The distance between City C and City A is just the magnitude of the vector, namely,

Size: px
Start display at page:

Download "The distance between City C and City A is just the magnitude of the vector, namely,"

Transcription

1 Pysics 11 Homework III Solutions C. 3 - Problems 2, 15, 18, 23, 24, 30, 39, 58. Problem 2 So, we fly 200km due west from City A to City B, ten 300km 30 nort of west from City B to City C. (a) We want te distance between City C and City A. If we define nort as +ŷ and east as +ˆx, ten we can write eac leg of te trip as a vector (in km). Tus, r A B = (-200, 0) and r B C = (300cos(150), 300sin(150)) = (-150 3, 150), were all angles are measured positively (counterclockwise) from te +ˆx axis. Ten, simple vector addition gives r A C = r A B + r B C, wic is simply: r A C = ( 200, 0) + ( 150 3, 150), = ( ( 150 3))ˆx + ( )ŷ, ( 460, 150). Te distance between City C and City A is just te magnitude of te vector, namely, r = rx 2 + ry 2 = ( 460) km. (b) In order to determine te relative direction, we need te vector r A C wic was found above. Ten, θ = π + arctan( r y r x ) = π + arctan( ) = or π - θ = 18.1 nort of west. Te reason for te addition of π above is to take into account te convention tat arctan is defined on te interval (- π 2, π 2 ). Problem 15 A urricane travels 60 nort of west wit a speed of 41.0 km. Tree ours later, it suddenly canges eading to due nort slowing down to 25.0 km. Suppose te urricane starts at te origin of our coordinate system, (0, 0). After tree ours, te eye of te urricane is at (3*41*cos(120), 3*41*sin(120)) = (-61.5, 106.5), in units km. Ten, te urricane canges direction and eads due nort. Tus, 4.5 from start of measurements, 1

2 we find te urricane at (-61.5, 106.5) + (0, 1.5*25) = (-61.5, 144). Te distance from te origin (Granda Baama Island) after tis interval is r = ( 61.5) = 157 km. Problem 18 (a) Using axes as defined in te text (te same used above in te previous two problems), write eac force in terms of its components. So, force F 1 can be written (in units N), (120cos(60), 120sin(60)) = (60, 60 3). Also, force F 2 = (80cos(105), 80sin(105)) = (-20.7, 77.3). A brief aside to discuss terminology, te resultant force is te single force tat represents te sum of multiple individual forces. So, te resultant force is: F r = (60, 60 3) + ( 20.7, 77.3) = (39.3, 181.2), F r = = 185.4N, θ = arctan( ) = So, te resultant force as magnitude N and points 77.8 measured counterclockwise from te +ˆx axis. x f x i v x Problem 23 We ave te following information: v x = (200 mi )(1609 m mi )( s ) = 89.4m s, i = 100m, x i = 0m, x f = 100m, a x = 0, Now, te time it takes te falcon to travel 100 m (orizontally) is t = = 1.12s. Tus, in te same time interval, te falcon free falls = 100m 89.4 m s (from rest) a distance x = 1 2 (9.8 m s 2 )(1.12s) 2 = 6.13 m. Problem 24 We ave te following information: 2

3 v x = 18.0 m s, i = 50.0m, f = 0m, a x = 0 m s, 2 a y = g, (v y ) i = 0 m s. Te stone strikes te beac at t = given by: 2 g = 3.19 s. Its final velocity is v = (18.0, g t) = (18.0, 31.3) m s, v = = 36.1 m s, θ = arctan( ) = 60.1, measured clockwise from te -ˆx axis. So, te stone strikes te beac at a speed of 36.1 m s measured from te -ˆx axis. at an angle of 60.1 Problem 30 We ave te following information: x = 36.0m, = 3.05m, v i = 20.0 m s, θ = 53, a x = 0 m s, 2 (a) We want to determine if te ball clears te crossbar, and if so, by ow muc. Traveling at a constant orizontal velocity v x = 20.0cos(53) = 12.0 m x. A ball traveling at tis speed would take t = s v x = 3.00s. At tis time, te y-position of te ball is 3

4 y(t = 3.00) = (20.0 sin(53))(3.00) ( 9.8)(3.00)2 = 3.82m. Since y(t=3.00) >, te ball clears te goal post. It clears te post by y(t=3.00) - = 0.77m. If we solve te y equation wen y = 0, we find 0 = 20.0 sin(53)t 1 2 ( 9.8)t2, = 16t 4.9t 2, = t(16 4.9t), wic as solutions t = 0, 3.27s. Tus, te football lands a distance x(t=3.27) = (20.0cos(53))(3.27) - x = 3.36m past te goal post. (b) To determine weter te ball is rising or falling, we must determine were (orizontally) te (vertical) apex of ball s trajectory occurs. Recall 20.0 sin(53) tat at tis point, v y = 0. Tis occurs at time t = = 1.63s. At tis 9.8 time, te orizontal position is given by x(t = 1.63) = (20.0 cos(53))(1.63) = 19.6m. Since x(t=1.63) < x, te ball crosses te goal post wile falling. Problem 39 A boat crosses a river mi wide wit a velocity of 3.30 mi at an angle 62.5 nort of west. Te river carries an eastward current of 1.25 mi. How far upstream is te boat wen it reaces te opposite sore? Let s define perpendicular and parallel directions in relation to te riverbank (as well as te current). Ten, te perpendicular component of velocity is given by v = 3.30sin(117.5) = 2.93 mi. Tus, it takes te boat t = = to reac te opposite side. Tus, te boat ends up 2.93 x = (3.30cos(117.5))(0.173) + (1.25)(0.173) = ( mi)( 5280ft ) = 250 ft. 1mi upstream. Problem 58 We ave te following information: 4

5 y i = 2.00m, y f = 3.05m, θ = 40.0, x = 10.0m, a x = 0, We want to determine te initial velocity of te basketball so tat it goes in te oop witout toucing te backboard. Let s call it v 0. Ten, wit tis velocity, te time it takes te ball to reac te oop is given by t = x v 0 cos(θ). Substituting tis value for t into te expression for y as a function of t yields y as a function of v 0. x y f = y i + v 0 sin(θ)( v 0 cos(θ) ) a( x v 0 cos(θ) )2, = y i + x tan(θ) + Solving te above for v 0 yields gx 2 2v 2 0 cos 2 (θ). v 0 = = gx 2 y f y i x tan(θ), ( 9.8)(10.0) tan(40), = 11.6 m s. 5

Two-Dimensional Motion and Vectors

Two-Dimensional Motion and Vectors CHAPTER 3 VECTOR quantities: Two-imensional Motion and Vectors Vectors ave magnitude and direction. (x, y) Representations: y (x, y) (r, ) x Oter vectors: velocity, acceleration, momentum, force Vector

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

SIMG Solution Set #5

SIMG Solution Set #5 SIMG-303-0033 Solution Set #5. Describe completely te state of polarization of eac of te following waves: (a) E [z,t] =ˆxE 0 cos [k 0 z ω 0 t] ŷe 0 cos [k 0 z ω 0 t] Bot components are traveling down te

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS INTODUCTION ND MTHEMTICL CONCEPTS PEVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips of sine,

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Lesson 4 - Limits & Instantaneous Rates of Change

Lesson 4 - Limits & Instantaneous Rates of Change Lesson Objectives Lesson 4 - Limits & Instantaneous Rates of Cange SL Topic 6 Calculus - Santowski 1. Calculate an instantaneous rate of cange using difference quotients and limits. Calculate instantaneous

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

WYSE Academic Challenge 2004 State Finals Mathematics Solution Set

WYSE Academic Challenge 2004 State Finals Mathematics Solution Set WYSE Academic Callenge 00 State Finals Matematics Solution Set. Answer: c. We ave a sstem of tree equations and tree unknowns. We ave te equations: x + + z 0, x + 6 + 7z 9600, and 7x + + z 90. Wen we solve,

More information

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set WYSE Academic Callenge 00 Sectional Matematics Solution Set. Answer: B. Since te equation can be written in te form x + y, we ave a major 5 semi-axis of lengt 5 and minor semi-axis of lengt. Tis means

More information

1 Solutions to the in class part

1 Solutions to the in class part NAME: Solutions to te in class part. Te grap of a function f is given. Calculus wit Analytic Geometry I Exam, Friday, August 30, 0 SOLUTIONS (a) State te value of f(). (b) Estimate te value of f( ). (c)

More information

Phy 231 Sp 02 Homework #6 Page 1 of 4

Phy 231 Sp 02 Homework #6 Page 1 of 4 Py 231 Sp 02 Homework #6 Page 1 of 4 6-1A. Te force sown in te force-time diagram at te rigt versus time acts on a 2 kg mass. Wat is te impulse of te force on te mass from 0 to 5 sec? (a) 9 N-s (b) 6 N-s

More information

University of Alabama Department of Physics and Astronomy PH 101 LeClair Summer Exam 1 Solutions

University of Alabama Department of Physics and Astronomy PH 101 LeClair Summer Exam 1 Solutions University of Alabama Department of Pysics and Astronomy PH 101 LeClair Summer 2011 Exam 1 Solutions 1. A motorcycle is following a car tat is traveling at constant speed on a straigt igway. Initially,

More information

= h. Geometrically this quantity represents the slope of the secant line connecting the points

= h. Geometrically this quantity represents the slope of the secant line connecting the points Section 3.7: Rates of Cange in te Natural and Social Sciences Recall: Average rate of cange: y y y ) ) ), ere Geometrically tis quantity represents te slope of te secant line connecting te points, f (

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

Section 3.1: Derivatives of Polynomials and Exponential Functions

Section 3.1: Derivatives of Polynomials and Exponential Functions Section 3.1: Derivatives of Polynomials and Exponential Functions In previous sections we developed te concept of te derivative and derivative function. Te only issue wit our definition owever is tat it

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits.

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits. Questions 1. State weter te function is an exponential growt or exponential decay, and describe its end beaviour using its. (a) f(x) = 3 2x (b) f(x) = 0.5 x (c) f(x) = e (d) f(x) = ( ) x 1 4 2. Matc te

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Fall 2016 Math 2B Suggested Homework Problems Solutions

Fall 2016 Math 2B Suggested Homework Problems Solutions Fall 016 Math B Suggested Homework Problems Solutions Antiderivatives Exercise : For all x ], + [, the most general antiderivative of f is given by : ( x ( x F(x = + x + C = 1 x x + x + C. Exercise 4 :

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

Outline. MS121: IT Mathematics. Limits & Continuity Rates of Change & Tangents. Is there a limit to how fast a man can run?

Outline. MS121: IT Mathematics. Limits & Continuity Rates of Change & Tangents. Is there a limit to how fast a man can run? Outline MS11: IT Matematics Limits & Continuity & 1 Limits: Atletics Perspective Jon Carroll Scool of Matematical Sciences Dublin City University 3 Atletics Atletics Outline Is tere a limit to ow fast

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR SECTION 11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 633 wit speed v o along te same line from te opposite direction toward te source, ten te frequenc of te sound eard b te observer is were c is

More information

Section 2.4: Definition of Function

Section 2.4: Definition of Function Section.4: Definition of Function Objectives Upon completion of tis lesson, you will be able to: Given a function, find and simplify a difference quotient: f ( + ) f ( ), 0 for: o Polynomial functions

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

, meant to remind us of the definition of f (x) as the limit of difference quotients: = lim

, meant to remind us of the definition of f (x) as the limit of difference quotients: = lim Mat 132 Differentiation Formulas Stewart 2.3 So far, we ave seen ow various real-world problems rate of cange and geometric problems tangent lines lead to derivatives. In tis section, we will see ow to

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

CHAPTER 18 MOTION IN A CIRCLE

CHAPTER 18 MOTION IN A CIRCLE EXERCISE, Pae 6 CHAPTER 8 MOTION IN A CIRCLE. A locomotive travels around a curve of 0 m radius. If te orizontal trust on te outer rail is of te locomotive weit, determine te speed of te locomotive. Te

More information

Downloaded from

Downloaded from HEIGHTS AND DISTANCES 1. If te angle of elevation of cloud from a point meters aove a lake is and te angle of depression of its reflection in te lake is cloud is., prove tat te eigt of te Ans : If te angle

More information

Derivative as Instantaneous Rate of Change

Derivative as Instantaneous Rate of Change 43 Derivative as Instantaneous Rate of Cange Consider a function tat describes te position of a racecar moving in a straigt line away from some starting point Let y s t suc tat t represents te time in

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

y = x 5 ( ) + 22 at the rate of 3 units per second.

y = x 5 ( ) + 22 at the rate of 3 units per second. C 4-6,8 Review Pre-Calculus Name Period THEME 1 Parametric Equations Refreser notes: 1) Maggie moves at constant speed of 6 m/s. Se starts at te point (12,3) and eads towards te y-axis along te line y

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine?

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine? 1 1 Power is transferred troug a macine as sown. power input P I macine power output P O power loss P L Wat is te efficiency of te macine? P I P L P P P O + P L I O P L P O P I 2 ir in a bicycle pump is

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section Pre-lab Quiz/PHYS 4 Eart s Magnetic Field Your name Lab section 1. Wat do you investigate in tis lab?. For a pair of Helmoltz coils described in tis manual and sown in Figure, r=.15 m, N=13, I =.4 A, wat

More information

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

Solutions Manual for Precalculus An Investigation of Functions

Solutions Manual for Precalculus An Investigation of Functions Solutions Manual for Precalculus An Investigation of Functions David Lippman, Melonie Rasmussen 1 st Edition Solutions created at Te Evergreen State College and Soreline Community College 1.1 Solutions

More information

Definition of the Derivative

Definition of the Derivative Te Limit Definition of te Derivative Tis Handout will: Define te limit grapically and algebraically Discuss, in detail, specific features of te definition of te derivative Provide a general strategy of

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

Work and Energy. Introduction. Work. PHY energy - J. Hedberg

Work and Energy. Introduction. Work. PHY energy - J. Hedberg Work and Energy PHY 207 - energy - J. Hedberg - 2017 1. Introduction 2. Work 3. Kinetic Energy 4. Potential Energy 5. Conservation of Mecanical Energy 6. Ex: Te Loop te Loop 7. Conservative and Non-conservative

More information

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x)

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x) Derivative Rules Using te efinition of te erivative of a function is quite teious. Let s prove some sortcuts tat we can use. Recall tat te efinition of erivative is: Given any number x for wic te limit

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c.

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c. Capter Derivatives Review of Prerequisite Skills. f. p p p 7 9 p p p Eercise.. i. ( a ) a ( b) a [ ] b a b ab b a. d. f. 9. c. + + ( ) ( + ) + ( + ) ( + ) ( + ) + + + + ( ) ( + ) + + ( ) ( ) ( + ) + 7

More information

Physics 12. Chapter 1: Vector Analysis in Two Dimensions

Physics 12. Chapter 1: Vector Analysis in Two Dimensions Physics 12 Chapter 1: Vector Analysis in Two Dimensions 1. Definitions When studying mechanics in Physics 11, we have realized that there are two major types of quantities that we can measure for the systems

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

5. (a) Find the slope of the tangent line to the parabola y = x + 2x

5. (a) Find the slope of the tangent line to the parabola y = x + 2x MATH 141 090 Homework Solutions Fall 00 Section.6: Pages 148 150 3. Consider te slope of te given curve at eac of te five points sown (see text for figure). List tese five slopes in decreasing order and

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

Exponentials and Logarithms Review Part 2: Exponentials

Exponentials and Logarithms Review Part 2: Exponentials Eponentials and Logaritms Review Part : Eponentials Notice te difference etween te functions: g( ) and f ( ) In te function g( ), te variale is te ase and te eponent is a constant. Tis is called a power

More information

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6 A Answers Important Note about Precision of Answers: In many of te problems in tis book you are required to read information from a grap and to calculate wit tat information. You sould take reasonable

More information

E p = mgh (if h i=0) E k = ½ mv 2 Ek is measured in Joules (J); m is measured in kg; v is measured in m/s. Energy Continued (E)

E p = mgh (if h i=0) E k = ½ mv 2 Ek is measured in Joules (J); m is measured in kg; v is measured in m/s. Energy Continued (E) nergy Continued () Gravitational Potential nergy: - e energy stored in an object due to its distance above te surface of te art. - e energy stored depends on te mass of te object, te eigt above te surface,

More information

MATH 155A FALL 13 PRACTICE MIDTERM 1 SOLUTIONS. needs to be non-zero, thus x 1. Also 1 +

MATH 155A FALL 13 PRACTICE MIDTERM 1 SOLUTIONS. needs to be non-zero, thus x 1. Also 1 + MATH 55A FALL 3 PRACTICE MIDTERM SOLUTIONS Question Find te domain of te following functions (a) f(x) = x3 5 x +x 6 (b) g(x) = x+ + x+ (c) f(x) = 5 x + x 0 (a) We need x + x 6 = (x + 3)(x ) 0 Hence Dom(f)

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

Math 312 Lecture Notes Modeling

Math 312 Lecture Notes Modeling Mat 3 Lecture Notes Modeling Warren Weckesser Department of Matematics Colgate University 5 7 January 006 Classifying Matematical Models An Example We consider te following scenario. During a storm, a

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I October 12, 2016 8:30 am LAST NAME: FIRST NAME: STUDENT NUMBER: SIGNATURE: (I understand tat ceating is a serious offense DO NOT WRITE IN THIS TABLE

More information

Introduction. Learning Objectives. On completion of this chapter you will be able to:

Introduction. Learning Objectives. On completion of this chapter you will be able to: Introduction Learning Objectives On completion of tis capter you will be able to: 1. Define Compton Effect. 2. Derive te sift in incident ligt wavelengt and Compton wavelengt. 3. Explain ow te Compton

More information

The Krewe of Caesar Problem. David Gurney. Southeastern Louisiana University. SLU 10541, 500 Western Avenue. Hammond, LA

The Krewe of Caesar Problem. David Gurney. Southeastern Louisiana University. SLU 10541, 500 Western Avenue. Hammond, LA Te Krewe of Caesar Problem David Gurney Souteastern Louisiana University SLU 10541, 500 Western Avenue Hammond, LA 7040 June 19, 00 Krewe of Caesar 1 ABSTRACT Tis paper provides an alternative to te usual

More information

Name: Class: Date: Solution x 1 = units y 1 = 0. x 2 = d 2 cos = = tan 1 y

Name: Class: Date: Solution x 1 = units y 1 = 0. x 2 = d 2 cos = = tan 1 y Assessment Chapter Test B Teacher Notes and Answers Two-Dimensional Motion and Vectors CHAPTER TEST B (ADVANCED) 1. b 2. d 3. d x 1 = 3.0 10 1 cm east y 1 = 25 cm north x 2 = 15 cm west x tot = x 1 + x

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

Review for Exam IV MATH 1113 sections 51 & 52 Fall 2018

Review for Exam IV MATH 1113 sections 51 & 52 Fall 2018 Review for Exam IV MATH 111 sections 51 & 52 Fall 2018 Sections Covered: 6., 6., 6.5, 6.6, 7., 7.1, 7.2, 7., 7.5 Calculator Policy: Calculator use may be allowed on part of te exam. Wen instructions call

More information

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations Pysically Based Modeling: Principles and Practice Implicit Metods for Differential Equations David Baraff Robotics Institute Carnegie Mellon University Please note: Tis document is 997 by David Baraff

More information

2016 PRELIM 2 PAPER 2 MARK SCHEME

2016 PRELIM 2 PAPER 2 MARK SCHEME 06 River Valley Hig Scool Prelim Paper Mark Sceme 06 PRELIM PAPER MARK SCHEME (a) V 5.00 X 85. 9V 3 I.7 0 X V I X V I X 0.03 0. 85.9 5.00.7 X 48.3 00 X X 900 00 [A0] Anomalous data can be identified. Systematic

More information

MATH1131/1141 Calculus Test S1 v8a

MATH1131/1141 Calculus Test S1 v8a MATH/ Calculus Test 8 S v8a October, 7 Tese solutions were written by Joann Blanco, typed by Brendan Trin and edited by Mattew Yan and Henderson Ko Please be etical wit tis resource It is for te use of

More information

There seems to be three different groups of students: A group around 6 A group around 12 A group around 16

There seems to be three different groups of students: A group around 6 A group around 12 A group around 16 10 5 0 0 5 10 15 20 25 30 There seems to be three different groups of students: A group around 6 A group around 12 A group around 16 Altuğ Özpineci ( METU ) Phys109-MECHANICS PHYS109 55 / 67 10 5 0 0 5

More information

Physics 1A. Lecture 3B. "More than anything else... any guy here would love to have a monkey. A pet monkey." -- Dane Cook

Physics 1A. Lecture 3B. More than anything else... any guy here would love to have a monkey. A pet monkey. -- Dane Cook Physics 1A Lecture 3B "More than anything else... any guy here would love to have a monkey. A pet monkey." -- Dane Cook Trajectories Since there is no horizontal acceleration (a x = 0) the horizontal position,

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Mathematics 123.3: Solutions to Lab Assignment #5

Mathematics 123.3: Solutions to Lab Assignment #5 Matematics 3.3: Solutions to Lab Assignment #5 Find te derivative of te given function using te definition of derivative. State te domain of te function and te domain of its derivative..: f(x) 6 x Solution:

More information

MATH Fall 08. y f(x) Review Problems for the Midterm Examination Covers [1.1, 4.3] in Stewart

MATH Fall 08. y f(x) Review Problems for the Midterm Examination Covers [1.1, 4.3] in Stewart MATH 121 - Fall 08 Review Problems for te Midterm Eamination Covers [1.1, 4.3] in Stewart 1. (a) Use te definition of te derivative to find f (3) wen f() = π 1 2. (b) Find an equation of te tangent line

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information