Thermofluid effects in dynamic systems

Size: px
Start display at page:

Download "Thermofluid effects in dynamic systems"

Transcription

1 Thermofluid effects in dynamic systems

2 Use of entropy (from BP)

3 From BP: Equilibrium and states When we make a thermodynamic assumption, we assume a homogeneous substance has near uniform properties of temperature and pressure. These are intensive variables. Extensive variables distribute among the parts. Intensive are common over a substance, while extensive sum over the substance.

4 U SVN Gibbs internal energy The state of a simple thermodynamic system can be quantified by, = U ( S, V, N ) = Gibbs (internal) energy i S = entropy, measures dispersal of system energy V N i = volume, measures size = moles, measures amount or matter content Now we quantify power flow into the thermodynamic system, P P = power du SVN U SVN U SVN U SVN = = Sɺ + Vɺ + Nɺ dt S V N i T P µ i i

5 Thermodynamic C Now we can represent this storage of energy using a multiport-c element:

6 U is a homogeneous 1 st order function Example: Basic Gibbs equation for pure substance: du = Tds Pdv

7 Energy stored in a solid 10 T C This is an equation of state; i.e., a constitutive relation for the C S

8 For ideal gas see BP Where: Pv = RT and du V dt = c (constant volume specific heat)

9 See Example 7-2 from BP T S ɺ = F 0 pɺ = mg + A( P P ) Vɺ Sɺ A = p m = 0 (adiabatic) Vo P = Po V Vo T = To V γ γ 1 A

10 Electro-thermal-mechanical system Consider the electro-thermo-mechanical system shown below. A piston is forced to move by the expansion of air in the cylinder. The cylinder and piston are made of steel. The piston is h thick and the cylinder walls are t w with the inner radius of the cylinder being r c. The height of the cylinder is L c. The ambient temperature of T a is fixed and known. The heater coil has known electrical resistance R and the voltage input is AC at 60 Hz. a. Develop a bond graph model of this system. b. Develop state equations for this system. c. Starting with the air at 25 deg C and compressed enough to balance the piston, the heater is turned on. Perform a simulation of the system. What are the steady state values of critical variables? Need to model the heat generated by the resistor as well as heat transfer. Let s look at how to model these elements.

11 Basic conduction R Other modes of heat transfer have same bond graph form, just the constitutive relation changes.

12

13 P F Sɺ T P 2 v = fs = T R( T ) S S o = To exp cv S S o = Po exp cv

14 P F You now have enough to model a piston compressing air in a cylinder or chamber.

15 KMR Note: KMR reverse the sign and bond on the pressure port equivalent formulation.

16 KMR

17

18 Thermal effects in a PMDC motor

19 You can derive a fairly good estimate of the thermal limitations on PMDC motors with this basic model. Here, it is critical that the rotor/windings temperature not exceed a specified limit. In turn, this limits the torque capacity of the motor.

20 Summary We can incorporate thermal effects into our system models using basic elements that represent the generation, storage and transfer of thermal energy/power. Up to this point, only systems with a fixed amount of matter (closed) have been considered. In some practical systems, it may be necessary to keep track of how much matter enters and/or leaves the system, and for those cases we need to track moles or mass and the conveyance of energy as well. This can be done with an extension to the methods we ve already described. References [1] J.J. Beaman and H.M. Paynter,, notes for ME 383Q, UT-Austin, Chapter 7. [2] D.C. Karnopp, et al, System Dynamics, Wiley (any edition). Chapter 12.

21 These models don t tell us anything about the internal energy storage.

22 Example: Air-spring suspension (KMR, P12-12)

Simulation case study: electro-thermo-mechanical cylinder

Simulation case study: electro-thermo-mechanical cylinder Simulation case study: electro-thermo-mechanical cylinder B pɺ = ( P Pa ) A mg p m A Vɺ = A Vp = p m Sɺ = f f f f f s1 s1 S 2 S 3 S 4 2 v = T R( T ) ( T T ) a fsi = Hi, i = 2,3, 4 T ki Ai Hi = x i These

More information

A m. Q m P. piston or diaphragm

A m. Q m P. piston or diaphragm Massachusetts Institute of echnology Department of Mechanical Engineering 2.141 Modeling and Simulation of Dynamic Systems 2.141 Assignment #3: GAS-CHARGED ACCUMULAOR he figure below (after Pourmovahed

More information

MATTER TRANSPORT (CONTINUED)

MATTER TRANSPORT (CONTINUED) MATTER TRANSPORT (CONTINUED) There seem to be two ways to identify the effort variable for mass flow gradient of the energy function with respect to mass is matter potential, µ (molar) specific Gibbs free

More information

UNIVESITY OF SWAZILAND FACl.JLTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

UNIVESITY OF SWAZILAND FACl.JLTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS UNIVESITY OF SWAZILAND FACl.LTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS Main Examination 2016/2017. COURSE NAME: Thermodynamics/Thermofluids COURSE CODE: PHY242/EEE202 TIME ALLOWED: 3 hours ANSWER

More information

work in air sealed outlet EXAMPLE: THERMAL DAMPING

work in air sealed outlet EXAMPLE: THERMAL DAMPING EXAMPLE: THERMAL DAMPING work in air sealed outlet A BICYCLE PUMP WITH THE OUTLET SEALED. When the piston is depressed, a fixed mass of air is compressed. mechanical work is done. The mechanical work done

More information

WHY SHOULD WE CARE ABOUT THERMAL PHENOMENA? they can profoundly influence dynamic behavior. MECHANICS.

WHY SHOULD WE CARE ABOUT THERMAL PHENOMENA? they can profoundly influence dynamic behavior. MECHANICS. WORK-TO-HEAT TRANSDUCTION IN THERMO-FLUID SYSTEMS ENERGY-BASED MODELING IS BUILT ON THERMODYNAMICS the fundamental science of physical processes. THERMODYNAMICS IS TO PHYSICAL SYSTEM DYNAMICS WHAT GEOMETRY

More information

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Chapter 3 Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Concepts Energy functions F and G Chemical potential, µ Partial Molar properties

More information

Quantities and Variables in Thermodynamics. Alexander Miles

Quantities and Variables in Thermodynamics. Alexander Miles Quantities and Variables in Thermodynamics Alexander Miles AlexanderAshtonMiles@gmail.com Written: December 8, 2008 Last edit: December 28, 2008 Thermodynamics has a very large number of variables, spanning

More information

Thermodynamic Third class Dr. Arkan J. Hadi

Thermodynamic Third class Dr. Arkan J. Hadi 5.5 ENTROPY CHANGES OF AN IDEAL GAS For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, Eq. (2.8), becomes: Differentiation of the defining

More information

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface. x 2

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface. x 2 Relationships between WORK, HEAT, and ENERGY Consider a force, F, acting on a block sliding on a frictionless surface x x M F x Frictionless surface M dv v dt M dv dt v F F F ; v mass velocity in x direction

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

12.1 Work in Thermodynamic Processes

12.1 Work in Thermodynamic Processes Name APPH7_Notes3key Page 1 of 6 AP Physics Date Notes: Thermodynamics 12.1 Work in Thermodynamic Processes First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy

More information

MCQs THERMODYNAMICS. Physics Without Fear.

MCQs THERMODYNAMICS. Physics Without Fear. MCQs THERMODYNAMICS Physics Without Fear Thermodynamics: At a glance Zeroth law of thermodynamics: Two systems A and B each in thermal equilibrium with a third system C are in thermal equilibrium with

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the following

More information

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface Introduction to Thermodynamics, Lecture 3-5 Prof. G. Ciccarelli (0) Relationships between WORK, HEAT, and ENERGY Consider a force, F, acting on a block sliding on a frictionless surface x x M F x FRICTIONLESS

More information

- Apply closed system energy balances, observe sign convention for work and heat transfer.

- Apply closed system energy balances, observe sign convention for work and heat transfer. CHAPTER : ENERGY AND THE FIRST LAW OF THERMODYNAMICS Objectives: - In this chapter we discuss energy and develop equations for applying the principle of conservation of energy. Learning Outcomes: - Demonstrate

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Thermodynamics is the Science of Energy and Entropy

Thermodynamics is the Science of Energy and Entropy Definition of Thermodynamics: Thermodynamics is the Science of Energy and Entropy - Some definitions. - The zeroth law. - Properties of pure substances. - Ideal gas law. - Entropy and the second law. Some

More information

Some properties of the Helmholtz free energy

Some properties of the Helmholtz free energy Some properties of the Helmholtz free energy Energy slope is T U(S, ) From the properties of U vs S, it is clear that the Helmholtz free energy is always algebraically less than the internal energy U.

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

Chapter 6. Using Entropy

Chapter 6. Using Entropy Chapter 6 Using Entropy Learning Outcomes Demonstrate understanding of key concepts related to entropy and the second law... including entropy transfer, entropy production, and the increase in entropy

More information

8.21 The Physics of Energy Fall 2009

8.21 The Physics of Energy Fall 2009 MIT OpenCourseWare http://ocw.mit.edu 8.21 The Physics of Energy Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.21 Lecture 9 Heat Engines

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

Work and heat. Expansion Work. Heat Transactions. Chapter 2 of Atkins: The First Law: Concepts. Sections of Atkins

Work and heat. Expansion Work. Heat Transactions. Chapter 2 of Atkins: The First Law: Concepts. Sections of Atkins Work and heat Chapter 2 of Atkins: The First Law: Concepts Sections 2.3-2.4 of Atkins Expansion Work General Expression for Work Free Expansion Expansion Against Constant Pressure Reversible Expansion

More information

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 5 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular collisions

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

Conservation of Energy

Conservation of Energy Conservation of Energy Energy can neither by created nor destroyed, but only transferred from one system to another and transformed from one form to another. Conservation of Energy Consider at a gas in

More information

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2)

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2) 1. This question is about thermodynamic processes. (a) Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas.......... An ideal gas is held in a container by a moveable

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics Reading Problems 7-1 7-3 7-88, 7-131, 7-135 7-6 7-10 8-24, 8-44, 8-46, 8-60, 8-73, 8-99, 8-128, 8-132, 8-1 8-10, 8-13 8-135, 8-148, 8-152, 8-166, 8-168, 8-189

More information

Classification following properties of the system in Intensive and Extensive

Classification following properties of the system in Intensive and Extensive Unit I Classification following properties of the system in Intensive and Extensive Extensive : mass, weight, volume, potential energy, Kinetic energy, Internal energy, entropy, exergy, energy, magnetization

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

Entropy balance special forms. Quasiequilibrium (QE) process. QE process is reversible. dt Tk = = +

Entropy balance special forms. Quasiequilibrium (QE) process. QE process is reversible. dt Tk = = + Entropy balance Outline Closed systems Open systems Reversible steady flow wor Minimizing compressor wor Isentropic efficiencies Examples Entropy balance Sin Sout + Sgen = Ssys Entropy balance Entropy

More information

Downloaded from

Downloaded from Chapter 12 (Thermodynamics) Multiple Choice Questions Single Correct Answer Type Q1. An ideal gas undergoes four different processes from the same initial state (figure). Four processes are adiabatic,

More information

Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics. Internal Energy and the First Law of Thermodynamics

Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics. Internal Energy and the First Law of Thermodynamics CHAPTER 2 Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics Internal Energy and the First Law of Thermodynamics Internal Energy (U) Translational energy of molecules Potential

More information

First Law of Thermodynamics Basic Concepts

First Law of Thermodynamics Basic Concepts 236 7 PHYSICAL CHEMISTRY 7 CHAPTER First Law of Thermodynamics Basic Concepts CONTENTS THERMODYNAMIC TERMS SYSTEM, BOUNDARY, SURROUNDINGS HOMOGENEOUS AND HETEROGENEOUS SYSTEMS TYPES OF THERMODYNAMIC SYSTEMS

More information

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium. THERMODYNAMICS Important Points:. Zeroth Law of Thermodynamics: a) This law gives the concept of temperature. b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

More information

Work and heat. Heat Transactions Calorimetry Heat Capacity. Last updated: Sept. 24, 2018, slide 1

Work and heat. Heat Transactions Calorimetry Heat Capacity. Last updated: Sept. 24, 2018, slide 1 Work and heat Chapter 2 of Atkins: The First Law: Concepts Sections 2.3-2.4 of Atkins (7th, 8th & 9th editions) Section 2.1 of Atkins (10th, 11th editions) Expansion Work General Expression for Work Free

More information

Outline of the Course

Outline of the Course Outline of the Course 1) Review and Definitions 2) Molecules and their Energies 3) 1 st Law of Thermodynamics 4) 2 nd Law of Thermodynamics 5) Gibbs Free Energy 6) Phase Diagrams and REAL Phenomena 7)

More information

Week 5. Energy Analysis of Closed Systems. GENESYS Laboratory

Week 5. Energy Analysis of Closed Systems. GENESYS Laboratory Week 5. Energy Analysis of Closed Systems Objectives 1. Examine the moving boundary work or PdV work commonly encountered in reciprocating devices such as automotive engines and compressors 2. Identify

More information

Thermodynamics II. Week 9

Thermodynamics II. Week 9 hermodynamics II Week 9 Example Oxygen gas in a piston cylinder at 300K, 00 kpa with volume o. m 3 is compressed in a reversible adiabatic process to a final temperature of 700K. Find the final pressure

More information

12/21/2014 7:39 PM. Chapter 2. Energy and the 1st Law of Thermodynamics. Dr. Mohammad Suliman Abuhaiba, PE

12/21/2014 7:39 PM. Chapter 2. Energy and the 1st Law of Thermodynamics. Dr. Mohammad Suliman Abuhaiba, PE Chapter 2 Energy and the 1st Law of Thermodynamics 1 2 Homework Assignment # 2 Problems: 1, 7, 14, 20, 30, 36, 42, 49, 56 Design and open end problem: 2.1D Due Monday 22/12/2014 3 Work and Kinetic Energy

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2018, UC Berkeley Midterm 1 February 13, 2018 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show

More information

Chapter One Reviews of Thermodynamics Update on 2013/9/13

Chapter One Reviews of Thermodynamics Update on 2013/9/13 Chapter One Reviews of Thermodynamics Update on 2013/9/13 (1.1). Thermodynamic system An isolated system is a system that exchanges neither mass nor energy with its environment. An insulated rigid tank

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 8 Introduction to Vapour Power Cycle Today, we will continue

More information

Thermodynamics and Atomic Physics II

Thermodynamics and Atomic Physics II Thermodynamics and Atomic Physics II 1. Heat from a source at 550 K is added to the working fluid of an engine operating at a steady rate. The temperature of the surroundings is 300 K. The efficiency of

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics During an interaction between a system and its surroundings, the amount of energy gained by the system must be exactly equal to the amount of energy lost by the surroundings.

More information

Topic 3 &10 Review Thermodynamics

Topic 3 &10 Review Thermodynamics Name: Date: Topic 3 &10 Review Thermodynamics 1. The kelvin temperature of an object is a measure of A. the total energy of the molecules of the object. B. the total kinetic energy of the molecules of

More information

Phys 160 Thermodynamics and Statistical Physics. Lecture 4 Isothermal and Adiabatic Work Heat Capacities

Phys 160 Thermodynamics and Statistical Physics. Lecture 4 Isothermal and Adiabatic Work Heat Capacities Phys 160 Thermodynamics and Statistical Physics Lecture 4 Isothermal and Adiabatic Work Heat Capacities Heat and Work Much of thermodynamics deals with three closely - related concepts; temperature, energy,

More information

Last Name or Student ID

Last Name or Student ID 10/06/08, Chem433 Exam # 1 Last Name or Student ID 1. (3 pts) 2. (3 pts) 3. (3 pts) 4. (2 pts) 5. (2 pts) 6. (2 pts) 7. (2 pts) 8. (2 pts) 9. (6 pts) 10. (5 pts) 11. (6 pts) 12. (12 pts) 13. (22 pts) 14.

More information

Lecture 5. PHYC 161 Fall 2016

Lecture 5. PHYC 161 Fall 2016 Lecture 5 PHYC 161 Fall 2016 Ch. 19 First Law of Thermodynamics In a thermodynamic process, changes occur in the state of the system. Careful of signs! Q is positive when heat flows into a system. W is

More information

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics. By: Yidnekachew Messele The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

More information

Data Provided: A formula sheet and table of physical constants are attached to this paper.

Data Provided: A formula sheet and table of physical constants are attached to this paper. Data Provided: A formula sheet and table of physical constants are attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Spring Semester (2016-2017) From Thermodynamics to Atomic and Nuclear Physics

More information

Chapter 3: Energy and Work. Energy and Work, con t. BCH 4053 Spring 2003 Chapter 3 Lecture Notes. Slide 1. Slide 2

Chapter 3: Energy and Work. Energy and Work, con t. BCH 4053 Spring 2003 Chapter 3 Lecture Notes. Slide 1. Slide 2 BCH 4053 Spring 2003 Chapter 3 Lecture Notes 1 Chapter 3: Thermodynamics of Biological Systems 2 Energy and Work Work = force x distance Energy = ability to do work Mechanical Energy Kinetic Energy = mv

More information

The Euler Equation. Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation.

The Euler Equation. Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation. The Euler Equation Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation. Let us differentiate this extensivity condition with respect to

More information

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7 2017 Spring Semester MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7 Byungha Shin ( 신병하 ) Dept. of MSE, KAIST Largely based on lecture notes of Prof. Hyuck-Mo Lee and Prof. WooChul

More information

Experiment: Water in a Blender

Experiment: Water in a Blender Experiment: Water in a Blender Fill blender with water Measure initial temperature Blend on high for 5 min. Measure temperature again Temperature increases: why? 1 Energy Conversion Examples Potential

More information

(a) How much work is done by the gas? (b) Assuming the gas behaves as an ideal gas, what is the final temperature? V γ+1 2 V γ+1 ) pdv = K 1 γ + 1

(a) How much work is done by the gas? (b) Assuming the gas behaves as an ideal gas, what is the final temperature? V γ+1 2 V γ+1 ) pdv = K 1 γ + 1 P340: hermodynamics and Statistical Physics, Exam#, Solution. (0 point) When gasoline explodes in an automobile cylinder, the temperature is about 2000 K, the pressure is is 8.0 0 5 Pa, and the volume

More information

Modeling of Electrical Elements

Modeling of Electrical Elements Modeling of Electrical Elements Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD This Lecture Contains Modeling of

More information

The first law of thermodynamics continued

The first law of thermodynamics continued Lecture 7 The first law of thermodynamics continued Pre-reading: 19.5 Where we are The pressure p, volume V, and temperature T are related by an equation of state. For an ideal gas, pv = nrt = NkT For

More information

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste, CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

More information

The View Data module

The View Data module The module Use to examine stored compound data (H, S, C p (T), G, etc.) in Compound type databases and list solutions and their constituents in Solution type databases. Table of contents Section 1 Section

More information

Minimum Bias Events at ATLAS

Minimum Bias Events at ATLAS Camille Bélanger-Champagne McGill University Lehman College City University of New York Thermodynamics Charged Particle and Statistical Correlations Mechanics in Minimum Bias Events at ATLAS Thermodynamics

More information

CH10007/87. Thermodynamics. Dr Toby Jenkins

CH10007/87. Thermodynamics. Dr Toby Jenkins CH10007/87 Thermodynamics Dr Toby Jenkins 1 Objectives To introduce the basic concepts of thermodynamics To apply them to chemical systems To develop competence in thermodynamics calculations 2 Equilibrium

More information

Physics 207 Lecture 25. Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Physics 207 Lecture 25. Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular

More information

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1.

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1. 5.6 A rigid tank is divided into two rooms by a membrane, both containing water, shown in Fig. P5.6. Room A is at 200 kpa, v = 0.5 m3/kg, VA = m3, and room B contains 3.5 kg at 0.5 MPa, 400 C. The membrane

More information

Dual Program Level 1 Physics Course

Dual Program Level 1 Physics Course Dual Program Level 1 Physics Course Assignment 15 Due: 11/Feb/2012 14:00 Assume that water has a constant specific heat capacity of 4190 J/kg K at all temperatures between its melting point and boiling

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CH. 19 PRACTICE Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When a fixed amount of ideal gas goes through an isobaric expansion, A) its

More information

CHAPTER 2 ENERGY INTERACTION (HEAT AND WORK)

CHAPTER 2 ENERGY INTERACTION (HEAT AND WORK) CHATER ENERGY INTERACTION (HEAT AND WORK) Energy can cross the boundary of a closed system in two ways: Heat and Work. WORK The work is done by a force as it acts upon a body moving in direction of force.

More information

7. Development of the 2nd Law

7. Development of the 2nd Law 7-1 7. Development of the 2nd Law 7.1 1st Law Limitations The 1 st Law describes energy accounting. Once we have a process (or string of processes) we can calculate the relevant energy interactions. The

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle References: Thermodynamics and an Introduction to Thermostatistics, Callen Physical Chemistry, Levine THE ENTROPY MAXIMUM PRINCIPLE

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

Thermodynamic Variables and Relations

Thermodynamic Variables and Relations MME 231: Lecture 10 Thermodynamic Variables and Relations A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Thermodynamic relations derived from the Laws of Thermodynamics Definitions

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

The First Law of Thermodynamics

The First Law of Thermodynamics he First Law of hermodynamics he First Law of hermodynamics states that the energy of an isolated system is constant. If a system does an amount of work w, its internal energy (U) falls by the amount w.

More information

Thermodynamic Processes and Thermochemistry

Thermodynamic Processes and Thermochemistry General Chemistry Thermodynamic Processes and Thermochemistry 박준원교수 ( 포항공과대학교화학과 ) 이번시간에는! Systems, states, and processes The first law of thermodynamics: internal energy, work, and heat Heat capacity,

More information

PAYNTER S VERIDICAL STATE EQUATION IN INTEGRAL CAUSAL FORM

PAYNTER S VERIDICAL STATE EQUATION IN INTEGRAL CAUSAL FORM PAYNTER S VERIDICAL STATE EQUATION IN INTEGRAL CAUSAL FORM PETER BREEDVELD University of Twente, Control Laboratory, EL/TN 85 P.O Box 7, 75 AE Enschede, Netherlands phone: +3 53 89 79, fax: +3 53 89 3,

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

Question Bank Physical Chemistry & Material of Construction (CH-4-G) 1.Thermodynamics

Question Bank Physical Chemistry & Material of Construction (CH-4-G) 1.Thermodynamics Question Bank Physical Chemistry & Material of Construction (CH-4-G) 1.Thermodynamics 1. Define the following terms and give its example I. System II. Surrounding III. Boundries IV. Homogeneous system

More information

6.3 The First Law of Thermodynamics

6.3 The First Law of Thermodynamics 6.3 The First Law of Thermodynamics Physics Tool box Thermodynamic System - any collection of objects that is convenient to regard as a unit, and may have the potential to exchange energy with its surroundings.

More information

Chapter 6 Thermodynamic Properties of Fluids

Chapter 6 Thermodynamic Properties of Fluids Chapter 6 Thermodynamic Properties of Fluids Initial purpose in this chapter is to develop from the first and second laws the fundamental property relations which underlie the mathematical structure of

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of hermodynamics Reading Problems 6-, 6-2, 6-7, 6-8, 6-6-8, 6-87, 7-7-0, 7-2, 7-3 7-39, 7-46, 7-6, 7-89, 7-, 7-22, 7-24, 7-30, 7-55, 7-58 Why do we need another law in thermodynamics?

More information

Thermodynamic Laws, Gibbs Free Energy & pe/ph

Thermodynamic Laws, Gibbs Free Energy & pe/ph Thermodynamic Laws, Gibbs Free Energy & pe/ph or how to predict chemical reactions without doing experiments OCN 623 Chemical Oceanography Definitions Extensive properties Depend on the amount of material

More information

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University Physical Biochemistry Kwan Hee Lee, Ph.D. Handong Global University Week 3 CHAPTER 2 The Second Law: Entropy of the Universe increases What is entropy Definition: measure of disorder The greater the disorder,

More information

Chem 75 Winter, 2017 Practice Exam 1

Chem 75 Winter, 2017 Practice Exam 1 This was Exam 1 last year. It is presented here with, first, just the problems and then with the problems and their solutions. YOU WILL BENEFIT MOST if you attempt first just the problems as if you were

More information

1. Make your own chart from the following table: P, bars and V, cubic meters 15 bars initial

1. Make your own chart from the following table: P, bars and V, cubic meters 15 bars initial The above diagram clearly shows that the initial steps perform less work than the final steps. The sum of the work contributions is the total work. The total work increases as the size of the calculation

More information

Effect of adding an ideal inert gas, M

Effect of adding an ideal inert gas, M Effect of adding an ideal inert gas, M Add gas M If there is no change in volume, then the partial pressures of each of the ideal gas components remains unchanged by the addition of M. If the reaction

More information

Chapter 2. Energy and the First Law of Thermodynamics

Chapter 2. Energy and the First Law of Thermodynamics Chapter 2 Energy and the First Law of Thermodynamics Closed System Energy Balance Energy is an extensive property that includes the kinetic and gravitational potential energy of engineering mechanics.

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Chapter 9 The First Law of Thermodynamics Topics for Chapter 9 I. First Law of Thermodynamics Internal energy, concept of state variables Difference between Work and Heat II. Examine various types of thermodynamic

More information

1 = k = 9 $10 9 Nm 2 /C 2 1 nanocoulomb = 1 nc = 10-9 C. = 8.85 #10 $12 C 2 /Nm 2. F = k qq 0. U = kqq 0. E % d A! = q enc. V = $ E % d!

1 = k = 9 $10 9 Nm 2 /C 2 1 nanocoulomb = 1 nc = 10-9 C. = 8.85 #10 $12 C 2 /Nm 2. F = k qq 0. U = kqq 0. E % d A! = q enc. V = $ E % d! Equations pv = nrt pv γ = constant (Q=0) Q = nc v ΔΤ (constant V) γ=c p /C v C p =C v +R C v = 3 R (monatomic ideal gas) 2 ΔU=Q-W R=8.3 J/molK ds = dq T W = " e = W Q H pdv e c =1" T C T H For H 2 O: L

More information

Review of First and Second Law of Thermodynamics

Review of First and Second Law of Thermodynamics Review of First and Second Law of Thermodynamics Reading Problems 4-1 4-4 4-32, 4-36, 4-87, 4-246 5-2 5-4, 5.7 6-1 6-13 6-122, 6-127, 6-130 Definitions SYSTEM: any specified collection of matter under

More information

4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper.

4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS \1111~11\llllllllllllftllll~flrllllllllll\11111111111111111 >014407892 PHYS2060 THER1\1AL PHYSICS FINAL EXAMINATION SESSION 2 - NOVEMBER 2010 I. Time

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics Lecture by Dr. Hebin Li Assignment Due at 11:59pm on Sunday, December 7 HW set on Masteringphysics.com Final exam: Time: 2:15pm~4:15pm, Monday, December 8. Location:

More information

First Law of Thermodynamics Closed Systems

First Law of Thermodynamics Closed Systems First Law of Thermodynamics Closed Systems Content The First Law of Thermodynamics Energy Balance Energy Change of a System Mechanisms of Energy Transfer First Law of Thermodynamics in Closed Systems Moving

More information

Irreversible Processes

Irreversible Processes Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

More information

ENGR 292 Fluids and Thermodynamics

ENGR 292 Fluids and Thermodynamics ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Timeline Last week, Reading Break Feb.21: Thermodynamics 1 Feb.24: Midterm Review (Fluid Statics

More information

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0?

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0? TB [103 marks] 1. A periodic driving force of frequency ƒ acts on a system which undergoes forced oscillations of amplitude A. The graph below shows the variation with ƒ of A. The maximum amplitude A 0

More information