STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

Size: px
Start display at page:

Download "STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M"

Transcription

1 NLELE ŞTIINŢIICE LE UNIERSITĂŢII L.I.CUZ IŞI Toul XLII, s.i, Mtetă, 2001, f.2. STRENGTH IELDS ND LGRNGINS ON GOs 2 M BY DRIN SNDOICI strt. In ths pper we stud the strength felds of the seond order on the geoetrl odel gven GOs 2 M nd Lgrngns nvolvng guge felds, defned through strength felds. full Lgrngn should e the su of the Lgrngn of guge felds nd lol guge nvrnt Lgrngn of tter felds. We shll onsder full Lgrngn L 0u nd, n Lgrnge nner, rewrte the equtons of oton. 1. Introduton. The for of the ntertons etween soe well known felds n e deterned postultng nvrne under ertn group of trnsfortons.the sstetl stud of nvrnt theoretl nterpretton of nterton n etween tter felds ws ntted Ut n [12]. Benu solved the prole of nvrne n the se of tngent undle TM, where M s rel, sooth, n-densonl nfold [3]. In onogrph [5] Mron gves n orgnl onstruton of the geoetr of the hgher order Lgrnge spes. These spes onsttute n dequte geoetrl frework for the developent of n ntegrted guge theor of the tter felds. Moreover, n ths work there re forulted the fundentls of the extenson of the lssl guge theor to the guge trnsfortons on the k osultor undle, endowed wth the Lgrngns of order k. The sgnfnt results onernng the guge theor of hgher order were otned Muntenu [2], [7], [8], [9]. In the pper we shll stud the strength felds of the seond order on the geoetrl odel gven GOs 2 M. These felds shll e ntrodued n nner, dfferent fro tht n [9]. lso, we shll stud Lgrngns nvolvng guge felds, defned through strength felds. s n lssl guge

2 214 DRIN SNDOICI 2 theor, the full Lgrngn should e the su of the Lgrngn of guge felds nd lol guge nvrnt Lgrngn of tter felds. We shll onsder full Lgrngn L 0 u nd look for the equtons of oton. The nottons nd the geoetrl oets tken nto onsderton re those used n [5], [7] nd [9]. 2. Strength felds nd Lgrngns for guge felds on GOs 2 M. Let us onsder M rel, sooth, n densonl nfold, G opt sugroup n GL, R, nd the nfold GOs 2 M orrespondng to M nd G see [5]. lso, we onsder L 0 u, u = x, 1, 2 Lgrngn defned on the don Ω R 3n, N = N, N nonlner 1 2 guge onneton on GOs 2 M, nd g = g etr struture on GOs 2 M. Suppose tht there exst p dfferentle slr felds phsl felds, = 1, p so tht the Lgrngn L 0 depends onl on the vrle x, 1, 2 through nd ther dervtves x,, α = 1, 2. More α presel, L 0 s slr feld on GOs 2 M gven : L 0 x, 1, 2 = L, x, α The tter felds re supposed to e guge slrs nd sne the nonlner onneton s guge, ther dervtves re guge vetors. s n lssl guge theores, new Lgrngn s onsdered: L 0 u = L, x, α, H u, α u, n whh H α u nd u, α = 1, 2 re the oponents of three guge d ovetors, lled lol guge felds, stsfng the followng nonhoogeneous ondtons of vrtons : H u = ε u f H ε x α u = ε u f α ε α Let us defne the followng guge dervtve opertors:

3 3 STRENGTH IELDS ND LGRNGINS ON GOs 2 M 215 h D = x H [X ] B B v α D = α α [X ] B B, α = 1, 2 Now we n look t the Lgrngn L 0 s eng: L 0 u = L, h D, vα D The lol guge nvrne of the 2 order Lgrngn L s dedued fro the glol guge nvrne of the Lgrngn L see [9]. Next, we shll onstrut soe Lgrngns for the guge felds H u nd α u. rst, we note tht the lol ton of the Le group G outes wth the opertors nd x. We n wrte : α H x = ε x f H ε f H x x H α = ε α f H ε f H α ɛ α x ε α x = ε x f α ε f α x ε x α α = β ε β f α ε f α β β x ε α where we denote f the struture onstnts of the Le group G. ordng to the ft tht we hve to work wth two tpes of guge felds, we look for Lgrngns of the followng for: 2.5. L 0 u = L H, α, H x, H α, α x, α β

4 216 DRIN SNDOICI 4 where L s dfferentle funton on don n R 3n6n2. The ondton for the lol guge nvrne of L 0 s gven : L 0 = L H H L α α 2.6. L H x H x L α x α x L H α H α β=1 L α β α = 0 β Note tht ondton 2.6 expresses the lol guge nvrne of L 0 on the don of oordntes neghourhood of GOs 2 M. In ft, we n prove tht 2.6 hs n nvrnt hrter on GOs 2 M. More presel, the vnshng of L 0 does not depend on the oordntes on GOs 2 M. Usng the lnguge of Lgrnge geoetr we n stte: Proposton 2.1. L 0 s nvrnt wth respet to the lol guge ton of G f nd onl f the followng reltons re stsfed: 2.7. L H x L H = 0 x L H α L α β L α x β α = 0 L = 0

5 5 STRENGTH IELDS ND LGRNGINS ON GOs 2 M L H L f H x H L α x f α = 0 L α 1 2 L R H 0α x n n L H α f H β=1 L β x n B βα n β=1 L β α f β 1 2 β=1γ=1 L β γ n α C γβ n = 0 L H H L α α L H H x x L H α H α L α x α x α,β=1 L α β α β f = 0 felds where R x, h 0α, B 1, h αβ 2 nd α C h γβ re gven the Le rkets of the vetor. ro 2.7 to 2.9 t follows tht H α x, x,

6 218 DRIN SNDOICI 6 H α, α enter the Lgrngn tht we seek onl ens of funtons β gven : h = H x v α,v β = α β H x, β α h,v α = H α α x Now, usng the ove funtons, the struture onstnts of the Le group G, the guge felds H, α nd the nonlner onneton on GOs 2 M, we defne the followng dfferentle funtons: h = h f H H 2 R. α 0α h,v α = h,vα f H α 2 B. β β=1 αβ v α,v β = vα,v β f α β 2 γ C γ γ=1αβ urther, we re nterested n studng the ehvour of h, h,vα wth respet to oth the lol ton of G nd the trnsforton of oordntes on GOs 2 M. We hve the followng two results: Proposton 2.2. The lol ton of G on the funtons h, vα,v β, h,vα,

7 7 STRENGTH IELDS ND LGRNGINS ON GOs 2 M 219 v α,v β s hoogeneous: h = ε f h h,vα = ε f h,vα vα,v β = ε f vα,v β Proposton 2.3. The dfferentle funtons h, h,vα nd vα,v β re the oponents of soe d tensor felds of tpe 0, 2 for eh =1,...,. Moreover, h nd vα,v β re nt setr d tensor felds. We ll h, h,vα nd vα,v β the horzontl strength felds, the xed strength felds nd v α vertl strength felds respetvel. Next, we shll see tht strength felds ke gret ontruton to the onstruton of Lgrngns for guge felds. We frst onsder the Lgrngn L 0 fro 2.5. s dfferentle funton whh depends onl on h h,v α v α,v β nd g u,.e. we hve: L 0 = L h, h,vα, vα,v β, g u where L s dfferentle funton. Then fro 2.13 to 2.16 we esl otn:,, L H x = 2 L α x = L h L, h,vα, L H α L α β = L h,vα L = 2 vα,v β

8 220 DRIN SNDOICI L H = 2 L f h H L h,v α f α L α = L h R 0α L h,v α f H β=1 L h,vβ B βα 2 β=1 L vα,v β f β γ=1β=1 L vβ,v γ α C γβ Usng t s es to hek tht L stsfes equtons Thus, the onl ondton for the lol guge nvrne of the Lgrngn whh rens for further nvestgtons s fter lultons, we otn tht: Proposton 2.4. The ondton of lol guge nvrne of L s gven : fd L h h h,vα h,v α L β=1 L vα,v β vα,v β = 0 We now rell tht the Kllng for of the Le lger G s lner for K on G G whose oponents re gven K = f d e f e d. The

9 9 STRENGTH IELDS ND LGRNGINS ON GOs 2 M 221 Le group G s sd to e se sple f the Kllng for K of G s non degenerte. t ths pont we suppose tht the Le group G nvolved n our guge theor s se sple nd opt. In ft the lss of Le groups tht we shll work wth s of spel nterest n phss. In order to onstrut Lgrngns for guge felds we onsder generlzed Lgrnge etr of order 2. Then, nspred the Yng Mlls felds fro lssl guge theor, we onsder the followng three Lgrngns: L H = 1 4 K g u g n u h u h n u L = 1 H, α 4 K g u g n u h,vα u h,vα n u L = 1 α, β 4 K g u g n u vα,v β u vα,v β n u Esl, we n verf tht L, L nd L re Lgrngns for H H, α α, β guge felds. s n lssl guge theor, the full Lgrngn should e the su of the Lgrngn of guge felds nd the lol guge nvrnt Lgrngn of tter felds. 3. Equtons of otons for the full Lgrngns. We egn wth generlzed Lgrnge etr of order 2 on GOs 2 M, gven the oponents g u, wth full Lgrngn L 0 u nd guge nonlner onneton N = N 1, N 2. Then we otn the Lgrngn denst: L u = L 0 u G, where G = detg u Next, we suppose tht the equtons of oton re ust the Euler Lgrnge equtons wth respet to L u nd the ndependent tter felds u

10 222 DRIN SNDOICI 10 nd guge felds H, α, α {1, 2}. Hene we hve the followng equtons of oton: L 3.2. L x L x α = 0 α 3.3. L H L x H x α L H = 0 α 3.4. L α x L α x β=1 β L α β = 0 Tkng nto ount the ft tht L 0 depends on x, on ens of x 1 x nd, nd on 1 2 x, nd, we n wrte: 1 2 ens of ens of 3.5. L = x L x 3.6. L 1 = L 1 L 1 N 1 x

11 11 STRENGTH IELDS ND LGRNGINS ON GOs 2 M L = 2 L 1, 2 N 1 2 L 1 1 N 2 L x We ke the followng nottons: 3.8. h = L x v 1 v 2 L = 1 L = 1, 2 1 2, v 1 nd v 2 The dfferentle funtons h re the oponents of d tensor felds of tpe 1,0. In ths w, n e wrtten n the followng for: L h = G x L 1 = G L 1, 2 = G 2 v1 N h 1 v2 N v 1 N h 1 2 Usng n 3.2., we otn: h 3.12 G L x N 1 2 v N 1 2 h 2 v 1 1 v 2 N 1 h 2 = G x h G 1 1 v 1 G 2 v 2

12 224 DRIN SNDOICI ertnl looks ore oplted thn 3.2., ut t s the Lgrnge geoetr whh wll help us to otn sple for of rst of ll, we onsder guge N lner onneton on GOs 2 M wth the oeffents L k, C, C. Usng the guge h nd v α ovrnt dervtves, 1 2 we hve: k k h = h L h x vα = vα α α C α vα The dentt n e wrtten n the followng for: where: E = 1 G L h v α α Γ L h Γ = G x h G L = L N N 2 v 1 2 = E C vα α G 2 v 2 C = C 1 1 N 1 2 ndc = C 2 2 Usng we onlude tht the E re p guge slr felds on

13 13 STRENGTH IELDS ND LGRNGINS ON GOs 2 M 225 GOs 2 M. We ke the followng nottons: h H = L H, x v 1 H = L H 1 1, v 2 H = L H 1, 2 2 The dfferentle funtons h H, v 1 H, v 2 H re the oponents of d tensor felds of tpe 2,0. Moreover, the h H re nt setr. B dret lultons nd usng the Lgrnge geoetr t follows tht 3.3. n e wrtten n the followng for: L H h H v α α H =H E where: L H = L H L h H E = 1 G H Γ L h H C v 1 H C v 2 H 1 2 H C vα H α H H Γ = G x h G 1 v 1 H G 2 v 2 H On the other hnd, we n prove tht the dfferentle funtons L H, = 1,..., n re the lol oponents of soe d vetor felds. Usng nd the ove rerk we onlude tht H E, {1,..., n} re d vetor

14 226 DRIN SNDOICI 14 felds. Next, we defne: h,v α = 1,v α = L α x L α 1 2,v α 1 = L α 2 1, 2 The dfferentle funtons h,vα, 1,vα nd 2,vα h,vα re the oponents of d tensor felds of tpe 2,0. Moreover, the re nt setr. Usng gn the lnguge of Lgrnge geoetr we n wrte 3.4. n the followng for: L α h,vα β=1 β,v α β = α E where: L α = L α E α Γ = 1 G α L h,vα C 1,vα C 2,vα 1 2 α Γ L h,vα = G x h,vα G 1 C β,vα β β=1 1,vα G 2 2,vα lso, we n prove tht the dfferentle funtons L α, = 1,..., n re d vetor felds. Usng nd the ove rerk, we onlude tht α E, {1,..., n} re d vetor felds. Therefore, we proved the followng result:

15 15 STRENGTH IELDS ND LGRNGINS ON GOs 2 M 227 Theore. The equtons of oton generted full Lgrngn re gven the reltons 3.14., nd Conlusons. In the lst prt of the pper we rewrte the Euler Lgrnge equtons of full Lgrngn of order 2, nl usng the notons of the nonlner onneton of order 2 nd of Lgrnge etr of order 2. The n otvton of ths rewrtng onssts n the ft tht, n the equvlent equtons tht we hve got, we hve underlned the dstngushed H nd α geoetr oets onsderng the defnton n [6] E, E E, ent s generlzed guge energes. These hve een used to deterne the lws of onservton nd the generlzed Mxwell equtons of order 2 orrespondng to guge full Lgrngn see [10] nd [11]. knowledgeent. The uthor s grteful to the revewer for hs rerks whh prove the prevous verson of the pper. REERENCES 1. snov, g.s. nsler Geoetr, Reltvt nd Guge Theores, D. Redel, Dordreht, Bln, v., Muntenu, gh. nd Stvrnos, p.. Generlzed Guge snov Equtons on Os 2 M Bundle., Proeedngs of the Workshop on Glol nlss, Dfferentl Geoetr nd Le lgers, 1995, Benu,. nsler Geoetr nd ppltons, Ells Horwood Lted, Chhn,. nd Nelp, n.f. Introduton to Guge eld Theores, Sprnger erlg, Mron, r. The Geoetr of Hgher Order Lgrnge Spes. ppltons to Mehns nd Phss, Kluwer de Pulshers, Mron, r. nd nstse,. The Geoetr of Lgrnge Spes: Theor nd ppltons, Kluwer de Pulshers,1994.

16 228 DRIN SNDOICI Muntenu, gh. Tehnques of Hgher Order Osultor Bundle n Generlzed Guge Theor, Pro. of Conf. on Dff. Geo. nd ppl., Brno, Muntenu, gh. nd Iked, s. On the Guge Theor of the Seond Order, Tensor N.S., vol. 56, 1995, Muntenu, gh. Hgher Order Guge Invrnt Lgrngns, Nov-Sd J. Mth. ol. 27, No. 2, 1997, Sndov,. Guge Bnh Identtes n Hgher Order Lgrnge Spes, Blkn Journl of Geoetr nd Its ppltons, vol. 5, no. 1, 2000, Sndov,. Conservton Lws n Hgher Order Lgrnge Spes, Mthet, Clu, to pper. 12. Ut, r. Invrnt theoretl nterpretton of nterton, Phs. Rev , Reeved: 25.I.1999 Revsed: 21.X.2001 Colegul Nţonl Petru Rreş Ptr Neţ 5600 ROMNI drsnd@hotl.o

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY THEORETICAL PHYSICS REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY V. CHIRIÞOIU 1, G. ZET 1 Poltehn Unversty Tmºor, Tehnl Physs Deprtment, Romn E-ml: vorel.hrtou@et.upt.ro

More information

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS ournl o Mthetl enes: dvnes nd ppltons Volue Nuer Pes 65-77 REGULR TURM-LIOUVILLE OPERTOR WITH TRNMIION CONDITION T INITE INTERIOR DICONTINUOU POINT XIOLING HO nd IONG UN hool o Mthetl enes Inner Monol

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

Geometric coupling of scalar multiplets to D=4, N=1 pure supergravity

Geometric coupling of scalar multiplets to D=4, N=1 pure supergravity Interntonl eserh Journl of Engneerng nd Tehnology (IJET) e-issn: 395-0056 olue: 0 Issue: 09 De-05 www.ret.net p-issn: 395-007 eoetr ouplng of slr ultplets to D=, N= pure supergrvty Polo D S,,3 Adunt Professor,

More information

Shuai Dong. Using Math and Science to improve your game

Shuai Dong. Using Math and Science to improve your game Computtonl phscs Shu Dong Usng Mth nd Sene to mprove our gme Appromton of funtons Lner nterpolton Lgrnge nterpolton Newton nterpolton Lner sstem method Lest-squres ppromton Mllkn eperment Wht s nterpolton?

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences

Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences 548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 Lner Coplexty Over nd Tre Representton of Lepel Cohn Estn Sequenes Tor Helleseth, Fellow, IEEE, Sng-Hyo K, Student Meer, IEEE, nd Jong-Seon

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

An Ising model on 2-D image

An Ising model on 2-D image School o Coputer Scence Approte Inerence: Loopy Bele Propgton nd vrnts Prolstc Grphcl Models 0-708 Lecture 4, ov 7, 007 Receptor A Knse C Gene G Receptor B Knse D Knse E 3 4 5 TF F 6 Gene H 7 8 Hetunndn

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION Advnes n Fuzzy ets nd ystems 05 Pushp Pulshng House Allhd nd Pulshed Onlne: Novemer 05 http://dx.do.org/0.7654/afde05_097_3 Volume 0 Numer 05 Pges 97-3 N: 0973-4X REGUAR CUBC ANGUAGE AND REGUAR CUBC EXPREON

More information

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods Engneerng Prt I 009-0, Pper 4, Mthemtl Methods, Fst Course, J.B.Young CMBRIDGE UNIVERSITY ENGINEERING DEPRTMENT PRT I (Frst Yer) 009-00 Pper 4 : Mthemtl Methods Leture ourse : Fst Mths Course, Letures

More information

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points.

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points. Prole 3: Crnot Cyle of n Idel Gs In this prole, the strting pressure P nd volue of n idel gs in stte, re given he rtio R = / > of the volues of the sttes nd is given Finlly onstnt γ = 5/3 is given You

More information

Interval Valued Neutrosophic Soft Topological Spaces

Interval Valued Neutrosophic Soft Topological Spaces 8 Interval Valued Neutrosoph Soft Topologal njan Mukherjee Mthun Datta Florentn Smarandah Department of Mathemats Trpura Unversty Suryamannagar gartala-7990 Trpura Indamal: anjan00_m@yahooon Department

More information

Numerical Solution of Freholm-Volterra Integral Equations by Using Scaling Function Interpolation Method

Numerical Solution of Freholm-Volterra Integral Equations by Using Scaling Function Interpolation Method Aled Mthetcs 3 4 4-9 htt://ddoorg/436/34a3 Pulshed Onlne Jnury 3 (htt://wwwscrorg/ournl/) uercl Soluton of Frehol-Volterr Integrl Equtons y Usng Sclng Functon Interolton Method Yousef Al-Jrrh En-Bng Ln

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

Machine Learning. Support Vector Machines. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 8, Sept. 13, 2012 Based on slides from Eric Xing, CMU

Machine Learning. Support Vector Machines. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 8, Sept. 13, 2012 Based on slides from Eric Xing, CMU Mchne Lernng CSE6740/CS764/ISYE6740 Fll 0 Support Vector Mchnes Le Song Lecture 8 Sept. 3 0 Bsed on sldes fro Erc Xng CMU Redng: Chp. 6&7 C.B ook Outlne Mu rgn clssfcton Constrned optzton Lgrngn dult Kernel

More information

Complement of an Extended Fuzzy Set

Complement of an Extended Fuzzy Set Internatonal Journal of Computer pplatons (0975 8887) Complement of an Extended Fuzzy Set Trdv Jyot Neog Researh Sholar epartment of Mathemats CMJ Unversty, Shllong, Meghalaya usmanta Kumar Sut ssstant

More information

REDUCTION OF THE ELEMENTARY BODIES TO SYSTEMS OF MATERIAL POINTS WITH THE SAME INERTIA PROPERTIES. Nicolaie ORASANU 1

REDUCTION OF THE ELEMENTARY BODIES TO SYSTEMS OF MATERIAL POINTS WITH THE SAME INERTIA PROPERTIES. Nicolaie ORASANU 1 U... S. ull., Seres, ol. 7, Iss., ISS - REUTIO OF THE ELEETRY OIES TO SYSTES OF TERIL OITS WITH THE SE IERTI ROERTIES ole ORSU In estă lurre se propun tev odele tete de reduere orpurlor eleentre l sstee

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Haddow s Experiment:

Haddow s Experiment: schemtc drwng of Hddow's expermentl set-up movng pston non-contctng moton sensor bems of sprng steel poston vres to djust frequences blocks of sold steel shker Hddow s Experment: terr frm Theoretcl nd

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity Generlzed Lorentz Trnsformton Allowng the Relte Veloty of Inertl Referene Systems Greter Thn the Lght Veloty Yu-Kun Zheng Memer of the Chnese Soety of Grtton nd Reltst Astrophyss Eml:yzheng@puorgn Astrt:

More information

New Exact Solutions for Static Axially Symmetric Einstein Vacuum Equations

New Exact Solutions for Static Axially Symmetric Einstein Vacuum Equations The Arn Revew o Physs : 8 New Et Solutons or Stt Ally Symmetr Ensten Vuum Equtons Ahmd T. Al Froo Rhmn * nd Syeedul Islm Kng Adul A nversty Fulty o Sene Deprtment o Mthemts Jeddh Sud Ar nd Mthemts Deprtment

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundgl, Hyderbd - 5 3 FRESHMAN ENGINEERING TUTORIAL QUESTION BANK Nme : MATHEMATICS II Code : A6 Clss : II B. Te II Semester Brn : FRESHMAN ENGINEERING Yer : 5 Fulty

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

Outline. Review Quadrilateral Equation. Review Linear φ i Quadrilateral. Review x and y Derivatives. Review φ Derivatives

Outline. Review Quadrilateral Equation. Review Linear φ i Quadrilateral. Review x and y Derivatives. Review φ Derivatives E 5 Engneerng nlss ore on Fnte Eleents n ore on Fnte Eleents n Two Densons Two Densons Lrr Cretto echncl Engneerng 5 Senr n Engneerng nlss prl 7-9 9 Otlne Revew lst lectre Qrtc ss nctons n two ensons orer

More information

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +. Ler Trsfortos d Group Represettos Hoework #3 (06-07, Aswers Q-Q re further exerses oer dots, self-dot trsfortos, d utry trsfortos Q3-6 volve roup represettos Of these, Q3 d Q4 should e quk Q5 s espelly

More information

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem Journal of Engneerng and Appled Senes Volue: Edton: Year: 4 Pages: 7 4 Ultraspheral Integraton Method for Solvng Bea Bendng Boundary Value Proble M El-Kady Matheats Departent Faulty of Sene Helwan UnverstyEgypt

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

LESSON 11: TRIANGLE FORMULAE

LESSON 11: TRIANGLE FORMULAE . THE SEMIPERIMETER OF TRINGLE LESSON : TRINGLE FORMULE In wht follows, will hve sides, nd, nd these will e opposite ngles, nd respetively. y the tringle inequlity, nd..() So ll of, & re positive rel numers.

More information

Representing Curves. Representing Curves. 3D Objects Representation. Objects Representation. General Techniques. Curves Representation

Representing Curves. Representing Curves. 3D Objects Representation. Objects Representation. General Techniques. Curves Representation Reresentng Crves Fole & n Dm, Chter Reresentng Crves otvtons ehnqes for Ojet Reresentton Crves Reresentton Free Form Reresentton Aromton n Interolton Prmetr Polnomls Prmetr n eometr Contnt Polnoml Slnes

More information

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp:

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp: Results n Projetve Geometry PG( r,), r, Emd Bkr Al-Zngn* Deprtment of Mthemts, College of Sene, Al-Mustnsryh Unversty, Bghdd, Ir Abstrt In projetve plne over fnte feld F, on s the unue omplete ( ) r nd

More information

Sequences of Intuitionistic Fuzzy Soft G-Modules

Sequences of Intuitionistic Fuzzy Soft G-Modules Interntonl Mthemtcl Forum, Vol 13, 2018, no 12, 537-546 HIKARI Ltd, wwwm-hkrcom https://doorg/1012988/mf201881058 Sequences of Intutonstc Fuzzy Soft G-Modules Velyev Kemle nd Huseynov Afq Bku Stte Unversty,

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

Geometric Correction or Georeferencing

Geometric Correction or Georeferencing Geoetrc Correcton or Georeferencng GEOREFERENCING: fro ge to p Coordntes on erth: (λ, φ) ge: (, ) p: (, ) rel nteger Trnsfortons (nvolvng deforton): erth-to-ge: χ erth-to-p: ψ (crtogrphc proecton) ge-to-p:

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

A Study on Root Properties of Super Hyperbolic GKM algebra

A Study on Root Properties of Super Hyperbolic GKM algebra Stuy on Root Popetes o Supe Hypebol GKM lgeb G.Uth n M.Pyn Deptment o Mthemts Phypp s College Chenn Tmlnu In. bstt: In ths ppe the Supe hypebol genelze K-Mooy lgebs o nente type s ene n the mly s lso elte.

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

MCA-205: Mathematics II (Discrete Mathematical Structures)

MCA-205: Mathematics II (Discrete Mathematical Structures) MCA-05: Mthemts II (Dsrete Mthemtl Strutures) Lesson No: I Wrtten y Pnkj Kumr Lesson: Group theory - I Vette y Prof. Kulp Sngh STRUCTURE.0 OBJECTIVE. INTRODUCTION. SOME DEFINITIONS. GROUP.4 PERMUTATION

More information

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B]

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B] Conept of Atvty Equlbrum onstnt s thermodynm property of n equlbrum system. For heml reton t equlbrum; Conept of Atvty Thermodynm Equlbrum Constnts A + bb = C + dd d [C] [D] [A] [B] b Conentrton equlbrum

More information

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article:

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article: Homework Math 80: Introduton to GR Temple-Wnter 208 (3) Summarze the artle: https://www.udas.edu/news/dongwthout-dark-energy/ (4) Assume only the transformaton laws for etors. Let X P = a = a α y = Y α

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Graphical rules for SU(N)

Graphical rules for SU(N) M/FP/Prours of Physque Théorque Invrnes n physs nd group theory Grph rues for SU(N) In ths proem, we de wth grph nguge, whh turns out to e very usefu when omputng group ftors n Yng-Ms fed theory onstruted

More information

ON DUALITY FOR NONSMOOTH LIPSCHITZ OPTIMIZATION PROBLEMS

ON DUALITY FOR NONSMOOTH LIPSCHITZ OPTIMIZATION PROBLEMS Yugoslav Journal of Oeratons Researh Vol 9 (2009), Nuber, 4-47 DOI: 0.2298/YUJOR09004P ON DUALITY FOR NONSMOOTH LIPSCHITZ OPTIMIZATION PROBLEMS Vasle PREDA Unversty of Buharest, Buharest reda@f.unbu.ro

More information

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations Dynm o Lnke Herrhe Contrne ynm The Fethertone equton Contrne ynm pply ore to one omponent, other omponent repotone, rom ner to r, to ty tne ontrnt F Contrne Boy Dynm Chpter 4 n: Mrth mpule-be Dynm Smulton

More information

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008 Alele Uverstăţ d Orde Fsul: Proteţ Medulu Vol. XIII 00 THEORETICAL AND COMPARATIVE STUDY REGARDING THE MECHANICS DISPLASCEMENTS UNDER THE STATIC LOADINGS FOR THE SQUARE PLATE MADE BY WOOD REFUSE AND MASSIF

More information

Mixed Type Duality for Multiobjective Variational Problems

Mixed Type Duality for Multiobjective Variational Problems Ž. ournl of Mthemtcl Anlyss nd Applctons 252, 571 586 2000 do:10.1006 m.2000.7000, vlle onlne t http: www.delrry.com on Mxed Type Dulty for Multoectve Vrtonl Prolems R. N. Mukheree nd Ch. Purnchndr Ro

More information

Fractional Euler-Lagrange Equations of Order ( α, β ) for Lie Algebroids

Fractional Euler-Lagrange Equations of Order ( α, β ) for Lie Algebroids Studes n Mthemtcl Scences Vol. 1 No. 1 2010 pp. 13-20 www.cscnd.org ISSN 1923-8444 [Prnt] ISSN 1923-8452 [Onlne] www.cscnd.net Frctonl Euler-Lgrnge Equtons of Order ( α β ) for Le Algerods El-Nuls Ahmd

More information

ON AN INEQUALITY FOR THE MEDIANS OF A TRIANGLE

ON AN INEQUALITY FOR THE MEDIANS OF A TRIANGLE Journl of Siene nd Arts Yer, No. (9), pp. 7-6, OIGINAL PAPE ON AN INEQUALITY FO THE MEDIANS OF A TIANGLE JIAN LIU Mnusript reeived:.5.; Aepted pper:.5.; Pulished online: 5.6.. Astrt. In this pper, we give

More information

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a. Chpter Review 89 IGURE ol hord GH of the prol 4. G u v H (, ) (A) Use the distne formul to show tht u. (B) Show tht G nd H lie on the line m, where m ( )/( ). (C) Solve m for nd sustitute in 4, otining

More information

Abstract tensor systems and diagrammatic representations

Abstract tensor systems and diagrammatic representations Astrt tensor systes n grt representtons Jāns Lzovss Septeer 28, 2012 Astrt The grt tensor lulus use y Roger Penrose ost notly n [7]) s ntroue wthout sol thetl grounng. We wll ttept to erve the tools of

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

ˆ A = A 0 e i (k r ωt) + c.c. ( ωt) e ikr. + c.c. k,j

ˆ A = A 0 e i (k r ωt) + c.c. ( ωt) e ikr. + c.c. k,j p. Supp. 9- Suppleent to Rate of Absorpton and Stulated Esson Here are a ouple of ore detaled dervatons: Let s look a lttle ore arefully at the rate of absorpton w k ndued by an sotrop, broadband lght

More information

Charged Particle in a Magnetic Field

Charged Particle in a Magnetic Field Charged Partle n a Magnet Feld Mhael Fowler 1/16/08 Introduton Classall, the fore on a harged partle n eletr and magnet felds s gven b the Lorentz fore law: v B F = q E+ Ths velot-dependent fore s qute

More information

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j Vetors MC Qld-3 49 Chapter 3 Vetors Exerse 3A Revew of vetors a d e f e a x + y omponent: x a os(θ 6 os(80 + 39 6 os(9.4 omponent: y a sn(θ 6 sn(9 0. a.4 0. f a x + y omponent: x a os(θ 5 os( 5 3.6 omponent:

More information

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths Intermedite Mth Cirles Wednesdy 17 Otoer 01 Geometry II: Side Lengths Lst week we disussed vrious ngle properties. As we progressed through the evening, we proved mny results. This week, we will look t

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

2 a Mythili Publishers, Karaikkudi

2 a Mythili Publishers, Karaikkudi Wnglsh Tuton Centre Puduvl + Mths Q & A Mthl Pulshers Krud. 8000 PROVE BY FACTOR METHOD OF DETERMINANTS. ). ). ). ). ) 6. ) ) ) ). ) ) 8. ) 9 ) 9. 8 0. 0 Solve ) PROPERTIES OF DETERMINANTS. 0 / / /. 0.

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

FAULT DETECTION AND IDENTIFICATION BASED ON FULLY-DECOUPLED PARITY EQUATION

FAULT DETECTION AND IDENTIFICATION BASED ON FULLY-DECOUPLED PARITY EQUATION Control 4, Unversty of Bath, UK, September 4 FAUL DEECION AND IDENIFICAION BASED ON FULLY-DECOUPLED PARIY EQUAION C. W. Chan, Hua Song, and Hong-Yue Zhang he Unversty of Hong Kong, Hong Kong, Chna, Emal:

More information

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]: RGMIA Reserch Report Collecton, Vol., No. 1, 1999 http://sc.vu.edu.u/οrgm ON THE OSTROWSKI INTEGRAL INEQUALITY FOR LIPSCHITZIAN MAPPINGS AND APPLICATIONS S.S. Drgomr Abstrct. A generlzton of Ostrowsk's

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

APPROXIMATE SOLUTION OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS BY MEANS OF A NEW RATIONAL CHEBYSHEV COLLOCATION METHOD

APPROXIMATE SOLUTION OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS BY MEANS OF A NEW RATIONAL CHEBYSHEV COLLOCATION METHOD thetcl nd oputtonl Applctons ol. 5 o. pp. 5-56. Assocton for Scentfc eserch APPOXIAE SOLUIO OF HIGHE ODE LIEA DIFFEEIAL EQUAIOS BY EAS OF A EW AIOAL HEBYSHE OLLOAIO EHOD Slh Ylçınbş * esrn Özso ehet Sezer

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

Chemistry 163B Absolute Entropies and Entropy of Mixing

Chemistry 163B Absolute Entropies and Entropy of Mixing Chemstry 163 Wnter 1 Hndouts for hrd Lw nd Entropy of Mxng (del gs, dstngushle molecules) PPENDIX : H f, G f, U S (no Δ, no su f ) Chemstry 163 solute Entropes nd Entropy of Mxng Hº f Gº f Sº 1 hrd Lw

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potentl nd the Grnd Prtton Functon ome Mth Fcts (see ppendx E for detls) If F() s n nlytc functon of stte vrles nd such tht df d pd then t follows: F F p lso snce F p F we cn conclude: p In other

More information

Slobodan Lakić. Communicated by R. Van Keer

Slobodan Lakić. Communicated by R. Van Keer Serdca Math. J. 21 (1995), 335-344 AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th ROOT Slobodan Lakć Councated by R. Van Keer In ths paper we gve an teratve ethod to copute the prncpal n-th root and

More information

EC3075 Mathematical Approaches to Economics

EC3075 Mathematical Approaches to Economics EC3075 Mathematal Aroahes to Eonoms etures 7-8: Dualt and Constraned Otmsaton Pemberton & Rau haters 7-8 Dr Gaa Garno [Astle Clarke Room 4 emal: gg44] Dualt n onsumer theor We wll exose the rmal otmsaton

More information

New Algorithms: Linear, Nonlinear, and Integer Programming

New Algorithms: Linear, Nonlinear, and Integer Programming New Algorthms: ner, Nonlner, nd Integer Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tl Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.om Astrt In ths pper we propose new lgorthm for lner progrmmng. Ths

More information

Exercise sheet 6: Solutions

Exercise sheet 6: Solutions Eerise sheet 6: Solutions Cvet emptor: These re merel etended hints, rther thn omplete solutions. 1. If grph G hs hromti numer k > 1, prove tht its verte set n e prtitioned into two nonempt sets V 1 nd

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7 TELOM 3 Tme Vryng Queues Dvd Tpper Assote Professor Grdute Teleommuntons nd Networkng Progrm Unversty of Pttsburgh ldes 7 Tme Vryng Behvor Teletrff typlly hs lrge tme of dy vrtons Men number of lls per

More information

d 2 Area i K i0 ν 0 (S.2) d 3 x t 0ν

d 2 Area i K i0 ν 0 (S.2) d 3 x t 0ν PHY 396 K. Solutions for prolem set #. Prolem 1: Let T µν = λ K λµ ν. Regrdless of the specific form of the K λµ ν φ, φ tensor, its ntisymmetry with respect to its first two indices K λµ ν K µλ ν implies

More information

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

Robot Dynamics. Hesheng Wang Dept. of Automation Shanghai Jiao Tong University

Robot Dynamics. Hesheng Wang Dept. of Automation Shanghai Jiao Tong University Robot Dyn Heheng Wng Dept. of Autoton Shngh Jo Tong Unverty Wht Robot Dyn? Robot dyn tude the reton between robot oton nd fore nd oent tng on the robot. x Rotton bout Fxed Ax The veoty v n be deterned

More information

COMP 465: Data Mining More on PageRank

COMP 465: Data Mining More on PageRank COMP 465: Dt Mnng Moe on PgeRnk Sldes Adpted Fo: www.ds.og (Mnng Mssve Dtsets) Powe Iteton: Set = 1/ 1: = 2: = Goto 1 Exple: d 1/3 1/3 5/12 9/24 6/15 = 1/3 3/6 1/3 11/24 6/15 1/3 1/6 3/12 1/6 3/15 Iteton

More information

4.5. QUANTIZED RADIATION FIELD

4.5. QUANTIZED RADIATION FIELD 4-1 4.5. QUANTIZED RADIATION FIELD Baground Our treatent of the vetor potental has drawn on the onohroat plane-wave soluton to the wave-euaton for A. The uantu treatent of lght as a partle desrbes the

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

Rational Numbers as an Infinite Field

Rational Numbers as an Infinite Field Pure Mtemtl Senes, Vol. 4, 205, no., 29-36 HIKARI Ltd, www.m-kr.om ttp://dx.do.org/0.2988/pms.205.4028 Loue re Mg Squres over Mult Set o Rtonl Numers s n Innte Feld A. M. Byo Deprtment o Mtemts nd Computer

More information

5. Every rational number have either terminating or repeating (recurring) decimal representation.

5. Every rational number have either terminating or repeating (recurring) decimal representation. CHAPTER NUMBER SYSTEMS Points to Rememer :. Numer used for ounting,,,,... re known s Nturl numers.. All nturl numers together with zero i.e. 0,,,,,... re known s whole numers.. All nturl numers, zero nd

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

PARABOLIC AND ELLIPTIC REFLECTORS

PARABOLIC AND ELLIPTIC REFLECTORS PARABOLIC AND ELLIPTIC REFLECTORS It s well known tht refletng surfes of ether prol or ellpt shpe hve the nterestng propert tht nomng lght rs wth spefed orentton n reflet off of suh surfes to produe undle

More information