Bond Graph and Wave-Scattering Models

Size: px
Start display at page:

Download "Bond Graph and Wave-Scattering Models"

Transcription

1 Bond Graph and Wave-Scattering Models of Switched Power Conversion R.G. Longoria and J.A. Kypuros Department of Mechanical Engineering University of Texas at Austin Austin, Texas , USA H.M. Paynter Massachusetts Institute of Technology P.O. Box 568 Pittsford, VT 05763, USA ABSTRACT Insight is gained by taking a wave-scattering perspective in the bond graph representation of power conversion processes that occur via physical switching mechanisms. Examples are presented to compare and contrast the approach necessary when considering certain hydraulic, mechanical, and power electronic systems. 1. INTRODUCTION Switched power conversion is achieved by a class of systems designed to transfer energy efficiently by taking advantage of changes in power flow connections. Ftealization of this concept can be identified in many areas and disciplines, and significant attention has been given in recent years to electronic systems. In this area alone the focus can vary, requiring decisions to be made regarding how to best represent the switching mechanisms. This requires reconciling accurate componentlevel physical models of switch-based devices with efficient system-level analysis and design methodologies. In this respect, this area offers many challenges opportunities for advancing the state-of-the-art in bond graph modeling and system simulation. This paper demonstrates how bond graph and wavescattering models can be used to study switched power conversion. The boost converter as realized in both the hydraulic and electrical energy domains is used for this purpose. 2. MODELING SWITCHES WITH SCATTERING MATRICES Switching mechanisms can be either physically or functionally represented, depending on the application and end use of the model. There has been considerable discussion in the literature regarding switch models, although it would seem that the two prevailing schools of thought are applicable for their respective problems of interest. It has been well demonstrated, for exam- ple, that one would generally not choose what is regarded as an ideal switch model to account for thermal effects [lo], particularly since the ideal switch is non-dissipative. There also arise questions regarding causality, and those have been addressed in many different ways as well. Many of the challenges faced relate to discontinuities and problems can arise from the conventional use of causality to derive independent states of a system. In this respect, the problems with changes in causality due to switching can be resolved by building a single model as suggested by Karnopp [4, 51, although this seemingly preferred approach has not been universally accepted. A scattering approach as presented by Longoria [9] is reviewed here as a companion or alternative to conventional bond graph approaches, although the bases are fundamentally related [SI. A particular advantage is that the ideal and non-ideal (lossy) switch models can be formulated in a consistent manner, providing a way to evolve toward a more complex or simplified system model. Bond graphs can be generally thought of as powerflow graphs, and the conventional use employs quantifying power flow on a bond via effort-flow variables (e, f). A wave-scattering approach employs instead duplex signals to represent the transfer of energy and flow of power on bonds and through and within system elements [6,9]. On power bonds, wave variables are used (G7,Z) to quantify power, and at the port of a system or device scattering variables are employed (U, v). The utilization of a scattering formulation for system modeling is beginning to attract attention outside of the classical microwave applications, and, for example, has become popular as a basis for computer-aided analysis of photonic systems. Scattering operators relate inwave U and outwave 1) scattering variables (which can be directly related to most classically defined effort-flow variables). A useful 1997 IEEE 1522

2 formulation for system modeling is t,hrough the causal matrix relation, v = S(u)u, where U and v are inwave and outwave vectors for the multiport system. The matrix S is shown here as inwave modulated, and as such is general1.y nonlinear. Most classical uses of scattering matrices have primarily been concerned with linear systems. 3. PHYSICAL NONEXISTENCE OF THE IDEAL SWITCH An ideal switching model has the scattering matrix, with z = 1 for on, and z = 0 for off. The scattering matrix is modulated by 2 to satisfy switch functionality. As long as the dissipation is not an issue, this model may be applicable for those cases where only functionality is important. However, the dual circuits and bond graphs of Figure 1 suffice to show the hazards entailed in using such models in physical systems. ciates (see [7, 101 anld other related works). The topology of choice involves a resistive element appended to a modulated transformer (M I F, or here T). This T-R combination is fundamental, and was earlier examined by Paynter and Busch-Vishniac [6] from the standpoint of modeling nonlineair elements using scattering representations. As such, it is a fundamental model for representing many types of lossy mechanisms. To derive the scattering relation for the T-R combination, use the cascade-load relationship in the form PI, Sc = Cii + Ziz(E, - SiCzz)-lSiCzi, where the Cij represent components of the scattering matrix for a coupling system. For the T-R combination, these components are the scalar modulated scattering coefficients for an ideal transformer and the result is 191, STR = (a +?)/(I + a.r>, where y = (T - l)/(r + 1) is the scattering coefficient of the one-port resistive load, and T is the normalized resistance. This formulation can be used to derive the scattering matrices for the two basic switch function topologies denoted as Type 0 (shunt>) and 1 (series) in Table 1 [9]. The switching models are represented in Table 1 by a wave-scattering bond graph, and the scattering variables at the two ports are related through the scattering relation, For a lossy Type 10 switch, the scattering matrix is, Figure 1: (a) Two common and dual switching circuits. (b) Wave-scattering bond graphs witih a general switching subsystem, S,,,,. If the right-hand circuit is interpreted in a thermal context, we recall that it has long been used in thermodynamics (as the hot-brick problem) to establish that entropy is necessarily generated upon closing the switch unless the two energy states are at the same temperature (= effort). General second law considerations then require that corresponding conditions must hold for all interpretations of these bond graphs, generally requiring a dissipative structure for the switch model. 4. THE LOSSY SWITCH Dissipation can be incorporated by including resistive elements, as done by G. Dauphin-Tanguy and asso- where, and, a (1- a) SI1 = 622 :=- 3 + a + 7. (1 + 37) These scattering matrices depend on the inwavemodulated function, a = a(ul,uz), which takes on a value of &1 to represent ideal switching. For values -1 < a < 1, this scattering formulation can be used to model dissipative or lossy switching.

3 1: Basic Wave-Scattering Switch Models. TvDe 0 I TvDe 1 I R Y 5. CLASSIFICATION SCHEME FOR SWITCH MODELS One of the classical uses of scattering methods was in formulating fundamental theorems in network theory. The scattering formulation is based on conservation of energy and has an inherent causal structure. It turns out to be useful not only in interpreting switching functions and models, as in the previous section, but also in helping to classify switching models. A classification is here proposed, as one does not seem to exist in the literature, as a tool to guide system modelers in determining what type of switch model is applicable for a particular application. For example, in low-power (chopper) controllers for dc motors, it may be sufficient to treat the semiconductor switches using functionallymodulated ideal switches, although this may not be the case for high-power switching of ac drives where the flux of energy being controlled is significant, and thermal effects are critical. A stick-slip switch model, on the other hand, as might be used to model power flow through a clutch, is best described by both modulation (e.g., control of the force between plates via hydraulics) and the level of energy flowing through the system. These problems suggest the following classification: I. Functionally modulated switch (includes two classes: ideal and lossy). 11. Energy-fiux (or inwave) modulated switch Combination of Type I and Type 11. This classification is used below for modeling switched power conversion. 6. SWITCHED POWER CONVERSION In the modern arena of electronics, switched power conversion refers to the process of either increasing or decreasing an electrical state (typically voltage) in a controlled manner. While this form of power conversion may be most prevalent (owing to the preponderance of electrical energy transmission), there is much to be gained by broadening the scope of this concept. In fact, it is found that one form of switched power conversion dates back 200 years to the French balloonist J.M. Montgolfier, who combined two hydraulic valves and an air vessel supplied by a water drive pipe to build what may be the first boost-converter. Some time earlier, B. Franklin may have also experimented with boosting electrical states through experiments with seriescascaded leyden jars, a process that likely describes the genesis of the electronic design. However, the topology of Montgolfier s hydraulic power converter, which is now referred to as a hydraulic ram, offers a striking analogy. Indeed, this self-acting pump has much to offer in a parallel study with its electrical cousin. The boost converter analogy is shown in Fig. 2. Figures 3(a) and (b) illustrate wave-scattering bond graphs with switching elements indicated by SI and SII, to denote switches of Type I and 11, respectively. The scattering matrix used in each case should correspond to the switch models of Type 0 and 1 (see Table 1). Note that both transformers are modulated (MTF or T here), 1524

4 a) = dg)/(l and m = v'm/(l- -a). The classification scheme serves to identify the inherent difference in the operating principle governing each of these systems-indeed the analogy is found to have distinct differences. To begin with, the hydraulic ram model requires both the R and C elements at the inlet side in order to model the pumping action. The switches are also different types, as indicated in the bond graphs of Figure 3. In the electronic boost converter, the transformer modulus is controlled by an external circuit, while the downstream Type I1 switch (the diode) is modulated by the inwave variables. The hydraulic ram is designed to be self-acting-a mode achieved in this ram through the connection of two Type I1 switches. The self-acting nature implies this is an open-loop conversion process> whereas the electronic boost converter takes advantage of feedback. Indeed, this explains how an electronic converter can be much more efficient compared to an equivalent self-acting hydraulic ram. Additional insight can be gained by deriving a single, twwport (modulated) scattering matrix for the switching sub-system in the boost converter. The wave matrices of each component are multiplied to give one wave matrix, which can be used in analysis or converted to a scattering matrix (see [SI). These scattering matrices provide insight into the controlled action required for the electronic boost converter. For the case of the hydraulic ram, the scattering matrix will reveal how the system can be designed to achieve the required switching performance. This scattering matrix captures the critical switching losses, and is a useful tool for efficiency studies [Ill. 7. DISCUSSION AND CONCLUSIONS The use of an ideal switch is attractive in that it is conceptually simple; it certainly fits the Boolean nature of modern day computing. Abandoning the second law, however, is not advisable, and physical system modelers recognize the need to capture the lossy nature of switching. This paper has shown how bond graph models can be used to represent most basic switching topologies using scattering matrices. The benefit of scattering matrices is that they cm model both the ideal and lossy switching behavior in a uniform fashion. A classification scheme has been proposed in order to guide the development and/or selection of switch models for a given application. The use of two-port scattering models for switches permits a system modeler to incorporate the effect of switching mechanisms. To illustrate this, the bond graph and wave-scattering models for two analogous systems have been contrasted in this paper. The electronic boost converter and the U Deliverv Figure 2: A boost converter analogy: (a) hydraulic ram, (b) electronic boost converter. E- I I C E a C Control Figure 3: Bond graphs of the anaalogous systems: (a) hydraulic ram, (b) electronic boost converter. F

5 hydraulic ram are switched power conversion systems that require modeling of interactions between switching mechanisms and auxiliary components. Being able to represent the interaction of switches with other systems over a broad range of parameter changes offers many challenges. One issue of importance arises when studying the hydraulic ram, for instance. In the model presented in this paper, the drive pipe has been modeled with lumped resistive and inertive elements. The operation of the waste valve, however, requires that the pressure at the junction of the two switching valves undergo sequenced variations. This effect will arise from a compressibility effect that has been approximated in the lumped model of Fig. 2(a) by a lumped C. In order to best reflect back impedance, a more accurate representation would require at least a modal or transmission line model of the drive pipe wave dynamics. In this case, the scattering approach may be even more appropriate for representing the interaction of switches and distributed-parameter models. 8. ACKNOWLEDGMENTS We gratefully acknowledge support by the Dynamic Systems and Controls Division at the National Science Foundation through grant number CMS REFERENCES H.M. Paynter, Analysts and Design of Engineering Systems. MIT Press, Cambridge, Massachusetts, R.W. Newcomb, Linear Multiport Synthesis, McGraw-Hill, New York, [7] J.P. Ducreux, G. Dauphin-Tanguy, and C. Rombaut, Bond Graph Modeling of Commutations in Power Electronics Circuits, Znternatnonal Conference on Bondgraph Modelang (ICBGM 93), Proceedings of the 1993 Western Simulation Multiconference, January 17-20, 1993, La Jolla, California, USA, pp [SI H.M. Paynter, An Epistemic Prehistory of Bond Graphs, Bond Graphs for Engzneers, ed. P.C. Breedveld and G. Dauphin-Tanguy, Elsevier Science Publishers B.V. (North-Holland), [9] R.G. Longoria, Wave-Scattering Formalisms for Multiport Energetic Systems, Journal of the Franklin Institute, Vol. 333(B), No. 4, pp , [lo] J. Garcia, G. Dauphin-Tanguy, and and C. Rombaut, A Bond Graph Approach for Modeling Switching Losses of Power Semiconductor Devices, International Conference on Bondgraph Modeling (ICBGM 93), Proceedings of the 1997 Western Simulation Multiconference, January 12-15, 1997, Tuscon, Arizona, USA, pp [ll] H.M. Paynter and R.G. Longoria, Two-Port Canonical Bond Graph Models of Lossy Power Transduction, IEEE/SMC 97, Paper No. 634 (this conference). Woodson, H.H. and W.F. Weldon, Energy Considerations in Switching Current from an Inductive Store into a Railgun, Proc. Fourth IEEE Pulsed Power Conference, Albuquerque, New Mexico, pp. 2225, Karnopp, D., Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems, Journal of Dynamic Systems Measurement and Control (ASME), Vol. 107, pp Karnopp, D., General Method for Including Rapidly Switched Devices in Dynamic System Simulation Models, Duns. of the Society of Computer Simulation, Vo. 2, No. 1, pp Paynter, H.M. and I. Busch-Vishniac. 1988, Wave-scattering Approaches to Conservation and Causality. ) Journal of the Franklin Institute 325( 3) ~

Electrical and Magnetic Modelling of a Power Transformer: A Bond Graph Approach

Electrical and Magnetic Modelling of a Power Transformer: A Bond Graph Approach Vol:6, No:9, Electrical and Magnetic Modelling of a Power Transformer: A Bond Graph Approach Gilberto Gonzalez-A, Dunia Nuñez-P International Science Index, Electrical and Computer Engineering Vol:6, No:9,

More information

ENGI9496 Modeling and Simulation of Dynamic Systems Bond Graphs

ENGI9496 Modeling and Simulation of Dynamic Systems Bond Graphs ENGI9496 Modeling and Simulation of Dynamic Systems Bond Graphs Topics covered so far: Analogies between mechanical (translation and rotation), fluid, and electrical systems o Review of domain-specific

More information

Scattering Parameters

Scattering Parameters Berkeley Scattering Parameters Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad September 7, 2017 1 / 57 Scattering Parameters 2 / 57 Scattering Matrix Voltages and currents are

More information

Thermofluid effects in dynamic systems

Thermofluid effects in dynamic systems Thermofluid effects in dynamic systems Use of entropy (from BP) From BP: Equilibrium and states When we make a thermodynamic assumption, we assume a homogeneous substance has near uniform properties of

More information

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company Basic C m ш ircuit Theory Charles A. Desoer and Ernest S. Kuh Department of Electrical Engineering and Computer Sciences University of California, Berkeley McGraw-Hill Book Company New York St. Louis San

More information

Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright Diane L. Peters, Ph.D., P.E.

Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright Diane L. Peters, Ph.D., P.E. Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright 2015 Diane L. Peters, Ph.D., P.E. Spring 2015 2 Contents 1 Overview of Dynamic Modeling 5 2 Bond Graph Basics 7 2.1 Causality.............................

More information

Chapter 2 Voltage-, Current-, and Z-source Converters

Chapter 2 Voltage-, Current-, and Z-source Converters Chapter 2 Voltage-, Current-, and Z-source Converters Some fundamental concepts are to be introduced in this chapter, such as voltage sources, current sources, impedance networks, Z-source, two-port network,

More information

WITH THE FIRST ANALYSIS of a junction transistor

WITH THE FIRST ANALYSIS of a junction transistor Transistor Switching Analysis Dr. C. A. MEAD* With the widespread application of junction transistors in switching applications, the need for a general method of analysis useful in the region of collector

More information

STABILITY OF PNEUMATIC and HYDRAULIC VALVES

STABILITY OF PNEUMATIC and HYDRAULIC VALVES STABILITY OF PNEUMATIC and HYDRAULIC VALVES These three tutorials will not be found in any examination syllabus. They have been added to the web site for engineers seeking knowledge on why valve elements

More information

Study of Chaos and Dynamics of DC-DC Converters BY SAI RAKSHIT VINNAKOTA ANUROOP KAKKIRALA VIVEK PRAYAKARAO

Study of Chaos and Dynamics of DC-DC Converters BY SAI RAKSHIT VINNAKOTA ANUROOP KAKKIRALA VIVEK PRAYAKARAO Study of Chaos and Dynamics of DC-DC Converters BY SAI RAKSHIT VINNAKOTA ANUROOP KAKKIRALA VIVEK PRAYAKARAO What are DC-DC Converters?? A DC-to-DC converter is an electronic circuit which converts a source

More information

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology 21 22 NTC 8 D11 D13 D15 7 D7 16 15 T1 T3 T5 D1 D3 D5 18 2 17 19 1 2 3 6 5 4 9 D12 D14 D16 14 T7 11 T2 T4 T6 D2 D4 D6 12 13 E72873

More information

The POG Modeling Technique Applied to Electrical Systems

The POG Modeling Technique Applied to Electrical Systems The POG Modeling Technique Applied to Electrical Systems Roberto ZANASI Computer Science Engineering Department (DII) University of Modena and Reggio Emilia Italy E-mail: roberto.zanasi@unimo.it Outline

More information

Modeling Switched Behavior with Hybrid Bond Graph : Application to a Tank System

Modeling Switched Behavior with Hybrid Bond Graph : Application to a Tank System www.ijcsi.org 6 Modeling Switched Behavior with Hybrid Bond Graph : Application to a Tank System Slim TRIKI, Taher MEKKI and Anas KAMOUN Research Unit on Renewable Energies and Electric Vehicles (RELEV),

More information

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology MUBW 5-17 T8 Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology 21 22 NTC 8 D11 D13 D15 7 D7 16 15 T1 T3 T5 D1 D3 D5 18 2 17 19 1 2 3 6 5 4 9 D12 D14 D16 14 T7 11 T2 T4 T6 D2 D4 D6

More information

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad Berkeley Matching Networks Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad February 9, 2016 1 / 33 Impedance Matching R S i i i o Z in + v i Matching Network + v o Z out RF design

More information

Lecture Fluid system elements

Lecture Fluid system elements Lecture 8.1 Fluid system elements volumetric flowrate pressure drop Detailed distributed models of fluids, such as the Navier-Stokes equations, are necessary for understanding many aspects of fluid systems

More information

Converter - Brake - Inverter Module (CBI 1) Trench IGBT

Converter - Brake - Inverter Module (CBI 1) Trench IGBT Converter - Brake - Inverter Module (CBI 1) Trench IGBT Preliminary data Three Phase Rectifier Brake Chopper Three Phase Inverter RRM = 16 CES = 12 CES = 12 I DM25 = 151 I C25 = 19 I C25 = 43 I FSM = 32

More information

System-theoretic properties of port-controlled Hamiltonian systems Maschke, B.M.; van der Schaft, Arjan

System-theoretic properties of port-controlled Hamiltonian systems Maschke, B.M.; van der Schaft, Arjan University of Groningen System-theoretic properties of port-controlled Hamiltonian systems Maschke, B.M.; van der Schaft, Arjan Published in: Proceedings of the Eleventh International Symposium on Mathematical

More information

COMPOSITE REPRESENTATION OF BOND GRAPHS AND BLOCK DIAGRAMS FOR CONTROLLED SYSTEMS

COMPOSITE REPRESENTATION OF BOND GRAPHS AND BLOCK DIAGRAMS FOR CONTROLLED SYSTEMS COMPOSITE REPRESENTATION OF BOND GRAPHS AND BLOCK DIAGRAMS FOR CONTROLLED SYSTEMS Engr. Lubna Moin Dr. Vali Uddin (e-mail: engr_lubna@yahoo.com) (e-mail v_uddin@hotmail.com) National University of Sciences

More information

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted

More information

Conventional Paper I-2010

Conventional Paper I-2010 Conventional Paper I-010 1. (a) Sketch the covalent bonding of Si atoms in a intrinsic Si crystal Illustrate with sketches the formation of bonding in presence of donor and acceptor atoms. Sketch the energy

More information

Converter - Brake - Inverter Module XPT IGBT

Converter - Brake - Inverter Module XPT IGBT MIXWBTML Converter - Brake - Inverter Module XPT IGBT Three Phase Rectifier Brake Chopper RRM = 16 CES = Three Phase Inverter CES = I DM2 = 1 2 = 17 2 = 28 I FSM = 3 CE(sat) = 1.8 CE(sat) = 1.8 Part name

More information

Equal Pitch and Unequal Pitch:

Equal Pitch and Unequal Pitch: Equal Pitch and Unequal Pitch: Equal-Pitch Multiple-Stack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator

More information

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology MUBW 5- T Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology NTC D D3 D5 7 D7 5 T T3 T5 D D3 D5 7 9 3 5 9 D D D T7 T T T D D D 3 3 Three Phase Rectifier Brake Chopper Three Phase Inverter

More information

Analog Circuits and Systems

Analog Circuits and Systems Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 5 Analog Signal Processing using One Port Networks, Passive Two Ports and Ideal Amplifiers 1 One Port Devices Passive devices like R, L, C and

More information

Maria Carmela Di Piazza. Gianpaolo Vitale. Photovoltaic Sources. Modeling and Emulation. ^ Springer

Maria Carmela Di Piazza. Gianpaolo Vitale. Photovoltaic Sources. Modeling and Emulation. ^ Springer Maria Carmela Di Piazza Gianpaolo Vitale Photovoltaic Sources Modeling and Emulation ^ Springer Part I 1 From the Nuclear Fusion to the Radiated Energy on the Earth... 3 1.1 Inside the Universe 3 1.2 The

More information

Modeling and Experimentation: Compound Pendulum

Modeling and Experimentation: Compound Pendulum Modeling and Experimentation: Compound Pendulum Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin Fall 2014 Overview This lab focuses on developing a mathematical

More information

Automatic Control Systems. -Lecture Note 15-

Automatic Control Systems. -Lecture Note 15- -Lecture Note 15- Modeling of Physical Systems 5 1/52 AC Motors AC Motors Classification i) Induction Motor (Asynchronous Motor) ii) Synchronous Motor 2/52 Advantages of AC Motors i) Cost-effective ii)

More information

ME 4232: FLUID POWER CONTROLS LAB. Class #5 Valve Modeling

ME 4232: FLUID POWER CONTROLS LAB. Class #5 Valve Modeling ME 4232: FLUID POWER CONTROLS LAB Class #5 Valve Modeling Notes No Office Hours Today Upcoming Labs: Lab 9: Flow Divider Lab 10: Sequencing Circuits 2 Agenda Wrap-up: Leakage Calculations Fluid Compressibility

More information

POE Concepts and Learning Objectives

POE Concepts and Learning Objectives POE Concepts and Learning Objectives Unit 1 Energy and Power Time Days: 49 days Lesson 1.1 Mechanisms (15 days): 1. Engineers and engineering technologists apply math, science, and disciplinespecific skills

More information

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2 - CAPACITOR NETWORK

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2 - CAPACITOR NETWORK EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No.2 - CAPACITOR NETWORK NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is

More information

Converter - Brake - Inverter Module XPT IGBT

Converter - Brake - Inverter Module XPT IGBT MIXWBTMH Converter - Brake - Inverter Module XPT IGBT Three Phase Rectifier Brake Chopper RRM = 16 CES = Three Phase Inverter CES = I DM2 = 2 = 28 2 = 28 I FSM = 27 CE(sat) = 1.8 CE(sat) = 1.8 Part name

More information

Model-Order Reduction of High-Speed Interconnects: Challenges and Opportunities

Model-Order Reduction of High-Speed Interconnects: Challenges and Opportunities Model-Order Reduction of High-Speed Interconnects: Challenges and Opportunities Michel Nakhla Carleton University Canada Model Reduction for Complex Dynamical Systems Berlin 2010 EMI Delay Crosstalk Reflection

More information

Saint Lucie County Science Scope and Sequence

Saint Lucie County Science Scope and Sequence Course: Honors Physics 1 Course Code: 2003390 UNIT 9 TOPIC of STUDY: Electricity STANDARDS: 10: Energy ~The electric force between two charged particles depends upon the size of the charge and the distance

More information

REGLERTEKNIK AUTOMATIC CONTROL LINKÖPING

REGLERTEKNIK AUTOMATIC CONTROL LINKÖPING Generating state space equations from a bond graph with dependent storage elements using singular perturbation theory. Krister Edstrom Department of Electrical Engineering Linkoping University, S-58 83

More information

Power semiconductor devices

Power semiconductor devices Electrical Engineering Division Page 1 of 10 Power semiconductor devices Power semiconductor devices constitute the heart of modern power electronic apparatus. The main function of the power semiconductor

More information

AIRCRAFT BRAKING DYNAMICS AND BRAKE SYSTEM MODELING FOR FAULT DETECTION AND ISOLATION

AIRCRAFT BRAKING DYNAMICS AND BRAKE SYSTEM MODELING FOR FAULT DETECTION AND ISOLATION AIRCRAFT BRAKING DYNAMICS AND BRAKE SYSTEM MODELING FOR FAULT DETECTION AND ISOLATION Lucas Cardoso Navarro ITA São José dos Campos, São Paulo, Brazil Luiz Carlos Sandoval Goes ITA São José dos Campos,

More information

Residual Bond Graph Sinks for Numerical Evaluation of Analytical Redundancy Relations in Model Based Single Fault Detection and Isolation

Residual Bond Graph Sinks for Numerical Evaluation of Analytical Redundancy Relations in Model Based Single Fault Detection and Isolation Residual Bond Graph Sinks for Numerical Evaluation of Analytical Redundancy Relations in Model Based Single Fault Detection and Isolation W. Borutzky Bonn-Rhein-Sieg University of Applied Sciences, D-53754

More information

Six-Pack XPT IGBT MIXA30W1200TMH. V CES = 1200 V I C25 = 43 A V CE(sat) = 1.8 V. Part name (Marking on product) MIXA30W1200TMH

Six-Pack XPT IGBT MIXA30W1200TMH. V CES = 1200 V I C25 = 43 A V CE(sat) = 1.8 V. Part name (Marking on product) MIXA30W1200TMH MIX3W12TMH Six-Pack XPT IGBT S = 12 25 = 43 (sat) = 1.8 Part name (Marking on product) MIX3W12TMH E 72873 Pin configuration see outlines. Features: High level of integration - only one power semiconductor

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

Index. Index. More information. in this web service Cambridge University Press

Index. Index. More information.  in this web service Cambridge University Press A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,

More information

THE MINIMUM LOSS OF IMPEDANCE MATCHING TWO-PORTS

THE MINIMUM LOSS OF IMPEDANCE MATCHING TWO-PORTS THE MINIMUM LOSS OF IMPEDANCE MATCHING TWO-PORTS By J. SOLYMOSI Institute of Communication Electronics, Technical University, Budapest Received FebrucTv 27, 1979 Presented by Prof. Dr. S. CSIBI 1. Characterization

More information

Over Current Protection Circuits Voltage controlled DC-AC Inverters Maximum operating temperature of 175 C

Over Current Protection Circuits Voltage controlled DC-AC Inverters Maximum operating temperature of 175 C Description United Silicon Carbide, Inc offers the xj series of high-performance SiC normally-on JFET transistors. This series exhibits ultra-low on resistance (R DS(ON) ) and gate charge (Q G ) allowing

More information

Chapter 1 Introduction to System Dynamics

Chapter 1 Introduction to System Dynamics Chapter 1 Introduction to System Dynamics SAMANTHA RAMIREZ Introduction 1 What is System Dynamics? The synthesis of mathematical models to represent dynamic responses of physical systems for the purpose

More information

Converter - Brake - Inverter Module (CBI 1) NPT IGBT

Converter - Brake - Inverter Module (CBI 1) NPT IGBT MUBW35-066K Converter - Brake - Inverter Module (CBI 1) NPT IGBT Preliminary data Three Phase Rectifier Brake Chopper Three Phase Inverter RRM = 1600 CES = 600 CES = 600 I DM25 = 130 I C25 = 25 I C25 =

More information

UNIVERSITY OF MASSACHUSETTS LOWELL DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING SYLLABUS FOR THE DOCTORAL QUALIFYING EXAM

UNIVERSITY OF MASSACHUSETTS LOWELL DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING SYLLABUS FOR THE DOCTORAL QUALIFYING EXAM UNIVERSITY OF MASSACHUSETTS LOWELL DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING SYLLABUS FOR THE DOCTORAL QUALIFYING EXAM Ph.D/D.Eng. Electrical Engineering Option These are the general topics for the

More information

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION 4 DC Biasing BJTs CHAPTER OBJECTIVES Be able to determine the dc levels for the variety of important BJT configurations. Understand how to measure the important voltage levels of a BJT transistor configuration

More information

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS UNIT 2: ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS MODULE 1: ELECTRICITY AND MAGNETISM GENERAL OBJECTIVES On completion of this Module, students should: 1. understand

More information

Passivity-based Control of Euler-Lagrange Systems

Passivity-based Control of Euler-Lagrange Systems Romeo Ortega, Antonio Loria, Per Johan Nicklasson and Hebertt Sira-Ramfrez Passivity-based Control of Euler-Lagrange Systems Mechanical, Electrical and Electromechanical Applications Springer Contents

More information

Converter - Brake - Inverter Module (CBI 1) NPT IGBT

Converter - Brake - Inverter Module (CBI 1) NPT IGBT MUBW20-066K Converter - Brake - Inverter Module (CBI 1) NPT IGBT Preliminary data Three Phase Rectifier Brake Chopper RRM = 1600 CES = 600 CES Three Phase Inverter = 600 I DM25 = 95 I C25 = 12 I C25 =

More information

T1 T3 T5 D1 D3 D5 G1 G3 G5 U V W G2 G4 G6 EU EV EW

T1 T3 T5 D1 D3 D5 G1 G3 G5 U V W G2 G4 G6 EU EV EW MIXW1TMH Six-Pack XPT IGBT S = 1 2 = 28 (sat) = 1.8 Part name (Marking on product) MIXW1TMH P T1 T3 T D1 D3 D NTC1 G1 G3 G U W NTC2 T2 T4 T6 D2 D4 D6 G2 G4 G6 E 72873 Pin configuration see outlines. EU

More information

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference Electricity and Circuits a Electric circuits Describe the basic structure of an atom (positions, relative masses and relative charges of protons, neutrons and electrons). Recognise the circuit symbols

More information

Model reduction in the physical domain

Model reduction in the physical domain 48 Model reduction in the physical domain A Y Orbak, O S Turkay2*,**, E Eskinat and K Youcef-Toumi3 Department of Industrial Engineering, Uludag University, Bursa, Turkey 2Department of Mechanical Engineering,

More information

Modeling of Electromechanical Systems

Modeling of Electromechanical Systems Page 1 of 54 Modeling of Electromechanical Systems Werner Haas, Kurt Schlacher and Reinhard Gahleitner Johannes Kepler University Linz, Department of Automatic Control, Altenbergerstr.69, A 4040 Linz,

More information

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE Nigerian Journal of Technology (NIJOTECH) Vol. 31, No. 3, November, 2012, pp. 365 369. Copyright 2012 Faculty of Engineering, University of Nigeria. ISSN 1115-8443 EFFECTS OF LOAD AND SPEED VARIATIONS

More information

Principles Of Engineering Detailed Outline

Principles Of Engineering Detailed Outline Principles Of Engineering Detailed Outline Unit 1 Energy and Power Time Days: 115 days Lesson 1.0 Introduction to POE (15 days) 1. Introduction to classroom expectations, Engineering notebook, Pretest

More information

CONSTITUTIVE HYBRID PROCESSES

CONSTITUTIVE HYBRID PROCESSES CONSTITUTIVE HYBRID PROCESSES P.J.L. Cuijpers Technical University Eindhoven Eindhoven, Netherlands P.J.L.Cuijpers@tue.nl P.J. Mosterman The MathWorks, Inc. Natick, MA Pieter.Mosterman@mathworks.com J.F.

More information

ASSOCIATE DEGREE IN ENGINEERING RESIT EXAMINATIONS SEMESTER 1. "Electrical Eng Science"

ASSOCIATE DEGREE IN ENGINEERING RESIT EXAMINATIONS SEMESTER 1. Electrical Eng Science ASSOCIATE DEGREE IN ENGINEERING RESIT EXAMINATIONS SEMESTER 1 COURSE NAME: "Electrical Eng Science" CODE: GROUP: "[ADET 2]" DATE: December 2010 TIME: DURATION: 9:00 am "Two hours" INSTRUCTIONS: 1. This

More information

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Vandana Peethambaran 1, Dr.R.Sankaran 2 Assistant Professor, Dept. of

More information

A m. Q m P. piston or diaphragm

A m. Q m P. piston or diaphragm Massachusetts Institute of echnology Department of Mechanical Engineering 2.141 Modeling and Simulation of Dynamic Systems 2.141 Assignment #3: GAS-CHARGED ACCUMULAOR he figure below (after Pourmovahed

More information

World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering Vol:7, No:12, 2013

World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering Vol:7, No:12, 2013 Performance Comparison between ĆUK and SEPIC Converters for Maximum Power Point Tracking Using Incremental Conductance Technique in Solar Power Applications James Dunia, Bakari M. M. Mwinyiwiwa 1 Abstract

More information

Resonant Matching Networks

Resonant Matching Networks Chapter 1 Resonant Matching Networks 1.1 Introduction Frequently power from a linear source has to be transferred into a load. If the load impedance may be adjusted, the maximum power theorem states that

More information

PASSIFICATION OF ELECTROHYDRAULIC VALVES USING BOND GRAPHS

PASSIFICATION OF ELECTROHYDRAULIC VALVES USING BOND GRAPHS Copyright 22 IFAC 5th Triennial World Congress, Barcelona, Spain PASSIFICATION OF ELECTROHYDRAULIC VALVES USING BOND GRAPHS Perry Y. Li Roger F. Ngwompo 2 Department of Mechanical Engineering, University

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocwmitedu 00 Dynamics and Control II Spring 00 For information about citing these materials or our Terms of Use, visit: http://ocwmitedu/terms Massachusetts Institute of Technology

More information

Integrated analysis of hydraulic PTOs in WECs

Integrated analysis of hydraulic PTOs in WECs Integrated analysis of hydraulic PTOs in WECs Conference on CeSOS Highlights and AMOS Visions Limin Yang 29 th May, 2013, Trondheim Content Introduction Model description of wave energy converter (WEC)

More information

Nodalization. The student should be able to develop, with justification, a node-link diagram given a thermalhydraulic system.

Nodalization. The student should be able to develop, with justification, a node-link diagram given a thermalhydraulic system. Nodalization 3-1 Chapter 3 Nodalization 3.1 Introduction 3.1.1 Chapter content This chapter focusses on establishing a rationale for, and the setting up of, the geometric representation of thermalhydraulic

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING ELECTRICAL ENGINEERING Subject Code: EE Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Section B Section C Section D Section E Section F Section G Section H

More information

Scattering at One-Dimensional-Transmission-Line Junctions

Scattering at One-Dimensional-Transmission-Line Junctions Interaction Notes Note 603 15 March 007 Scattering at One-Dimensional-ransmission-Line Junctions Carl E. Baum University of New Mexico Department of Electrical and Computer Engineering Albuquerque New

More information

work in air sealed outlet EXAMPLE: THERMAL DAMPING

work in air sealed outlet EXAMPLE: THERMAL DAMPING EXAMPLE: THERMAL DAMPING work in air sealed outlet A BICYCLE PUMP WITH THE OUTLET SEALED. When the piston is depressed, a fixed mass of air is compressed. mechanical work is done. The mechanical work done

More information

POG Modeling of Automotive Systems

POG Modeling of Automotive Systems POG Modeling of Automotive Systems MORE on Automotive - 28 Maggio 2018 Prof. Roberto Zanasi Graphical Modeling Techniques Graphical Techniques for representing the dynamics of physical systems: 1) Bond-Graph

More information

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits Chapter 7 Direct-Current Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 Voltage-Current Measurements... 8 7.6

More information

A control theory approach on the design of a Marx generator network

A control theory approach on the design of a Marx generator network University of New Mexico UNM Digital Repository Electrical & Computer Engineering Faculty Publications Engineering Publications 6-28-2009 A control theory approach on the design of a Marx generator network

More information

Analysis and Control of Multi-Robot Systems. Elements of Port-Hamiltonian Modeling

Analysis and Control of Multi-Robot Systems. Elements of Port-Hamiltonian Modeling Elective in Robotics 2014/2015 Analysis and Control of Multi-Robot Systems Elements of Port-Hamiltonian Modeling Dr. Paolo Robuffo Giordano CNRS, Irisa/Inria! Rennes, France Introduction to Port-Hamiltonian

More information

Standard circuit diagram symbols Content Key opportunities for skills development

Standard circuit diagram symbols Content Key opportunities for skills development 4.2 Electricity Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design

More information

Bond Graphs. Peter Breedveld University of Twente, EWI/CE, P.O. Box 217, 7500 AE Enschede, Netherlands,

Bond Graphs. Peter Breedveld University of Twente, EWI/CE, P.O. Box 217, 7500 AE Enschede, Netherlands, Bond Graphs Peter Breedveld University of Twente, EWI/CE, P.O. Box 217, 7500 AE Enschede, Netherlands, p.c.breedveld@utwente.nl 1 Introduction The topic area that has become commonly known as bond graph

More information

CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS

CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS 79 CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS 6.. INTRODUCTION The steady-state analysis of six-phase and three-phase self-excited induction generators has been presented

More information

10 23, 24 21, 22 19, , 14

10 23, 24 21, 22 19, , 14 MWI -T7T Six-Pack Trench IGBT = S = (sat) typ. = 1.7 Part name (Marking on product) MWI -T7T, 1, 1 1 9 17 NTC 1 3, 1, 19, E773 1 3 7 11 Pin configuration see outlines. 7, 13, 1 Features: Trench IGBT technology

More information

Power efficiency and optimum load formulas on RF rectifiers featuring flow-angle equations

Power efficiency and optimum load formulas on RF rectifiers featuring flow-angle equations This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Power efficiency and optimum load formulas on

More information

Graph-theoretic Modeling and Dynamic Simulation of an Automotive Torque Converter

Graph-theoretic Modeling and Dynamic Simulation of an Automotive Torque Converter Graph-theoretic Modeling and Dynamic Simulation of an Automotive Torque Converter Joydeep M. Banerjee and John J. McPhee Department of Systems Design Engineering University of Waterloo, Waterloo, Ontario

More information

Switching to AQA from OCR A and Additional Science (Physics components)

Switching to AQA from OCR A and Additional Science (Physics components) Switching to AQA from OCR A and Additional Science (Physics components) If you're thinking of switching to AQA from OCR Science A and Additional Science (J241 and J242) for teaching from September 2016,

More information

Modelling and Teaching of Magnetic Circuits

Modelling and Teaching of Magnetic Circuits Asian Power Electronics Journal, Vol. 1, No. 1, Aug 2007 Modelling and Teaching of Magnetic Circuits Yim-Shu Lee 1 and Martin H.L. Chow 2 Abstract In the analysis of magnetic circuits, reluctances are

More information

Analysis and control design of two cascaded boost converter

Analysis and control design of two cascaded boost converter MAT EC Web of Conferences 16, 64 (214) DOI: 1.151/ matecconf/ 21416 64 C Owned by the authors, published by EDP Sciences, 214 Analysis and control design of two cascaded boost converter A. Moutabir 1,

More information

Multi-domain Modeling and Simulation of a Linear Actuation System

Multi-domain Modeling and Simulation of a Linear Actuation System Multi-domain Modeling and Simulation of a Linear Actuation System Deepika Devarajan, Scott Stanton, Birgit Knorr Ansoft Corporation Pittsburgh, PA, USA Abstract In this paper, VHDL-AMS is used for the

More information

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mukesh C Chauhan 1, Hitesh R Khunt 2 1 P.G Student (Electrical),2 Electrical Department, AITS, rajkot 1 mcchauhan1@aits.edu.in

More information

CONVENTIONAL stability analyses of switching power

CONVENTIONAL stability analyses of switching power IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, MAY 2008 1449 Multiple Lyapunov Function Based Reaching Condition for Orbital Existence of Switching Power Converters Sudip K. Mazumder, Senior Member,

More information

Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 0 1 4 Block Diagrams Block diagram models consist of two fundamental objects:

More information

Lecture 23 Date: Multi-port networks Impedance and Admittance Matrix Lossless and Reciprocal Networks

Lecture 23 Date: Multi-port networks Impedance and Admittance Matrix Lossless and Reciprocal Networks Lecture 23 Date: 30.0.207 Multi-port networks mpedance and Admittance Matrix Lossless and Reciprocal Networks ntroduction A pair of terminals through which a current may enter or leave a network is known

More information

(Refer Slide Time: 00:01:30 min)

(Refer Slide Time: 00:01:30 min) Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various

More information

ENHANCEMENT MAXIMUM POWER POINT TRACKING OF PV SYSTEMS USING DIFFERENT ALGORITHMS

ENHANCEMENT MAXIMUM POWER POINT TRACKING OF PV SYSTEMS USING DIFFERENT ALGORITHMS Journal of Al Azhar University Engineering Sector Vol. 13, No. 49, October, 2018, 1290-1299 ENHANCEMENT MAXIMUM POWER POINT TRACKING OF PV SYSTEMS USING DIFFERENT ALGORITHMS Yasmin Gharib 1, Wagdy R. Anis

More information

IRGP4263PbF IRGP4263-EPbF

IRGP4263PbF IRGP4263-EPbF IRGP3PbF IRGP3-EPbF Insulated Gate Bipolar Transistor V CES = 5V I C = 5A, T C =1 C C G G t SC 5.5µs, T J(max) = 175 C V CE(ON) typ. = 1.7V @ IC = A Applications Industrial Motor Drive Inverters UPS Welding

More information

Six-Pack XPT IGBT MIXA20W1200MC. V CES = 1200 V I C25 = 28 A V CE(sat) = 2.1 V. Part name (Marking on product) MIXA20W1200MC

Six-Pack XPT IGBT MIXA20W1200MC. V CES = 1200 V I C25 = 28 A V CE(sat) = 2.1 V. Part name (Marking on product) MIXA20W1200MC MIXWMC Six-Pack XPT IGBT S = = 8 (sat) =. Part name (Marking on product) MIXWMC O9 P9 L9 S8 W8 E I4 C G4 K4 E K C G H Features: Easy paralleling due to the positive temperature coefficient of the on-state

More information

Features / Advantages: Applications: Package: SOT-227B (minibloc)

Features / Advantages: Applications: Package: SOT-227B (minibloc) IX7R1N XPT CS 1 I C5 1 1.8 C(sat) Boost Chopper Part number IX7R1N Backside: isolated 3 1 Features / dvantages: pplications: Package: SOT-7B (minibloc) asy paralleling due to the positive temperature coefficient

More information

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C Description United Silicon Carbide, Inc offers the high-performance G3 SiC normallyon JFET transistors. This series exhibits ultra-low on resistance (R DS(ON) ) and gate charge (Q G ) allowing for low

More information

4.2.1 Current, potential difference and resistance

4.2.1 Current, potential difference and resistance 4.2 Electricity Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design

More information

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application 797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,

More information

Mechatronics 1: ME 392Q-6 & 348C 31-Aug-07 M.D. Bryant. Analogous Systems. e(t) Se: e. ef = p/i. q = p /I, p = " q C " R p I + e(t)

Mechatronics 1: ME 392Q-6 & 348C 31-Aug-07 M.D. Bryant. Analogous Systems. e(t) Se: e. ef = p/i. q = p /I, p =  q C  R p I + e(t) V + - K R + - - k b V R V L L J + V C M B Analogous Systems i = q. + ω = θ. C -. λ/l = q v = x F T. Se: e e(t) e = p/i R: R 1 I: I e C = q/c C = dq/dt e I = dp/dt Identical dierential equations & bond

More information

Signals and Systems Chapter 2

Signals and Systems Chapter 2 Signals and Systems Chapter 2 Continuous-Time Systems Prof. Yasser Mostafa Kadah Overview of Chapter 2 Systems and their classification Linear time-invariant systems System Concept Mathematical transformation

More information

ECE 202 Fall 2013 Final Exam

ECE 202 Fall 2013 Final Exam ECE 202 Fall 2013 Final Exam December 12, 2013 Circle your division: Division 0101: Furgason (8:30 am) Division 0201: Bermel (9:30 am) Name (Last, First) Purdue ID # There are 18 multiple choice problems

More information

Six-Pack XPT IGBT MIXA30W1200TML. V CES = 1200 V I C25 = 43 A V CE(sat) = 1.8 V. Part name (Marking on product) MIXA30W1200TML

Six-Pack XPT IGBT MIXA30W1200TML. V CES = 1200 V I C25 = 43 A V CE(sat) = 1.8 V. Part name (Marking on product) MIXA30W1200TML MIX3WTML Six-Pack XPT IGBT S = = 3 (sat) =.8 Part name (Marking on product) MIX3WTML, 3 8 8 NTC 3 7,, 9, E7873 7 Pin configuration see outlines. 3 9, Features: High level of integration Rugged XPT design

More information

INSTRUMENTAL ENGINEERING

INSTRUMENTAL ENGINEERING INSTRUMENTAL ENGINEERING Subject Code: IN Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Section B Section C Section D Section E Section F Section G Section H Section

More information