 - Geoesics a) Show that the Euler-Lagrange equations for the Lagrangian L τ ẋ L µ x = 0 (1) µ L = 1 2 g µνẋ µ ẋ ν (2) are the geoesic equations where, as usual,

More information

The Schrödinger Equation and the Scale Principle

The Schrödinger Equation and the Scale Principle Te Scrödinger Equation and te Scale Princile RODOLFO A. FRINO Jul 014 Electronics Engineer Degree fro te National Universit of Mar del Plata - Argentina rodolfo_frino@aoo.co.ar Earlier tis ear (Ma) I wrote

More information

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x Eam Solutions Question (0%) Consider f() = 2 2 2 2. (a) By calculating relevant its, determine te equations of all vertical asymptotes of te grap of f(). If tere are none, say so. f() = ( 2) ( + )( 2)

More information

MAT Calculus for Engineers I EXAM #1

MAT Calculus for Engineers I EXAM #1 MAT 65 - Calculus for Engineers I EXAM # Instructor: Liu, Hao Honor Statement By signing below you conrm tat you ave neiter given nor received any unautorized assistance on tis eam. Tis includes any use

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

Calculus I - Spring 2014

Calculus I - Spring 2014 NAME: Calculus I - Spring 04 Midterm Exam I, Marc 5, 04 In all non-multiple coice problems you are required to sow all your work and provide te necessary explanations everywere to get full credit. In all

More information

Derivative at a point

Derivative at a point Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Derivative at a point Wat you need to know already: Te concept of liit and basic etods for coputing liits. Wat you can

More information

INNER CONSTRAINTS FOR A 3-D SURVEY NETWORK

INNER CONSTRAINTS FOR A 3-D SURVEY NETWORK eospatial Science INNER CONSRAINS FOR A 3-D SURVEY NEWORK hese notes follow closely the developent of inner constraint equations by Dr Willie an, Departent of Building, School of Design and Environent,

More information

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a Stephen Martin PHYS 10 Homework #1 Question 1: A particle starts at rest and moves along a cycloid whose equation is [ ( ) a y x = ± a cos 1 + ] ay y a There is a gravitational field of strength g in the

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

Differential Calculus Definitions, Rules and Theorems

Differential Calculus Definitions, Rules and Theorems Precalculus Review Differential Calculus Definitions, Rules an Teorems Sara Brewer, Alabama Scool of Mat an Science Functions, Domain an Range f: X Y a function f from X to Y assigns to eac x X a unique

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Problem Set 7: Potential Energy and Conservation of Energy AP Physics C Supplementary Problems

Problem Set 7: Potential Energy and Conservation of Energy AP Physics C Supplementary Problems Proble Set 7: Potential Energy and Conservation of Energy AP Pysics C Suppleentary Probles 1. Approxiately 5.5 x 10 6 kg of water drops 50 over Niagara Falls every second. (a) Calculate te aount of potential

More information

yields m 1 m 2 q 2 = (m 1 + m 2 )(m 1 q m 2 q 2 2 ). Thus the total kinetic energy is T 1 +T 2 = 1 m 1m 2

yields m 1 m 2 q 2 = (m 1 + m 2 )(m 1 q m 2 q 2 2 ). Thus the total kinetic energy is T 1 +T 2 = 1 m 1m 2 1 I iediately have 1 q 1 = f( q )q/ q and q = f( q )q/ q. Multiplying these equations by and 1 (respectively) and then subtracting, I get 1 ( q 1 q ) = ( + 1 )f( q )q/ q. The desired equation follows after

More information

Chapter 4: Numerical Methods for Common Mathematical Problems

Chapter 4: Numerical Methods for Common Mathematical Problems 1 Capter 4: Numerical Metods for Common Matematical Problems Interpolation Problem: Suppose we ave data defined at a discrete set of points (x i, y i ), i = 0, 1,..., N. Often it is useful to ave a smoot

More information

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit Mo Mo Relativity and Astrophysics Lecture 5 Terry Herter Outline Mo Moentu- 4-vector Magnitude & coponents Invariance Low velocity liit Concept Suary Reading Spacetie Physics: Chapter 7 Hoework: (due Wed.

More information

Shift Theorem Involving the Exponential of a Sum of Non-Commuting Operators in Path Integrals. Abstract

Shift Theorem Involving the Exponential of a Sum of Non-Commuting Operators in Path Integrals. Abstract YITP-SB-6-4 Sift Teorem Involving te Exponential of a Sum of Non-Commuting Operators in Pat Integrals Fre Cooper 1, an Gouranga C. Nayak 2, 1 Pysics Division, National Science Founation, Arlington VA 2223

More information

Short Intro to Coordinate Transformation

Short Intro to Coordinate Transformation Short Intro to Coorinate Transformation 1 A Vector A vector can basically be seen as an arrow in space pointing in a specific irection with a specific length. The following problem arises: How o we represent

More information

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section Pre-lab Quiz/PHYS 4 Eart s Magnetic Field Your name Lab section 1. Wat do you investigate in tis lab?. For a pair of Helmoltz coils described in tis manual and sown in Figure, r=.15 m, N=13, I =.4 A, wat

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

2.4 Exponential Functions and Derivatives (Sct of text)

2.4 Exponential Functions and Derivatives (Sct of text) 2.4 Exponential Functions an Derivatives (Sct. 2.4 2.6 of text) 2.4. Exponential Functions Definition 2.4.. Let a>0 be a real number ifferent tan. Anexponential function as te form f(x) =a x. Teorem 2.4.2

More information

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers.

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers. ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU A. Fundamental identities Trougout tis section, a and b denotes arbitrary real numbers. i) Square of a sum: (a+b) =a +ab+b ii) Square of a difference: (a-b)

More information

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const.

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const. G4003 Avance Mechanics 1 The Noether theorem We alreay saw that if q is a cyclic variable, the associate conjugate momentum is conserve, q = 0 p q = const. (1) This is the simplest incarnation of Noether

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Differentiation Rules c 2002 Donald Kreider and Dwight Lahr

Differentiation Rules c 2002 Donald Kreider and Dwight Lahr Dierentiation Rules c 00 Donal Kreier an Dwigt Lar Te Power Rule is an example o a ierentiation rule. For unctions o te orm x r, were r is a constant real number, we can simply write own te erivative rater

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information