NUMERICAL DIFFERENTIATION

Size: px
Start display at page:

Download "NUMERICAL DIFFERENTIATION"

Transcription

1 NUMERICAL IFFERENTIATION FIRST ERIVATIVES Te simplest difference formulas are based on using a straigt line to interpolate te given data; tey use two data pints to estimate te derivative. We assume tat we ave function values at x ( or xi ), x ( or xi) and x + ( or xi+ ) ; we let f( x ) = y( x ) ( or f( xi ) = yi ), f( x) = y( x) ( or f( xi) = yi) and f( x+ ) = y( x+ ) ( or f( xi+ ) = yi+ ). Te spacing between te values of x is constant (see figure below), so tat xi xi = and xi xi+ =. x ( x ) x ( x ) x + ( x + ) i i i Fig. Forward difference formula (first derivative) x x + Consider te Taylor series expansion f( x+ ) = f( x) + f ( x) + f ( x) + f ( x) +...!! were, f( x+ ) f( x) f ( x) = f( x+ ) f( x) f ( x) f ( x) +... f ( x) = f ( x) f ( x) +...!!!! f( x+ ) f( x) f ( x) = + Etrunc( f, ) were forward difference formula for first derivative and truncation error as follows f( x+ ) f( x) f ( x) = and Etrunc( f, ) = f ( x) = O( ) (order )!

2 Backward difference formula (first derivative) x x Consider te Taylor series expansion f( x ) = f( x) f ( x) + f ( x) f ( x) +...!! were, f( x) f( x ) f ( x) = f( x) f( x ) + f ( x) f ( x) +... f ( x) = + f ( x) f ( x) +...!!!! f( x) f( x ) f ( x) = + Etrunc( f, ) were backward difference formula for first derivative and truncation error as follows f( x) f( x ) f ( x) = and Etrunc( f, ) = f ( x) = O( ) (order )! Central difference formula Teorem: (centered formula for O ( )). f C a, b and tat x, x + a, b ten Assume tat [ ] [ ] f ( x+ ) f( x ) f ( x) = (central difference formula for first derivative) Furtermore, tere exist a number c c( x) [ a, b] = suc tat () f( x+ ) f( x ) f ( c) f ( x) = + Etrunc( f, ) were Etrunc( f, ) = = O( ) Te term E(f,) is called truncation error.

3 Proof Start wit second degree Taylor expansions f ( x) = P( x) + E( x), about x, for f ( x + ) and f ( x ) () f( x+ ) = f( x) + f ( x) + f ( x) + f ( x) + f ( x) +...!!! () f( x ) = f( x) f ( x) + f ( x) f ( x) + f ( x) +...!!! f( x+ ) f( x ) = f ( x) + f ( x) +...! f ( x) = f ( x + ) f ( x ) f ( x) +... ten f( x+ ) f( x ) f ( x) = f ( x) +... f ( x+ ) f( x ) Central difference formula f ( x) = Truncation error E( f, ) = f ( x) = O( ) Teorem : (centered formula of order O ( ) ). f C 5 a, b and tatx, x, x+, x+ a, b ten Assume tat [ ] [ ] f ( x+ ) + 8 f ( x+ ) 8 f ( x ) + f ( x ) f ( x) = (*) Furtermore tere exists a number c c( x) [ a, b] = suc tat f( x+ ) + 8 f( x+ ) 8 f( x ) + f( x ) f ( x) = + Etrunc ( f, ) Were (5) E( f, ) = f ( c) = O( ) 0

4 Proof One way to derive formula (*) is as follows. Start wit te difference between fourt degree Taylor expansions f ( x) = P( x) + E( x), about x, for f ( x+ ) and f ( x ) 5 () (5) f( x+ ) = f( x) + f ( x) + f ( x) + f ( x) + f ( x) + f ( x)!!! 5! 5 () (5) f( x ) = f( x) f ( x) + f ( x) f ( x) + f ( x) f ( x)!!! 5! 5 (5) f( x+ ) f( x ) = f ( x) + f ( x) + f ( x)...( ) 5! Ten use step size, instead of, and write down te following approximation 5 ( ) ( ) (5) f( x+ ) f( x ) = ( ) f ( x) + f ( x) + f ( x) 5! 5 (5) f( x+ ) f( x ) = f ( x) + f ( x) + f ( x)...( ) 5! Next multiply te terms in equation (**) by 8 and subtract (***) from it 5 (5) 8 f ( x+ ) f( x ) = f ( x) + f ( x) + f ( x) 5! 5 (5) f( x+ ) f( x ) = f ( x) + f ( x) + f ( x) 5! 8 5 (5) f ( x+ ) + 8 f ( x+ ) 8 f ( x ) + f ( x ) = f ( x) f ( x) ten 5! f( x+ ) + 8 f( x+ ) 8 f( x ) + f( x ) f ( x) = + Etrunc ( f, ) and (5) E( f, ) = f ( c) = O( ) 0

5 ERROR ANALYSIS AN OPTIMUM STEP SIZE An important topic in te study of numerical differentiation is te effect of te computer s round-off error. Let us examine te formulas more closely. Assume tat a computer is used to make numerical computation and tat f ( x ) = y + e and f ( x + ) = y + e 0 0 were f ( x0 ) and f ( x0 + ) are approximated by te numerical values y and y, and e and e are te associated round-off errors, respectively. Te following result indicates te complex nature of error analysis for numerical differentiation. COROLLARY: Assume tat f satisfies te ypoteses of and use computational formula f f ( x + ) f( x ) 0 0 ( x0) = () were y y f x E f ( 0) + (, ) () () () e e f c E( f, ) = Eround ( f, ) + Etrunc ( f, ) = () were te total error term E( f, ) as part due to round-off error plus a part due to truncation error. () COROLLARY: If e ε, e ε and M max { f ( x) } = ten (from equation ()) a x b e + e M ε + ε M ε M E( f, ) + = + = + let total error ε M Ψ ( ) = E( f, ) () and setting Ψ ( ) = 0 and te value of tat minimizes te rigt and side of () ε M M ε ε Ψ ( ) = 0 + = 0 = = M ε = M is te optimum step size 5

6 Example (E.Q) :erive te numerical differentiation formula f0 + f f f( x0) + f( x0 + ) f( x0 + ) f ( x0 ) = = If f ( x) is given by f ( x) = sinx, find te optimum step size to estimate te derivative at te point π x =, provided tat te upper bound of te rounding error is given by e k 8 0 compare te π result wit exact value of te derivative at x =. Solution x 0 (0) x 0 + () x0 + () Taylor series expansion for f ( x0 + ) and f ( x0 + ) is as follows () ( f( x + ) = f( x ) + f ( x ) + f ( x ) + f ( x ) + f ( x ) +... )!!! 8 () ( f( x + ) = f( x ) + f ( x ) +! f ( x ) +! f ( x ) +! f ( x ) +...) + f( x + ) f( x + ) = f( x ) + f ( x ) f ( x) +...! ten f( x0) + f( x0 + ) f( x0 + ) 0 = + 0 f ( x ) f ( x ) Etrunc = f ( x0) were e0 + e e E( f, ) = Eround ( f, ) + Etrunc( f, ) = + f ( x)

7 e0 + e + e E( f, ) + f ( x) find M, f ( x) = sin x, f ( x) = cos x, f ( x) = sin x and f ( x) = cosx { } { } M = max f ( x) = max cos x so M = and 0 x π 0 x π ε + ε + ε 8ε E( f, ) + = + 8ε ε let Ψ ( ) = + and Ψ ( ) = + = 0 ε = = ε and = ( ε ) were ε = 8 0 ten ( ( )) = 8 0 = 0.0 Ten find π π π f( ) + f( + 0.0) f( + (0.0)) π f ( ) = (0.0) π π π sin + sin sin + (0.0) = 0.07 π f ( ) = 0.70 Exact value: f ( x) = sin x and f ( x) = cosx ten π π f = cos =

8 Example: erive te numerical differentiation formula f ( x) = f ( x) + f( x+ ) f( x+ ) Evaluate te derivative at te point x= using te above formula for te function f ( x) = x x suc tat te rounding error sould not exceed ε = 0 and te total error bounded by 0 and verify te result. Solution From previous example f( x) + f( x+ ) f( x+ ) f ( x) = + f ( x) Etrunc = f ( x) e0 + e e E( f, ) = Eround ( f, ) + Etrunc( f, ) = + f ( x) e0 + e + e E( f, ) + f ( x) 0 and ε + ε + ε 8ε E( f, ) + f ( x) 0 E( f, ) + f ( x) 0 Find M, were f( x) = x x, f ( x) = x, f ( x) = and f ( x) = 0 tat is M = 0 8ε E( f, ) were ε = E( f, ) 0 0. f() + f( + 0.) f( + (0.)) () + (.08). f () = = = (0.) 0.8 Exact value : f ( x) = x f () = = 8

9 EXERCISE : Te local truncation error of f + f 0 f + f f f ( x ) = () is Etrunc( f, ) = f ( c) Find te best value of to approximate f ( x) bounded by x, for f ( x) e over [,] = wit rounding error EXERCISE : erive te numerical differentiation formula f0 f f f( x0) f( x0 ) f( x0 ) f ( x0 ) + + = = and determine te truncation error EXERCISE : erive te following numerical differentiation formula / f ( x+ ) + 8 f ( x+ ) 8 f ( x ) + f ( x ) f ( x) = and define te order of approximation. 9

10 RICARSON EXTRAPOLATION Te basic idea beind extrapolation is tat wenever te leading term in te error for an approximation formula is known, we can combine two approximations obtained from tat formula using different values of te parameter to obtain a iger order approximation. Tis process will be illustrated in tis section for finite difference approximations to derivatives, te tecnique is known as RICARSON EXTRAPOLATION. Let s consider te second order central difference formula for first derivative f( x0 + ) f( x0 ) 0 f ( x ) = f ( ξ ) () For notational convenience, let denote te true value of te derivative, and let denote te approximation obtained using a step size. Were x0 < ξ < x0 + and from squeeze teorem guarantees ξ 0 as 0 terefore, as 0 = f ( ξ ) f ( x 0) ten = + O( ) Let s now look at te error term more precisely. Since f ( ξ) = f ( x0) + f ( ) f ( x0) we see tat 0 lim lim 0 0 [ ξ ] f ( x ) = [ f ( ξ ) f ( x0) ] = 0 terefore = + K + O( ) were K = f ( x0) As started earlier, te process of extrapolation uses two approximations computed from te same formula, but wit different values of, to obtain a iger order approximation. For te second order approximation (central difference) to f we ave just establised. = + K + O( ) ence = + K + O( ) Upon subtracting tese two expressions, we obtain 0

11 0 = + K + O( ) Wic can easily be solved for K te leading term in te error of our original approximation. K = + ( ) O We now establis for K in te original approximation to obtain = + K + O( ) = + + ( ) O = + O( ) Te formula is a iger order approximation of for te first derivative in te sense tat it converges faster tan, as opposed to at te same rate as. Example: Let s consider te approximation of te derivative function f ( x) = lnx using te second order central difference approximation wit x0 = and = 0.. f( x0 + ) f( x0 ) = f ( x0) =, tat is f( + 0. ) f( 0. ) ln(. ) ln(. 9) = f ( ) = = = = (. ) and f( x0 + ) ( 0 ) ( 0) f x = f x =, tat is ( ) f( ) f( 0. 05) ln(. 05) ln(. 95) = f ( ) = = = = (. ) Extrapolation formula ( ) ( ) ( ) ( ) = = = Exact value: f( x) = ln x, f ( x) = ten f ( ) = = 05. x Exact value : 0.5 Central difference approximation : error: Extrapolation : error:

12 REPEATE EXTRAPOLATION t In general, if a p order formula is extrapolated by cutting te step size by a factor b, te extrapolation formula will take te form p b b b p Example: from previous example We found nd order approximation ( ) ( ) ( ) 0. ( ) = = = If we apply t order approximation ( ) ( ) ( ) ( ) ( ) = = fourt order approximation 5 etermine ( ) 005. ten () () () () ( ) = = ( ) f( ) f( 0. 05) ln. 05 ln. 975 = = = ( 0. 05) () () ( ) ( ) = = = ( ) ( ) ( ) ( ) = = = wit error error = = 0 0

13 Wen performing repeated extrapolation, it is convenient to organize te calculations into an extrapolation table like te following one, Step size p ( p O ) ( p O ) ( p O ) O ( ) ( ) ( ) () ( ) () () 8 ( ) 8 () () () Example: Te first order forward difference approximation is = f ( x0 + ) f( x0) Starting =, approximate te value of te first derivative of f( x) = tan x at x0 = applying extrapolation. Use four rows your extrapolation table and find te error for final approximation Solution: Calculate first column for =, =0.5, =0.5 and =0.5 respectively. Were f( x0 + ) f( x0) = and x = () () f( + ) f( ) tan tan = = = = ( ) f( ) f( ) tan 5. tan = = = = ( ) f( ) f( ) tan. 5 tan = = = = = 05. = f ( ) f ( ) tan 5. tan = =

14 Extrapolation formula p ( k ) ( k ) b p b ( k) = were b= b Find (), () and () using te previous calculation (use first column) p = () () () (0.8) = = = () () () (0.897) = = = () () () ( ) = = = Find p = (), () using te previous calculation (use second column) () () () ( ) = = = ( ) = = = () () () Finally find () p = () () () 8( ) = = =

15 Step size O ( ) p= O ( ) p= O ( ) p= O ( ) p= = ( ) = = = 0.5 ( ) 05. )=0.8 () = ( ) 05. = = 0.5 =0.897 () = () = ( ) 05. = = = () = () = () =

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h Lecture Numerical differentiation Introduction We can analytically calculate te derivative of any elementary function, so tere migt seem to be no motivation for calculating derivatives numerically. However

More information

Fall 2014 MAT 375 Numerical Methods. Numerical Differentiation (Chapter 9)

Fall 2014 MAT 375 Numerical Methods. Numerical Differentiation (Chapter 9) Fall 2014 MAT 375 Numerical Metods (Capter 9) Idea: Definition of te derivative at x Obviuos approximation: f (x) = lim 0 f (x + ) f (x) f (x) f (x + ) f (x) forward-difference formula? ow good is tis

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

Chapter 5 FINITE DIFFERENCE METHOD (FDM)

Chapter 5 FINITE DIFFERENCE METHOD (FDM) MEE7 Computer Modeling Tecniques in Engineering Capter 5 FINITE DIFFERENCE METHOD (FDM) 5. Introduction to FDM Te finite difference tecniques are based upon approximations wic permit replacing differential

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

MATH 155A FALL 13 PRACTICE MIDTERM 1 SOLUTIONS. needs to be non-zero, thus x 1. Also 1 +

MATH 155A FALL 13 PRACTICE MIDTERM 1 SOLUTIONS. needs to be non-zero, thus x 1. Also 1 + MATH 55A FALL 3 PRACTICE MIDTERM SOLUTIONS Question Find te domain of te following functions (a) f(x) = x3 5 x +x 6 (b) g(x) = x+ + x+ (c) f(x) = 5 x + x 0 (a) We need x + x 6 = (x + 3)(x ) 0 Hence Dom(f)

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

Math 242: Principles of Analysis Fall 2016 Homework 7 Part B Solutions

Math 242: Principles of Analysis Fall 2016 Homework 7 Part B Solutions Mat 22: Principles of Analysis Fall 206 Homework 7 Part B Solutions. Sow tat f(x) = x 2 is not uniformly continuous on R. Solution. Te equation is equivalent to f(x) = 0 were f(x) = x 2 sin(x) 3. Since

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Matematics National Institute of Tecnology Durgapur Durgapur-7109 email: anita.buie@gmail.com 1 . Capter 8 Numerical Solution of Ordinary

More information

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x Eam Solutions Question (0%) Consider f() = 2 2 2 2. (a) By calculating relevant its, determine te equations of all vertical asymptotes of te grap of f(). If tere are none, say so. f() = ( 2) ( + )( 2)

More information

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x)

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x) Derivative Rules Using te efinition of te erivative of a function is quite teious. Let s prove some sortcuts tat we can use. Recall tat te efinition of erivative is: Given any number x for wic te limit

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

First we will go over the following derivative rule. Theorem

First we will go over the following derivative rule. Theorem Tuesday, Feb 1 Tese slides will cover te following 1 d [cos(x)] = sin(x) iger-order derivatives 3 tangent line problems 4 basic differential equations First we will go over te following derivative rule

More information

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1 Numerical Analysis MTH60 PREDICTOR CORRECTOR METHOD Te metods presented so far are called single-step metods, were we ave seen tat te computation of y at t n+ tat is y n+ requires te knowledge of y n only.

More information

Derivatives. if such a limit exists. In this case when such a limit exists, we say that the function f is differentiable.

Derivatives. if such a limit exists. In this case when such a limit exists, we say that the function f is differentiable. Derivatives 3. Derivatives Definition 3. Let f be a function an a < b be numbers. Te average rate of cange of f from a to b is f(b) f(a). b a Remark 3. Te average rate of cange of a function f from a to

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

2.4 Exponential Functions and Derivatives (Sct of text)

2.4 Exponential Functions and Derivatives (Sct of text) 2.4 Exponential Functions an Derivatives (Sct. 2.4 2.6 of text) 2.4. Exponential Functions Definition 2.4.. Let a>0 be a real number ifferent tan. Anexponential function as te form f(x) =a x. Teorem 2.4.2

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error. Lecture 09 Copyrigt by Hongyun Wang, UCSC Recap: Te total error in numerical differentiation fl( f ( x + fl( f ( x E T ( = f ( x Numerical result from a computer Exact value = e + f x+ Discretization error

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information

MATH745 Fall MATH745 Fall

MATH745 Fall MATH745 Fall MATH745 Fall 5 MATH745 Fall 5 INTRODUCTION WELCOME TO MATH 745 TOPICS IN NUMERICAL ANALYSIS Instructor: Dr Bartosz Protas Department of Matematics & Statistics Email: bprotas@mcmasterca Office HH 36, Ext

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

MATH 1A Midterm Practice September 29, 2014

MATH 1A Midterm Practice September 29, 2014 MATH A Midterm Practice September 9, 04 Name: Problem. (True/False) If a function f : R R is injective, ten f as an inverse. Solution: True. If f is injective, ten it as an inverse since tere does not

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

2.3 Algebraic approach to limits

2.3 Algebraic approach to limits CHAPTER 2. LIMITS 32 2.3 Algebraic approac to its Now we start to learn ow to find its algebraically. Tis starts wit te simplest possible its, and ten builds tese up to more complicated examples. Fact.

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

1 Solutions to the in class part

1 Solutions to the in class part NAME: Solutions to te in class part. Te grap of a function f is given. Calculus wit Analytic Geometry I Exam, Friday, August 30, 0 SOLUTIONS (a) State te value of f(). (b) Estimate te value of f( ). (c)

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

Calculus I - Spring 2014

Calculus I - Spring 2014 NAME: Calculus I - Spring 04 Midterm Exam I, Marc 5, 04 In all non-multiple coice problems you are required to sow all your work and provide te necessary explanations everywere to get full credit. In all

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

These error are made from replacing an infinite process by finite one.

These error are made from replacing an infinite process by finite one. Introduction :- Tis course examines problems tat can be solved by metods of approximation, tecniques we call numerical metods. We begin by considering some of te matematical and computational topics tat

More information

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers.

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers. ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU A. Fundamental identities Trougout tis section, a and b denotes arbitrary real numbers. i) Square of a sum: (a+b) =a +ab+b ii) Square of a difference: (a-b)

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

7.1 Using Antiderivatives to find Area

7.1 Using Antiderivatives to find Area 7.1 Using Antiderivatives to find Area Introduction finding te area under te grap of a nonnegative, continuous function f In tis section a formula is obtained for finding te area of te region bounded between

More information

MATH1151 Calculus Test S1 v2a

MATH1151 Calculus Test S1 v2a MATH5 Calculus Test 8 S va January 8, 5 Tese solutions were written and typed up by Brendan Trin Please be etical wit tis resource It is for te use of MatSOC members, so do not repost it on oter forums

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

MATH1901 Differential Calculus (Advanced)

MATH1901 Differential Calculus (Advanced) MATH1901 Dierential Calculus (Advanced) Capter 3: Functions Deinitions : A B A and B are sets assigns to eac element in A eactl one element in B A is te domain o te unction B is te codomain o te unction

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations International Journal of Applied Science and Engineering 2013. 11, 4: 361-373 Parameter Fitted Sceme for Singularly Perturbed Delay Differential Equations Awoke Andargiea* and Y. N. Reddyb a b Department

More information

MTH 119 Pre Calculus I Essex County College Division of Mathematics Sample Review Questions 1 Created April 17, 2007

MTH 119 Pre Calculus I Essex County College Division of Mathematics Sample Review Questions 1 Created April 17, 2007 MTH 9 Pre Calculus I Essex County College Division of Matematics Sample Review Questions Created April 7, 007 At Essex County College you sould be prepared to sow all work clearly and in order, ending

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) *

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) * OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) * Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

These errors are made from replacing an infinite process by finite one.

These errors are made from replacing an infinite process by finite one. Introduction :- Tis course examines problems tat can be solved by metods of approximation, tecniques we call numerical metods. We begin by considering some of te matematical and computational topics tat

More information

Poisson Equation in Sobolev Spaces

Poisson Equation in Sobolev Spaces Poisson Equation in Sobolev Spaces OcMountain Dayligt Time. 6, 011 Today we discuss te Poisson equation in Sobolev spaces. It s existence, uniqueness, and regularity. Weak Solution. u = f in, u = g on

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

Math 1210 Midterm 1 January 31st, 2014

Math 1210 Midterm 1 January 31st, 2014 Mat 110 Midterm 1 January 1st, 01 Tis exam consists of sections, A and B. Section A is conceptual, wereas section B is more computational. Te value of every question is indicated at te beginning of it.

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Generic maximum nullity of a graph

Generic maximum nullity of a graph Generic maximum nullity of a grap Leslie Hogben Bryan Sader Marc 5, 2008 Abstract For a grap G of order n, te maximum nullity of G is defined to be te largest possible nullity over all real symmetric n

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

1 Introduction to Optimization

1 Introduction to Optimization Unconstrained Convex Optimization 2 1 Introduction to Optimization Given a general optimization problem of te form min x f(x) (1.1) were f : R n R. Sometimes te problem as constraints (we are only interested

More information

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines Lecture 5 Interpolation II Introduction In te previous lecture we focused primarily on polynomial interpolation of a set of n points. A difficulty we observed is tat wen n is large, our polynomial as to

More information

Applied Linear Statistical Models. Simultaneous Inference Topics. Simultaneous Estimation of β 0 and β 1 Issues. Simultaneous Inference. Dr.

Applied Linear Statistical Models. Simultaneous Inference Topics. Simultaneous Estimation of β 0 and β 1 Issues. Simultaneous Inference. Dr. Applied Linear Statistical Models Simultaneous Inference Dr. DH Jones Simultaneous Inference Topics Simultaneous estimation of β 0 and β 1 Bonferroni Metod Simultaneous estimation of several mean responses

More information

3.4 Algebraic Limits. Ex 1) lim. Ex 2)

3.4 Algebraic Limits. Ex 1) lim. Ex 2) Calculus Maimus.4 Algebraic Limits At tis point, you sould be very comfortable finding its bot grapically and numerically wit te elp of your graping calculator. Now it s time to practice finding its witout

More information

Math 161 (33) - Final exam

Math 161 (33) - Final exam Name: Id #: Mat 161 (33) - Final exam Fall Quarter 2015 Wednesday December 9, 2015-10:30am to 12:30am Instructions: Prob. Points Score possible 1 25 2 25 3 25 4 25 TOTAL 75 (BEST 3) Read eac problem carefully.

More information

Calculus I Homework: The Derivative as a Function Page 1

Calculus I Homework: The Derivative as a Function Page 1 Calculus I Homework: Te Derivative as a Function Page 1 Example (2.9.16) Make a careful sketc of te grap of f(x) = sin x and below it sketc te grap of f (x). Try to guess te formula of f (x) from its grap.

More information

Applications of the van Trees inequality to non-parametric estimation.

Applications of the van Trees inequality to non-parametric estimation. Brno-06, Lecture 2, 16.05.06 D/Stat/Brno-06/2.tex www.mast.queensu.ca/ blevit/ Applications of te van Trees inequality to non-parametric estimation. Regular non-parametric problems. As an example of suc

More information

Finite Difference Method

Finite Difference Method Capter 8 Finite Difference Metod 81 2nd order linear pde in two variables General 2nd order linear pde in two variables is given in te following form: L[u] = Au xx +2Bu xy +Cu yy +Du x +Eu y +Fu = G According

More information

Calculus I Practice Exam 1A

Calculus I Practice Exam 1A Calculus I Practice Exam A Calculus I Practice Exam A Tis practice exam empasizes conceptual connections and understanding to a greater degree tan te exams tat are usually administered in introductory

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

Section 2.4: Definition of Function

Section 2.4: Definition of Function Section.4: Definition of Function Objectives Upon completion of tis lesson, you will be able to: Given a function, find and simplify a difference quotient: f ( + ) f ( ), 0 for: o Polynomial functions

More information

Simpson s 1/3 Rule Simpson s 1/3 rule assumes 3 equispaced data/interpolation/integration points

Simpson s 1/3 Rule Simpson s 1/3 rule assumes 3 equispaced data/interpolation/integration points CE 05 - Lecture 5 LECTURE 5 UMERICAL ITEGRATIO COTIUED Simpson s / Rule Simpson s / rule assumes equispaced data/interpolation/integration points Te integration rule is based on approximating fx using

More information

MAT01A1: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules

MAT01A1: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules MAT01A1: Differentiation of Polynomials & Exponential Functions + te Prouct & Quotient Rules Dr Craig 22 Marc 2017 Semester Test 1 Scripts will be available for collection from Tursay morning. For marking

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information