Modeling and Experimentation: Compound Pendulum

Size: px
Start display at page:

Download "Modeling and Experimentation: Compound Pendulum"

Transcription

1 Modeling and Experimentation: Compound Pendulum Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin Fall 2014

2 Overview This lab focuses on developing a mathematical model of the compound pendulum system studied in lab experiments. This lecture reviews the model, then shows how to develop the mathematical model both as a second order ODE and in state space form. A key goal is to learn about how numerical simulations of math models can be used to predict response of a system. A model simulation can be thought of as another way to experiment with a system. Block diagrams are also introduced as a way to describe systems within simulation environments, and LabVIEW examples are provided. The model simulation results from the pendulum system can be compared to measured response data in order to improve the model, especially for determining the dominant type of friction causing the pendulum motion to decay.

3 Lab Objectives 1 Practice system modeling methods, including constitutive modeling for friction effects 2 Become familiar with the National Instruments Control and Simulation module 3 Use a simulation model to compare with measured data and tune system parameters

4 Use modeling to build insight and derive a proper dynamic system model Understand the type of model that is needed. To predict the pendulum response observed in the lab, we need a dynamic system model in the form of ODEs Recognize any special considerations. There is significant friction in the pivot/bearing causing the pendulum oscillation to decay, so the model needs to include torques induced by friction. Make sure the model can be used for the intended purpose. Given a proper model, we need to be able to solve the equations. Since the ODEs cannot be solved in closed-form, we need to put the model in a form suitable for simulation.

5 Modeling Simulation Block Diagrams Experimentation Summary In introductory dynamics courses, you often solved for forces, accelerations, or velocities of bodies at specific instants in time. Consider the example below.

6 Example continued...

7 Modeling Simulation Block Diagrams Experimentation Summary We seek system dynamics models as ordinary differential equations (ODEs) for key variables of interest in order to study how a system behaves over all time. The measured decay of the pendulum oscillations in the lab indicates loss of energy over time due to dissipative effects.

8 Example: the simple pendulum model A simple pendulum model represents dynamics of a point mass at the end of fixed length, massless, rod or string, constrained to move in a plane as shown below. Gravity acts downward. If there are no other forces, the net torque for rotation about the pivot is, T = Tθ = mgl sin θ Now, apply Newton s law, dh dt = ḣ = J θ = T where J = ml 2, so a 2nd order ODE in θ is found, ml 2 θ + mgl sin θ = 0

9 Contrast the simple pendulum with the compound pendulum Simple pendulum: J = ml 2 m is the total mass, l is distance from the pivot to the mass ml 2 θ + mgl sin θ = 0 θ + g l sin θ = 0 Compound pendulum: J 0 = J + ml 2 C m is the total mass, l C is distance from the pivot to the CG J 0 θ + mglc sin θ = 0 θ + mgl C J 0 sin θ = 0 Modeling a compound pendulum as a simple pendulum would incur error that depends on how widely mass is distributed. In some cases, a simple pendulum might be a reasonable approximation.

10 Additional torques in the pendulum model Aside from proper modeling of the inertia effects, the model also needs to consider other torques that cause changes in the angular momentum. Primarily, we are concerned here with torques due to dissipative effects (friction at the pivot, air friction, etc.), or any applied torques or forces on the pendulum body. Both can be included in the Newton s law equation, ḣ = T θ T f T a where T f is the net torques due to friction/losses and T a are applied or actuator torques. It is clear that the pendulum studied in the lab is not lossless since it does not oscillate indefinitely, and there are no other applied forces or actuator torques.

11 Modeling frictional torques Frictional effects can be modeled as frictional torques that act about the pivot. These torques are modeled as functions of angular velocity, T = f(ω). Consider two types: These models represent different types of physical processes. For example, if a bearing has a (viscous) fluid film, induced forces tend to vary linearly with velocity (left). On the other hand, bearings with dry contact result in forces more similar to Coulomb-type friction, being relatively constant with velocity (right).

12 Case 1: Compound pendulum with only linear damping Consider a linear damping torque in the pendulum equation, ḣ = T = T θ T b where where ω = θ. Now, T b = bω = linear damping torque J 0 θ + b θ + mglc sin θ = 0 This equation can be made linear by assuming small motion, so sin θ would be approximately θ and the equation becomes a linear 2nd order ODE with a closed-form solution.

13 Modeling Simulation Block Diagrams Experimentation Summary Case 2: Compound pendulum with linear damping and nonlinear friction Now include a nonlinear friction torque, where ḣ = T = T θ T b T c T c = T o sgn(ω) = Coulombic (nonlinear) frictional torque Linearizing for small motion as done for Case 1 is problematic, because of the sgn (signum) function. The signum function has a very large change in value when its argument is close to zero: sgn(a) = +1 if a > 0 and sgn(a) = 1 if a < 0. Closed form solutions for motion cannot be found as readily as for Case 1. It turns out that this type of friction is more prevalent in many practical systems. Solving this ODE requires numerical integration schemes for simulating the system.

14 Basic idea behind ODE system simulation When we talk about system simulation in DSC, this typically refers to solving an ODE initial value problem. This means that we have a set of ODEs that model our system of interest 1. Consider the simplest type of dynamic system, a first order ODE, dx dt = f(x, u, t) which we ll call a state equation for the state variable, x. The right hand side is a function of x itself, an input to the system, u, and time, t. The modeling process provides f(x, u, t). Numerical integration requires an initial value at initial time, t 0, x(t 0 ) = x 0. Then, the solution at the next step, t = t 0 + t, is to be approximated. 1 Some systems may involve both differential and algebraic equations (DAEs), which won t be considered in this course.

15 Euler ODE Solver You may recall that numerically solving ODEs for initial value problems is simply marching forward in time. The solution is found at discrete time steps, given the initial value at t 0. Given x 0, the value at initial time, an estimate of the value at t 1 is, ˆx 1 = x 0 + x 0 The job of the solver is to estimate x 0. The simplest algorithm is the Euler solver, which is basically a Taylor series approximation. The Euler solve estimates x 0 by, x 0 = f(x 0, u 0, t 0 ) t using an approximation from the ODE x/ t f(x, u, t), and given all initial values. There is always error in the estimate of the true value, x 1.

16 Selection of ODE Solvers The Euler method is the simplest ODE solver, and it usually uses a fixed time step. To get good solutions (more accurate, stable), usually you need to make the time step very small. The Euler method is a 1st order Runge-Kutta (RK) method. You may have learned about Runge-Kutta methods in a computational methods course. The most commonly used RK algorithm is 4th order, which uses four evaluations of the ODEs to estimate the next value of x, as opposed to the single evaluation made by the Euler routine. The RK4 algorithm allows you to take larger time steps than Euler, is more stable, but as for Euler the error must be managed by the user. More sophisticated algorithms use variable time step to control numerical errors. Many commercial and open-source software packages have built-in fixed-step and variable step algorithms that can be used for ODE simulation. This course will provide practice in using the algorithms available in LabVIEW.

17 Modeling Simulation Block Diagrams Experimentation Summary ODE solvers require that the equations be put into 1st order form The Euler solver was described using the simple 1st order ODE in the variable x. This is the form required by ODE solvers. Consider the single x variable generalized as a vector x formed by n state variables of a system. ODE algorithms are designed to accept descriptions of the system ODEs as a vector formed by the model equations. In general, the 1st order vector of state equations is, ẋ = f(x, u, t) where u is now a vector of r inputs. Writing the equations in this form can either be done by converting the nth order ODE to n 1st order ODEs, or the n 1st order ODEs can be derived directly. The latter method is the way equations are directly derived when the bond graph method is used.

18 Modeling Simulation Block Diagrams Experimentation Summary Example: Convert the simple pendulum model from 2nd order to 1st order form Recall the simple pendulum model ml 2 θ + mgl sin θ = 0 To convert this 2nd order ODE to 1st order, first define n = 2 state variables as x 1 = θ and x 2 = θ. We now want to write two 1st order ODEs in terms of these new state variables. The first one is found by taking the derivative of the first variable, ẋ 1 = θ, which is recognized as x 2. Therefore, the first equation is, ẋ 1 = x 2 Now, take derivative of second variable, ẋ 2 = θ. To find this equation, we must use the original 2nd order ODE, which has θ as well as θ. Solve for θ, θ = (g/l) sin θ = (g/l) sin x 1 This gives us the second state equation, ẋ 2 = (g/l) sin x 1 These two equations are the state space equations for the simple pendulum.

19 State space form Here are the simple pendulum state space equations in matrix form: [ ] [ ] ẋ1 x ẋ = = f(x, u, t) = 2 g l sin(x 1) ẋ 2 The rightmost term is a vector of the n nonlinear, state equations. These are in the form required by ODE solvers. The state equations are generally coupled; i.e., each equation can be a function of any and all system states. Each equation quantifies how each state changes over time (the slope at each time step). In a numerical algorithm, each equation is used to estimate the value of the state at each time step, as illustrated for the simple Euler routine.

20 Using solvers with script files Commercial software packages such as Matlab and LabVIEW have solvers that will numerically integrate ODEs. The ODEs are usually formatted in a script function file. For example, for the simple pendulum, a script file may take the form: function file function f = PendulumEqs(t,x) global g l f1 = x(2); f2 = -g*sin(x(1))/l; f = [f1;f2]; Here, the values returned by this function are sent to the solver (e.g., ode45). The use of script files is very effective. In this course, we will be learning a different approach that uses block diagrams to graphically describe the ODEs. Using this approach allows use of LabVIEW for simulation.

21 Block diagram representations of systems Block diagrams are used to graphically represent signal flow and functional relationships between signals. A directed line (with arrowhead) indicates a signal, which can represent a system variable or a control input. Nodes, shown as blocks, represent input-output relationships between signal variables.. Basic functions are gains, summers, integrators and differentiators, and as such block diagrams are effective in representing differential equation models. Modern software programs use block diagrams as a way to communicate system representations to computer-aided analysis tools.

22 Block diagram programming environments have become very popular as part of computer-aided engineering packages Why? They allow us to describe systems using a graphical form, which can be useful for communicating how different components interact. Block diagrams are functional and not just schematics (as we will see). There is a rich history not only in describing control systems but also in how (analog) computational algorithms were originally designed.

23 Block diagram algebra Summing point Let x(t) input and y(t) output. For general nonlinear systems, the output is simply, y = g(x). Branching point If the system is linear, y = G x G (gain) may be a constant or a system transfer function, G(s). The s represents the Laplace operator.

24 Block diagram calculus Other blocks especially useful for representing physical system models include the integrator: These are common blocks, but they are sometimes shown in software products using the s Laplace operator. For example, the integrator is: There is also a derivative and the derivative block is Important: these are just symbols - the blocks perform numerical integration/differentiation (not Laplace transforms).

25 Modeling Simulation Block Diagrams Experimentation Summary How do you build a block diagram of system state equations? For a given complete set of state equations (as you will learn to derive in ME 344), the following steps are taken: 1 Identify an integrator for each first order equation, so each integrator generates a state 2 Form the terms of each equation using system parameters, gain blocks, and functional blocks 3 Use summing blocks form the state derivatives (i.e., add terms as needed to form the right hand side of each 1st order equation) 4 Specify initial conditions, x(0), and system inputs, u NOTE: There are some systems that result in equations where the ODEs do not take this desirable form. You may learn about algebraic loops and derivative causality in your DSC course.

26 Block diagram of nth order state space system The system equations generate the dx/dt for each state, and the n integrators produce the states, which are then passed back into the system equations. Note each integrator requires an initial condition, x(0).

27 Example: block diagram for linear 1st order ODE Re-write the 1st order ODE in the form: dx dt = 1 [ x + u(t)] τ Then we can use basic block elements to describe the algebra and the calculus in the equations, as shown below. Remember that to find x the integrator needs to have an initial condition, x(0).

28 Two popular software products that use block diagrams are LabVIEW and Matlab/Simulink. These programs feature: combined structured and block diagram programming a capacity to communicate with physical hardware efficient means for designing a human-user interface modeling and simulation tools for physical and engineering systems We have adopted LabVIEW for use in this course.

29 LabVIEW Control and Simulation Module

30 LabVIEW Control and Simulation Module Build your block diagrams within the C&S Loop: Basic block diagram VIs are found under Signal Arithmetic: and Continuous Linear Systems:

31 Modeling Simulation Block Diagrams Experimentation Summary The integrator block is a key element for integrating your state equations Remember that the input to the integrator block will be the derivative of your state: By double-clicking the integrator VI block, you can access settings: and the output is the state. The settings allow you to configure how you will set key integration parameters and whether you will set them in the dialog box or wire to a terminal.

32 Modeling Simulation Block Diagrams Experimentation Summary Example: LV simulation diagram for standard 1st order system

33 Example: LV simulation diagram for the simple pendulum In this example VI for the simple pendulum, a formula node used as an alternate way to code the state equations rather than with block diagrams.

34 Experimentation The experimentation is now to be conducted using a numerical model. Here are some suggestions for using your simulation model: determine if your estimates of the pendulum moment of inertia allows predictions to compare well with measured response data; show how the simulation can be tuned to improve the model show that the simulation gives the same type of response characteristics, especially with proper frictional torque models; weigh the effect of linear versus nonlinear type friction calculate stored energy, and improve prediction on how energy decreases with each cycle

35 Summary Build experience formulating system models from physical laws Use a known physical problem for learning about constitutive models, especially linear vs. nonlinear types More opportunity to experiment with LabVIEW VIs for simulation, learning about Control and Simulation Module Use LabVIEW for analyzing data from experiments, relating to modeling results

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as 2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,

More information

Lab #2: Digital Simulation of Torsional Disk Systems in LabVIEW

Lab #2: Digital Simulation of Torsional Disk Systems in LabVIEW Lab #2: Digital Simulation of Torsional Disk Systems in LabVIEW Objective The purpose of this lab is to increase your familiarity with LabVIEW, increase your mechanical modeling prowess, and give you simulation

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

Rotational motion problems

Rotational motion problems Rotational motion problems. (Massive pulley) Masses m and m 2 are connected by a string that runs over a pulley of radius R and moment of inertia I. Find the acceleration of the two masses, as well as

More information

CDS 101 Precourse Phase Plane Analysis and Stability

CDS 101 Precourse Phase Plane Analysis and Stability CDS 101 Precourse Phase Plane Analysis and Stability Melvin Leok Control and Dynamical Systems California Institute of Technology Pasadena, CA, 26 September, 2002. mleok@cds.caltech.edu http://www.cds.caltech.edu/

More information

Modeling and Experimentation: Mass-Spring-Damper System Dynamics

Modeling and Experimentation: Mass-Spring-Damper System Dynamics Modeling and Experimentation: Mass-Spring-Damper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to

More information

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Homeworks VIII and IX both center on Lagrangian mechanics and involve many of the same skills. Therefore,

More information

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

More information

Oscillations. Oscillations and Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

More information

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Chapter 9b: Numerical Methods for Calculus and Differential Equations Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Acceleration Initial-Value Problems Consider a skydiver

More information

Fundamentals Physics. Chapter 15 Oscillations

Fundamentals Physics. Chapter 15 Oscillations Fundamentals Physics Tenth Edition Halliday Chapter 15 Oscillations 15-1 Simple Harmonic Motion (1 of 20) Learning Objectives 15.01 Distinguish simple harmonic motion from other types of periodic motion.

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion (FIZ 101E - Summer 2018) July 29, 2018 Contents 1 Introduction 2 2 The Spring-Mass System 2 3 The Energy in SHM 5 4 The Simple Pendulum 6 5 The Physical Pendulum 8 6 The Damped Oscillations

More information

NONLINEAR MECHANICAL SYSTEMS (MECHANISMS)

NONLINEAR MECHANICAL SYSTEMS (MECHANISMS) NONLINEAR MECHANICAL SYSTEMS (MECHANISMS) The analogy between dynamic behavior in different energy domains can be useful. Closer inspection reveals that the analogy is not complete. One key distinction

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

School of Engineering Faculty of Built Environment, Engineering, Technology & Design Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

More information

The Damped Pendulum. Physics 211 Lab 3 3/18/2016

The Damped Pendulum. Physics 211 Lab 3 3/18/2016 PHYS11 Lab 3 Physics 11 Lab 3 3/18/16 Objective The objective of this lab is to record the angular position of the pendulum vs. time with and without damping. The data is then analyzed and compared to

More information

Lab 3A: Modeling and Experimentation: Two-Can System

Lab 3A: Modeling and Experimentation: Two-Can System Lab 3A: Modeling and Experimentation: Two-Can System Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin June 26, 2014 1 Introduction 2 One-Can 3 Analysis 4 Two-Can

More information

ME8230 Nonlinear Dynamics

ME8230 Nonlinear Dynamics ME8230 Nonlinear Dynamics Lecture 1, part 1 Introduction, some basic math background, and some random examples Prof. Manoj Srinivasan Mechanical and Aerospace Engineering srinivasan.88@osu.edu Spring mass

More information

Lab 11: Rotational Dynamics

Lab 11: Rotational Dynamics Lab 11: Rotational Dynamics Objectives: To understand the relationship between net torque and angular acceleration. To understand the concept of the moment of inertia. To understand the concept of angular

More information

Torsion Spring Oscillator with Dry Friction

Torsion Spring Oscillator with Dry Friction Torsion Spring Oscillator with Dry Friction Manual Eugene Butikov Annotation. The manual includes a description of the simulated physical system and a summary of the relevant theoretical material for students

More information

ET3-7: Modelling I(V) Introduction and Objectives. Electrical, Mechanical and Thermal Systems

ET3-7: Modelling I(V) Introduction and Objectives. Electrical, Mechanical and Thermal Systems ET3-7: Modelling I(V) Introduction and Objectives Electrical, Mechanical and Thermal Systems Objectives analyse and model basic linear dynamic systems -Electrical -Mechanical -Thermal Recognise the analogies

More information

Physics 584 Computational Methods

Physics 584 Computational Methods Physics 584 Computational Methods Introduction to Matlab and Numerical Solutions to Ordinary Differential Equations Ryan Ogliore April 18 th, 2016 Lecture Outline Introduction to Matlab Numerical Solutions

More information

Robotics. Dynamics. Marc Toussaint U Stuttgart

Robotics. Dynamics. Marc Toussaint U Stuttgart Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler recursion, general robot dynamics, joint space control, reference trajectory

More information

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0 Math 2250 Lab 4 Name/Unid: 1. (25 points) A man bails out of an airplane at the altitute of 12,000 ft, falls freely for 20 s, then opens his parachute. Assuming linear air resistance ρv ft/s 2, taking

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

Physics 2001/2051 The Compound Pendulum Experiment 4 and Helical Springs

Physics 2001/2051 The Compound Pendulum Experiment 4 and Helical Springs PY001/051 Compound Pendulum and Helical Springs Experiment 4 Physics 001/051 The Compound Pendulum Experiment 4 and Helical Springs Prelab 1 Read the following background/setup and ensure you are familiar

More information

Simple and Physical Pendulums Challenge Problem Solutions

Simple and Physical Pendulums Challenge Problem Solutions Simple and Physical Pendulums Challenge Problem Solutions Problem 1 Solutions: For this problem, the answers to parts a) through d) will rely on an analysis of the pendulum motion. There are two conventional

More information

Chapter 15 - Oscillations

Chapter 15 - Oscillations The pendulum of the mind oscillates between sense and nonsense, not between right and wrong. -Carl Gustav Jung David J. Starling Penn State Hazleton PHYS 211 Oscillatory motion is motion that is periodic

More information

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0 Math 2250 Lab 4 Name/Unid: 1. (35 points) Leslie Leroy Irvin bails out of an airplane at the altitude of 16,000 ft, falls freely for 20 s, then opens his parachute. Assuming linear air resistance ρv ft/s

More information

Classical Mechanics Comprehensive Exam Solution

Classical Mechanics Comprehensive Exam Solution Classical Mechanics Comprehensive Exam Solution January 31, 011, 1:00 pm 5:pm Solve the following six problems. In the following problems, e x, e y, and e z are unit vectors in the x, y, and z directions,

More information

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory Physics 2 Lecture 4 Integration Lecture 4 Physics 2 Laboratory Monday, February 21st, 211 Integration is the flip-side of differentiation in fact, it is often possible to write a differential equation

More information

Notes on numerical solution of differential equations

Notes on numerical solution of differential equations Notes on numerical solution of differential equations Some definitions, for those who don t know: A differential equation is any equation that relates a thing to its derivatives. For instance, Newton s

More information

Stability of Nonlinear Systems An Introduction

Stability of Nonlinear Systems An Introduction Stability of Nonlinear Systems An Introduction Michael Baldea Department of Chemical Engineering The University of Texas at Austin April 3, 2012 The Concept of Stability Consider the generic nonlinear

More information

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18 Dynamics Basilio Bona DAUIN Politecnico di Torino Semester 1, 2016-17 B. Bona (DAUIN) Dynamics Semester 1, 2016-17 1 / 18 Dynamics Dynamics studies the relations between the 3D space generalized forces

More information

Lab 6d: Self-Erecting Inverted Pendulum (SEIP)

Lab 6d: Self-Erecting Inverted Pendulum (SEIP) Lab 6d: Self-Erecting Inverted Pendulum (SEIP) Arthur Schopen- Life swings like a pendulum backward and forward between pain and boredom. hauer 1 Objectives The goal of this project is to design a controller

More information

Linearization problem. The simplest example

Linearization problem. The simplest example Linear Systems Lecture 3 1 problem Consider a non-linear time-invariant system of the form ( ẋ(t f x(t u(t y(t g ( x(t u(t (1 such that x R n u R m y R p and Slide 1 A: f(xu f(xu g(xu and g(xu exist and

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Somnath Bharadwaj and S. Pratik Khastgir Department of Physics and Meteorology IIT Kharagpur Module : Oscillations Lecture : Oscillations Oscillations are ubiquitous. It would be

More information

Computers, Lies and the Fishing Season

Computers, Lies and the Fishing Season 1/47 Computers, Lies and the Fishing Season Liz Arnold May 21, 23 Introduction Computers, lies and the fishing season takes a look at computer software programs. As mathematicians, we depend on computers

More information

The Coupled Pendulum Experiment

The Coupled Pendulum Experiment The Coupled Pendulum Experiment In this lab you will briefly study the motion of a simple pendulum, after which you will couple two pendulums and study the properties of this system. 1. Introduction to

More information

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Northwestern CT Community College Course Syllabus Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics

More information

PH 120 Project # 2: Pendulum and chaos

PH 120 Project # 2: Pendulum and chaos PH 120 Project # 2: Pendulum and chaos Due: Friday, January 16, 2004 In PH109, you studied a simple pendulum, which is an effectively massless rod of length l that is fixed at one end with a small mass

More information

Robotics. Dynamics. University of Stuttgart Winter 2018/19

Robotics. Dynamics. University of Stuttgart Winter 2018/19 Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler, joint space control, reference trajectory following, optimal operational

More information

The Simple Double Pendulum

The Simple Double Pendulum The Simple Double Pendulum Austin Graf December 13, 2013 Abstract The double pendulum is a dynamic system that exhibits sensitive dependence upon initial conditions. This project explores the motion of

More information

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch. 2-3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 29, 2017 E. Frazzoli

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Spring 2003 M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as

More information

Compound Damped Pendulum: An Example

Compound Damped Pendulum: An Example Compound Damped Pendulum: An Example Temple H. Fay Department of Mathematical Technology 1 Tshwane University of Technology Pretoria, South Africa thf ay@hotmail:com Abstract: In this article, we use an

More information

Control Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani

Control Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani Control Systems I Lecture 2: Modeling and Linearization Suggested Readings: Åström & Murray Ch. 2-3 Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 28, 2018 J. Tani, E.

More information

PHYSICS 110A : CLASSICAL MECHANICS

PHYSICS 110A : CLASSICAL MECHANICS PHYSICS 110A : CLASSICAL MECHANICS 1. Introduction to Dynamics motion of a mechanical system equations of motion : Newton s second law ordinary differential equations (ODEs) dynamical systems simple 2.

More information

VTU-NPTEL-NMEICT Project

VTU-NPTEL-NMEICT Project MODULE-II --- SINGLE DOF FREE S VTU-NPTEL-NMEICT Project Progress Report The Project on Development of Remaining Three Quadrants to NPTEL Phase-I under grant in aid NMEICT, MHRD, New Delhi SME Name : Course

More information

Lab 1: Dynamic Simulation Using Simulink and Matlab

Lab 1: Dynamic Simulation Using Simulink and Matlab Lab 1: Dynamic Simulation Using Simulink and Matlab Objectives In this lab you will learn how to use a program called Simulink to simulate dynamic systems. Simulink runs under Matlab and uses block diagrams

More information

Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 2 0 1 7 Modeling Modeling is the process of representing the behavior of a real

More information

Oscillations Simple Harmonic Motion

Oscillations Simple Harmonic Motion Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 1, 2017 Overview oscillations simple harmonic motion (SHM) spring systems energy in SHM pendula damped oscillations Oscillations and

More information

Chapter 6 - Ordinary Differential Equations

Chapter 6 - Ordinary Differential Equations Chapter 6 - Ordinary Differential Equations 7.1 Solving Initial-Value Problems In this chapter, we will be interested in the solution of ordinary differential equations. Ordinary differential equations

More information

PHYSICS 210 SOLUTION OF THE NONLINEAR PENDULUM EQUATION USING FDAS

PHYSICS 210 SOLUTION OF THE NONLINEAR PENDULUM EQUATION USING FDAS PHYSICS 210 SOLUTION OF THE NONLINEAR PENDULUM EQUATION USING FDAS 1. PHYSICAL & MATHEMATICAL FORMULATION O θ L r T m W 1 1.1 Derivation of the equation of motion O Consider idealized pendulum: Mass of

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs) is

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs)

More information

AP Physics 1. Course Overview

AP Physics 1. Course Overview Radnor High School Course Syllabus AP Physics 1 Credits: Grade Weighting: Yes Prerequisites: Co-requisites: Length: Format: 1.0 Credit, weighted Honors chemistry or Advanced Chemistry Honors Pre-calculus

More information

Lab 6a: Pole Placement for the Inverted Pendulum

Lab 6a: Pole Placement for the Inverted Pendulum Lab 6a: Pole Placement for the Inverted Pendulum Idiot. Above her head was the only stable place in the cosmos, the only refuge from the damnation of the Panta Rei, and she guessed it was the Pendulum

More information

The distance of the object from the equilibrium position is m.

The distance of the object from the equilibrium position is m. Answers, Even-Numbered Problems, Chapter..4.6.8.0..4.6.8 (a) A = 0.0 m (b).60 s (c) 0.65 Hz Whenever the object is released from rest, its initial displacement equals the amplitude of its SHM. (a) so 0.065

More information

Torque and Simple Harmonic Motion

Torque and Simple Harmonic Motion Torque and Simple Harmonic Motion Recall: Fixed Axis Rotation Angle variable Angular velocity Angular acceleration Mass element Radius of orbit Kinematics!! " d# / dt! " d 2 # / dt 2!m i Moment of inertia

More information

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc. Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

More information

Lecture V : Oscillatory motion and spectral analysis

Lecture V : Oscillatory motion and spectral analysis Lecture V : Oscillatory motion and spectral analysis I. IDEAL PENDULUM AND STABILITY ANALYSIS Let us remind ourselves of the equation of motion for the pendulum. Remembering that the external torque applied

More information

Northwestern Connecticut Community College Course Syllabus

Northwestern Connecticut Community College Course Syllabus Northwestern Connecticut Community College Course Syllabus Course Title: Introductory Physics Course #: PHY 110 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics 110

More information

Swing-Up Problem of an Inverted Pendulum Energy Space Approach

Swing-Up Problem of an Inverted Pendulum Energy Space Approach Mechanics and Mechanical Engineering Vol. 22, No. 1 (2018) 33 40 c Lodz University of Technology Swing-Up Problem of an Inverted Pendulum Energy Space Approach Marek Balcerzak Division of Dynamics Lodz

More information

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS LECTURE 10 APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS Ordinary Differential Equations Initial Value Problems For Initial Value problems (IVP s), conditions are specified

More information

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003 Lecture XXVI Morris Swartz Dept. of Physics and Astronomy Johns Hopins University morris@jhu.edu November 5, 2003 Lecture XXVI: Oscillations Oscillations are periodic motions. There are many examples of

More information

Mechatronics. MANE 4490 Fall 2002 Assignment # 1

Mechatronics. MANE 4490 Fall 2002 Assignment # 1 Mechatronics MANE 4490 Fall 2002 Assignment # 1 1. For each of the physical models shown in Figure 1, derive the mathematical model (equation of motion). All displacements are measured from the static

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

More information

ENGI9496 Lecture Notes State-Space Equation Generation

ENGI9496 Lecture Notes State-Space Equation Generation ENGI9496 Lecture Notes State-Space Equation Generation. State Equations and Variables - Definitions The end goal of model formulation is to simulate a system s behaviour on a computer. A set of coherent

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

Project TOUCAN. A Study of a Two-Can System. Prof. R.G. Longoria Update Fall ME 144L Prof. R.G. Longoria Dynamic Systems and Controls Laboratory

Project TOUCAN. A Study of a Two-Can System. Prof. R.G. Longoria Update Fall ME 144L Prof. R.G. Longoria Dynamic Systems and Controls Laboratory Project TOUCAN A Study of a Two-Can System Prof. R.G. Longoria Update Fall 2009 Laboratory Goals Gain familiarity with building models that reflect reality. Show how a model can be used to guide physical

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright Diane L. Peters, Ph.D., P.E.

Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright Diane L. Peters, Ph.D., P.E. Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright 2015 Diane L. Peters, Ph.D., P.E. Spring 2015 2 Contents 1 Overview of Dynamic Modeling 5 2 Bond Graph Basics 7 2.1 Causality.............................

More information

ENGI9496 Modeling and Simulation of Dynamic Systems Bond Graphs

ENGI9496 Modeling and Simulation of Dynamic Systems Bond Graphs ENGI9496 Modeling and Simulation of Dynamic Systems Bond Graphs Topics covered so far: Analogies between mechanical (translation and rotation), fluid, and electrical systems o Review of domain-specific

More information

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2 MCE 366 System Dynamics, Spring 2012 Problem Set 2 Reading: Chapter 2, Sections 2.3 and 2.4, Chapter 3, Sections 3.1 and 3.2 Problems: 2.22, 2.24, 2.26, 2.31, 3.4(a, b, d), 3.5 Solutions to Set 2 2.22

More information

Problem Set Number 01, MIT (Winter-Spring 2018)

Problem Set Number 01, MIT (Winter-Spring 2018) Problem Set Number 01, 18.377 MIT (Winter-Spring 2018) Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139) February 28, 2018 Due Thursday, March 8, 2018. Turn it in (by 3PM) at the Math.

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

Differential Equations

Differential Equations Electricity and Magnetism I (P331) M. R. Shepherd October 14, 2008 Differential Equations The purpose of this note is to provide some supplementary background on differential equations. The problems discussed

More information

θ + mgl θ = 0 or θ + ω 2 θ = 0 (2) ω 2 = I θ = mgl sinθ (1) + Ml 2 I = I CM mgl Kater s Pendulum The Compound Pendulum

θ + mgl θ = 0 or θ + ω 2 θ = 0 (2) ω 2 = I θ = mgl sinθ (1) + Ml 2 I = I CM mgl Kater s Pendulum The Compound Pendulum Kater s Pendulum The Compound Pendulum A compound pendulum is the term that generally refers to an arbitrary lamina that is allowed to oscillate about a point located some distance from the lamina s center

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01 Physics I Fall Term 2009 Review Module on Solving N equations in N unknowns

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01 Physics I Fall Term 2009 Review Module on Solving N equations in N unknowns MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01 Physics I Fall Term 2009 Review Module on Solving N equations in N unknowns Most students first exposure to solving N linear equations in N

More information

W13D1-1 Reading Quiz and Concept Questions

W13D1-1 Reading Quiz and Concept Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 2009 W13D1-1 Reading Quiz and Concept Questions A person spins a tennis ball on a string in a horizontal circle (so that

More information

Lab 4 Numerical simulation of a crane

Lab 4 Numerical simulation of a crane Lab 4 Numerical simulation of a crane Agenda Time 10 min Item Review agenda Introduce the crane problem 95 min Lab activity I ll try to give you a 5- minute warning before the end of the lab period to

More information

Electricity Designing a Voltmeter c 2 testing Review. Lecture # 7 Physics 2BL Summer 2011

Electricity Designing a Voltmeter c 2 testing Review. Lecture # 7 Physics 2BL Summer 2011 Electricity Designing a Voltmeter c 2 testing Review Lecture # 7 Physics 2BL Summer 2011 Announcements CAPE evaluations: Important for fine tuning of the course Making changes Giving feedback Name for

More information

Section 7.4 Runge-Kutta Methods

Section 7.4 Runge-Kutta Methods Section 7.4 Runge-Kutta Methods Key terms: Taylor methods Taylor series Runge-Kutta; methods linear combinations of function values at intermediate points Alternatives to second order Taylor methods Fourth

More information

University of Texas-Austin - Integration of Computing

University of Texas-Austin - Integration of Computing University of Texas-Austin - Integration of Computing During 2001-2002 the Department of Chemical Engineering at UT-Austin revamped the computing thread in its curriculum in order to strengthen student

More information

The dynamics of a Mobile Inverted Pendulum (MIP)

The dynamics of a Mobile Inverted Pendulum (MIP) The dynamics of a Mobile Inverted Pendulum (MIP) 1 Introduction Saam Ostovari, Nick Morozovsky, Thomas Bewley UCSD Coordinated Robotics Lab In this document, a Mobile Inverted Pendulum (MIP) is a robotic

More information

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK What is SIMULINK? SIMULINK is a software package for modeling, simulating, and analyzing

More information

AP PHYSICS 1 BIG IDEAS AND LEARNING OBJECTIVES

AP PHYSICS 1 BIG IDEAS AND LEARNING OBJECTIVES AP PHYSICS 1 BIG IDEAS AND LEARNING OBJECTIVES KINEMATICS 3.A.1.1: The student is able to express the motion of an object using narrative, mathematical, and graphical representations. [SP 1.5, 2.1, 2.2]

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

Sketchy Notes on Lagrangian and Hamiltonian Mechanics

Sketchy Notes on Lagrangian and Hamiltonian Mechanics Sketchy Notes on Lagrangian and Hamiltonian Mechanics Robert Jones Generalized Coordinates Suppose we have some physical system, like a free particle, a pendulum suspended from another pendulum, or a field

More information

Lecture IV: Time Discretization

Lecture IV: Time Discretization Lecture IV: Time Discretization Motivation Kinematics: continuous motion in continuous time Computer simulation: Discrete time steps t Discrete Space (mesh particles) Updating Position Force induces acceleration.

More information

Kater s Pendulum. Stuart Field and Eric Hazlett

Kater s Pendulum. Stuart Field and Eric Hazlett Kater s Pendulum Stuart Field and Eric Hazlett Abstract In this lab we will determine the value of the acceleration of gravity g by using a reversible pendulum, first developed by Henry Kater in 1815.

More information

Problem Solving Session 10 Simple Harmonic Oscillator Solutions

Problem Solving Session 10 Simple Harmonic Oscillator Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Problem Solving Session 10 Simple Harmonic Oscillator Solutions W13D3-0 Group Problem Gravitational Simple Harmonic Oscillator Two identical

More information

The University of Hong Kong Department of Physics. Physics Laboratory PHYS3350 Classical Mechanics Experiment No The Physical Pendulum Name:

The University of Hong Kong Department of Physics. Physics Laboratory PHYS3350 Classical Mechanics Experiment No The Physical Pendulum Name: The University of Hong Kong Department of Physics Physics Laboratory PHYS3350 Classical Mechanics Experiment No. 3350-2 The Physical Pendulum Name: University No: Introduction One of the practical uses

More information

Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 0 1 4 Block Diagrams Block diagram models consist of two fundamental objects:

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

Computational Physics (6810): Session 8

Computational Physics (6810): Session 8 Computational Physics (6810): Session 8 Dick Furnstahl Nuclear Theory Group OSU Physics Department February 24, 2014 Differential equation solving Session 7 Preview Session 8 Stuff Solving differential

More information