Mixed Type Duality for Multiobjective Variational Problems

Size: px
Start display at page:

Download "Mixed Type Duality for Multiobjective Variational Problems"

Transcription

1 Ž. ournl of Mthemtcl Anlyss nd Applctons 252, do: m , vlle onlne t http: on Mxed Type Dulty for Multoectve Vrtonl Prolems R. N. Mukheree nd Ch. Purnchndr Ro Deprtment of Appled Mthemtcs, Insttute of Technology, Bnrs ndu Un ersty, Vrns , Ind Sumtted y Wllm F. Ames Receved Septemer, 1996 The concept of mxed-type dulty hs een extended to the clss of multoectve vrtonl prolems. A numer of dulty reltons re proved to relte the effcent solutons of the prml nd ts mxed-type dul prolems. The results re otned for -convex Ž generlzed -convex. functons. These studes hve een generlzed to the cse of -nvex Ž generlzed -nvex. functons. Our results pprently generlze frly lrge numer of dulty results prevously otned for fnte-dmensonl nonlner progrmmng prolems under vrous convexty ssumptons Acdemc Press ey Words: mxed-type dul; effcent soluton; -convex; -nvex; multoectve progrmmng. 1. INTRODUCTION The dulty theory hs een studed extensvely n the nonlner progrmmng lterture. Ths theory my e regrded s the most delcte suect n the theory of nonlner progrmmng, nd ts theoretcl mportnce cnnot e questoned Že.g., n the theory of computtonl lgorthms of lner progrmmng nd n the theory of prces nd mrkets n economcs.. The mn queston whch s nvestgted n the dulty s s follows: under whch ssumptons s t possle to ssocte n equvlent mxmzton Ž dul. prolem to gven mnmzton Ž prml. prolem? For ths purpose, n the recent pst vrous dulty models hve ppered. Among mny such models, two well-known dulty models re Wolfe dul nd Mond Wer dul, whch were wdely used n the re of fnte-dmen X 00 $35.00 Copyrght 2000 y Acdemc Press All rghts of reproducton n ny form reserved.

2 572 MUEREE AND RAO sonl smooth nd nonsmooth nonlner progrmmng prolems. Qute recently, Zengkun Xu 6 ntroduced mxed-type dulty model whch contns the ove two models s specl cses nd estlshes vrous dulty results y reltng effcent solutons of hs mxed-type dul pr of prolems. On-the other hnd, nother sc concept n the theory of nonlner progrmmng s the generlzton of convexty, whch ssumes centrl role n mny spects of mthemtcl progrmmng, ncludng suffcent optmlty conons, dulty reltons, theorems of lterntves, nd convergence of the optmzton lgorthms. Vrous generlztons of convexty, for exmple, nvexty, qusnvexty, nd pseudonvexty Žsee, e.g.,. 3, re qute close to convexty n the sense tht they preserve some of the mportnt propertes of convexty. Another generlzton of convexty known s -convexty, n whch the defnng nequlty for convex holds pproxmtely, to wthn term dependng on prmeter whch my e zero Ž convex., postve Ž strongly convex., or negtve Ž wekly convex., ws ntroduced y Vl, whose role n the constructon nd convergence nlyss of lgorthms n nonlner progrmmng s well known. The noton of -convexty hs een further generlzed to the noton of -nvexty y eykumr 2. Qute recently, mny ppers hve een devoted to the study of these functons for the clss of vrtonl nd control prolems; for exmple, one my consult 1. The purpose of ths pper s to ntroduce contnuous nlog of the Ž sttc. mxed-type dul ntroduced qute recently y Zengkun Xu 6, n clss of vrtonl multoectve progrmmng prolems, nd to estlsh frly lrge numer of dulty results y reltng effcent solutons etween ths mxed-type dul pr. The results re otned for dfferentle -convex Ž generlzed -convex. functons nd -nvex Žgenerlzed -nvex. functons n ther contnuous verson. These dulty results contn s specl cses the counterprts of most well-known results orgnlly otned for conventonl nonlner progrmmng prolems wth dfferentle. 2. NOTATION AND PRELIMINARIES Let I, e rel ntervl nd let 1, 2,..., p P nd 1, 2,..., m M. In ths pper we ssume the followng: xt Ž. s n n-dmensonl pecewse smooth functon of t, nd xt Ž. s the dervtve of xt Ž. wth respect to t n,. For nottonl smplcty, we shll wrte, s nd when necessry, xt Ž. nd xž. t s x nd x, respectvely, nd so on. We denote the prtl dervtves

3 MULTIOBECTIVE VARIATIONAL PROBLEMS 573 t x ẋ of f wth respect to t, x nd x, respectvely, y f, f, nd f such tht f Ž f x,..., f x. nd f Ž f x,..., f x. x 1 n x 1 n. Smlrly, the prtl dervtves of the vector functon g cn e wrtten, usng mtrces wth m rows nsted of one. Let S denote the spce of n-dmensonl pecewse smooth functons x wth norm x x Dx, where the Ž. t dfferentton opertor D s u Dx xt us Ž. ds, where 0 s 0 gven oundry vlue. Therefore, D d dx, except t dscontnutes. Remrk 1. For nottonl smplcty, no nottonl dstncton s mde etween row nd column vectors. Suscrpts denote prtl dervtves, nd superscrpts denote vector components. Unless otherwse specfed, for ny ndexed set T 1, 2, 3,..., t, T mens the sum over ll T. We now gve some defntons whch wll e used susequently n our lter results. Let F x : S, denoted y F x fž t, x, x., e Frechet dfferentle. Let e rel numer. At pont u n S, we defne functonl F to e Ž. -convex f rel numer such tht x Ž u. n S, F x Fu Ž x u. f Ž t, u, u. ŽDŽ x u.. f Ž t, u, u. x u 2 u u or strctly -convex f strct nequlty holds; Ž. -pseudoconvex f rel numer such tht x Ž u. n S, Ž x u. f Ž t, u, u. ŽDŽ x u.. f Ž t, u, u. x u 2 F x u u Fu or strctly -pseudoconvex f strct nequlty holds n the rght-hnd nequlty of the ove mplcton; Ž. c -qusconvex f rel numer such tht, x Ž u. n S, F x Fu Ž x u. f Ž t, u, u. ŽDŽ x u.. f Ž t, u, u. u u x u 2. From ths pont on we use the term generlzed -convexty to ndcte -pseudoconvexty, -qusconvexty, etc. Now the most mmee wy to extend the -convexty Ž generlzed -convexty. to the vector functons requres the -convexty Ž generlzed -convexty. of the sngle components. For ths purpose let h Žh 1, h 2,...,h n. e n n-dmensonl vector functon nd ech of ts components e -convex Žgenerlzed -convex. t the sme pont u. Also, let k Ž k, k,...,k. 1 2 n e vector constnt such tht k 0 for ll 1, 2,..., n. Then Ž. h N s N -convex t u, Ž. Ech kf s k -convex t u, nd hence Ž. c ht,.,. Ž. s -convex t u. N

4 57 MUEREE AND RAO These propertes wll e used frequently throughout the pper wthout eng specfed. 3. FORMULATION OF TE MAIN PROBLEM We consder the followng multoectve vrtonl progrmmng prolem: suect to Mn fž t, x, x. Ž MP. x X x S xž., xž., gž t, x, x. 0, t I, 0 0 Ž 1 2 p. n n P where f f, f,..., f ; I, ech component functon Ž 1 2 s contnuously dfferentle rel sclr functon, nd g g, g,..., m. n n m g : I s n m-dmensonl contnuously dfferentle vector functon. Snce the oectves n multoectve progrmmng prolems generlly conflct wth one nother, n optml soluton s chosen from the set of effcent solutons n the followng sense, nd Mn mens fndng n-dmensonl pecewse smooth effcent soluton x xt, Ž. t I, for the prolem Ž MP.. DEFINITION 1. An n-dmensonl pecewse smooth functon u n the fesle regon of the prolem Ž MP. s sd to e n effcent soluton for the prolem Ž MP. f x X nd P: f Ž t, u, u. f Ž t, x, x. f Ž t, u, u. f Ž t, x, x.. DEFINITION 2. An n-dmensonl pecewse smooth functon u n the fesle regon of the prolem Ž MP. s sd to e wek mnmum for the prolem Ž MP. f there exsts no other x n X for whch fž t, u, u. fž t, x, x.. From the ove two defntons t follows tht f x n X s n effcent soluton for Ž MP., then t s lso wek mnmum for Ž MP.. Before presentng the mxed-type dul to Ž MP. we stte, n the form of the followng proposton, the contnuous verson of Theorem 2.2 of 5, whch wll e needed n the proof of the Strong Dulty Theorem. Ž. PROPOSITION 1. Let x e wek mnmum for MP t whch the uhn Tucker constrnt qulfcton s stsfed. Then there exst n p

5 MULTIOBECTIVE VARIATIONAL PROBLEMS 575 nd pecewse smooth Ž..: I m such tht f Ž t, x, x. Ž t. g Ž t, x, x. D f Ž t, x, x. Ž t. g Ž t, x, x. x x x x Ž t. gž t, x, x. 0 Ž t. 0, e 1, 0, where e s the ector of p, the components of whch re ll ones. We dvde the ndex set M of the constrnt functons of the prolem Ž MP. nto two dsont susets, nmely nd, such tht U M, nd let Ž t. g Ž t, x, x. Ž t. g Ž t, x, x. Ž t. g Ž t, x, x. Ž t. g Ž t, x, x.. Now we ntroduce the contnuous nlog of the sttc mxed-type dul Ž. 6, for the prml prolem MP. suect to Mx f t, u, u t g t, u, u e MD Ž. Ž. Ž. Ž. fuž t, u, u. Ž t. guž t, u, u. D fuž t, u, u. Ž t. guž t, u, u. Ž 1. t g t, u, u 0 2 Ž. Ž. Ž. Ž t. 0, e 1, 0 Ž 3. xž. 0, xž. 0, where e s the vector of p, the components of whch re ll ones.. DUALITY TEOREMS In ths secton, we present nd dscuss frly lrge numer of dulty results etween Ž MP. nd Ž MD. y mposng vrous -convexty Žgener- lzed -convexty. conons upon the oectve nd constrnt functons. We egn wth stuton n whch ll of the functons re -convex.

6 576 MUEREE AND RAO Susequently, we formulte more generl dulty crter n whch the generlzed -convexty requrements re plced on certn comntons of the oectve nd constrnt functons. Let Y denote the set of ll fesle solutons of Ž MD.. The theorems tht follow re wek dulty theorems n whch we prove tht f Ž t, x, x. f Ž t, u, u. Ž t. g Ž t, u, u. Ž. cnnot hold for x n X nd u n Y, for ll n P, nd for some n P, f Ž t, x, x. f Ž t, u, u. Ž t. g Ž t, u, u.. Ž 5. Ž Ž.. TEOREM 1. Let x X nd u,, t Y, nd Ž 1. for ech P, f s -con ex, nd for ech M, g s -con ex; then Ž. nd Ž 5. cnnot hold f ether of the followng hold. Ž 1. For ech P, 0 wth Ž t. P M 0 Ž 1c. Ž t. 0. P M Proof. If x u, then wek dulty theorem trvlly holds, so ssume tht x u. From the dulty constrnt Ž. 1 we hve u u u u Ž x u. f Ž t, u, u. Ž t. g Ž t, u, u. Ž x u. D f Ž t, u, u. Ž t. g Ž t, u, u.. Ž 6. Suppose, on the contrry, tht Ž. nd Ž. 5 hold. These nequltes mply, n vew of the feslty of x for Ž MP., tht Ž. Ž. Ž. f t, x, x t g t, x, x for ll P, nd for some P, f Ž t, u, u. Ž t. g Ž t, u, u. Ž. Ž. Ž. f t, x, x t g t, x, x f Ž t, u, u. Ž t. g Ž t, u, u..

7 MULTIOBECTIVE VARIATIONAL PROBLEMS 577 From the strct postvty of ech component of nd the fct tht e 1, t follows tht Ž. Ž. Ž. f t, x, x t g t, x, x f t, u, u t g t, u, u. 7 Ž. Ž. Ž. Ž. Now y the defntons of -convexty of f, P, nd -convexty of g, M, we hve Ž. Ž. f t, x, x f t, u, u u Ž. u Ž x u. f Ž t, u, u. DŽ x u. f Ž t, u, u. x u for ll P Ž 8. Ž. Ž. g t, x, x g t, u, u u Ž. u Ž x u. g Ž t, u, u. DŽ x u. g Ž t, u, u. x u 2 for ll M. Ž 9. Ž. p On multplyng ech nequlty of 8 y ech of nd ech Ž. Ž. Ž. m nequlty of 9 y ech t of t, nd ddng the nequltes Ž mong P nd M. we otn fž t, x, x. Ž t. gž t, u, u. fž t, u, u. Ž t. gž t, u, u. u u Ž x u. f Ž t, u, u. Ž t. g Ž t, u, u.. Ž DŽ x u.. f Ž t, u, u. Ž t. g Ž t, u, u. u Ž P M. Ž t. x u 2. By ntegrton y prts, the rght-hnd sde reduces to the followng, Ž. v 1 : u u Ž x u. f Ž t, u, u. Ž t. g Ž t, u, u. t už. Ž. už. Ž. t f t, u, u t g t, u, u x u u u Ž x u. D f Ž t, u, u. Ž t. g Ž t, u, u.. u

8 578 MUEREE AND RAO Ž. On mkng use of the oundry conons 6, the ove yelds fž t, x, x. Ž t. gž t, x, x. fž t, u, u. Ž t. gž t, u, u. 0 Snce M U, Ž 10. Ž t. g Ž t. g Ž t. g, Ž 11. Ž. nd hence the ove nequlty mples, long wth 7, tht t g t, x, x t g t, u, u Ž. Ž. Ž. Ž. Ž. Ž Ž. Ž. Now, snce u,, t Y, from 2, Ž. t g Ž t, x, x. 0, whch s contrdcton of the fct tht x s fesle for Ž MP., nd hence Ž. nd Ž 5. cnnot hold. Ž 1c. In ths cse the multplers of the oectve functons f need not e strctly postve, nd t gves n plce of of Ž. 7. If we ssume the conon n Ž 1c., we get n plce of of Ž 10.. ence we get Ž 12. nd we conclude the theorem s n the cse of Ž 1.. Ths completes the proof. Evdently, the ove theorem hs numer of mportnt specl cses whch cn redly e dentfed y the sutle lgerc propertes of the -convex functons. We shll stte some of these s corollres. The sttc functon nlogs of these wek dulty results re well known n the re of nonlner progrmmng. Ž Ž.. COROLLARY 1. Let x X nd u,, t Y, nd Ž. for ech P, f s -con ex, nd for ech M, Ž. t g s -con ex then Ž. nd Ž. 5 cnnot hold f ether of the followng holds. Ž. For ech P, 0 wth P M 0 or Ž. c 0. P M Proof. Snce g s -convex whenever Ž t. g s Ž t. - convex nd Ž. t 0, the proof s smlr to Theorem 1. COROLLARY 2. Let x X nd Žu,, Ž t.. Y nd ssume s n Corollry 1, except tht nsted of Ž. t g eng -con ex, Ž. nd Ž c,the. functon Ž t, u, u. Ž t. g Ž t, u, u. s -con ex, Ž. M for ech P 0 wth 0 nd Ž. c 0, respect ely. Then Ž. P P nd Ž. 5 cnnot hold.

9 MULTIOBECTIVE VARIATIONAL PROBLEMS 579 Note tht n Theorem 1, ech constrnt functon g Ž t,.,.. s ssumed to e -convex, wheres n Corollry 2 they re ggregted nto one -convex functon. We oserve tht t s lso possle to consder stuton ntermee etween these two extreme cses Žkeepng n vew the prtton of the constrnt functon n the oectve functon of the dul prolem Ž MD.., n whch some of the constrnt functons cn e comned nto -convex functon whle the rest re ndvdully -convex. Stutons of ths type re presented n the next two corollres. COROLLARY 3. Let x X nd Žu,, Ž t.. Y, nd Ž. for ech P, f s -con ex nd Ž t. g s -con- ex, wheres for ech, Ž. t g s -con ex. Then Ž. nd Ž 5. cnnot hold f ether of the followng holds. Ž. For ech P, 0 wth P 0 or Ž. c P 0. COROLLARY. Let x X nd Žu,, Ž t.. Y, nd Ž. For ech P, f s -con ex nd Ž t. g s - con ex, wheres Ž. t g s -con ex. Then Ž. nd Ž 5. cnnot hold f ether of the followng holds. Ž. For ech P, 0 wth P 0 or Ž. c P 0. The next corollry s the stuton n whch ll of the oectves nd constrnts re ggregted nto sngle one. COROLLARY 5. Let x X nd Žu,, Ž t.. Y, nd Ž. f Ž. t g s -con ex, then Ž. nd Ž. 5 cnnot hold f ether of the followng holds. Ž. For ech P, 0 wth 0 or Ž. c 0. In the rest of ths secton we use the generlzed -convexty. From ths pont on we wll try to restrct ourselves n most of the cses to stutons n whch only sclrztons of the oectve nd constrnt functons re consdered. And we remrk here tht the mmee consequences n ech of those stutons n the form of corollres cn esly e seen, ust s n the cse of Theorem 1. We do not explctly stte these corollres. TEOREM 2. Let x X nd Žu,, Ž t.. Y, nd Ž 2. Ž t. g s -quscon ex. Ž 2. For ech P, 0 nd f Ž t. g s oth -quscon ex nd -pseudocon ex wth 0. Then Ž. nd Ž. P 5 cnnot hold.

10 580 MUEREE AND RAO Proof. If x u, then wek dulty theorem trvlly holds, so ssume tht x u. Snce x X nd Žu,, Ž t.. Y, we hve t g t, x, x 0 t g t, u, u. 13 Ž. Ž. Ž. Ž. Ž. Ž. -Qusconvexty n 2, n vew of the ove, mples tht u u Ž x u. Ž t. g Ž t, u, u. DŽ x u. Ž t. g Ž t, u, u. x u 2. Ž 1. The susttuton of the dulty constrnt Ž. 1 n the frst term of the ove mplcton gves us, long wth Ž 11., u u u Ž x u. D f Ž t, u, u. Ž t. g Ž t, u, u. Ž t. g Ž t, u, u. Ž. Ž. Ž. fu t, u, u t gu t, u, u 2 u DŽ x u. Ž t. g Ž t, u, u. x u. Ž 15. On usng the oundry conons fter ntegrton y prts, u u Ž x u. f Ž t, u, u. Ž t. g Ž t, u, u. Ž DŽ x u.. f Ž t, u, u. Ž t. g Ž t, u, u. x u 2. Ž 16. u u Tht s, on mkng use of the conon 0 nd the fct tht P e 1, we hve the followng: Ž. Ž. Ž. Ž. P x u fu t, u, u t gu t, u, u Ž. Ž. Ž. Ž. D x u fu t, u, u t gu t, u, u Ž. x u 2. P Snce 0, P, t follows from the ove tht u u Ž x u. f Ž t, u, u. Ž t. g Ž t, u, u. Ž. Ž. Ž. Ž. D x u fu t, u, u t gu t, u, u x u 2 Ž 17.

11 MULTIOBECTIVE VARIATIONAL PROBLEMS 581 for ll P, nd for some P, u u Ž x u. f Ž t, u, u. Ž t. g Ž t, u, u. Ž. Ž. Ž. Ž. D x u fu t, u, u t gu t, u, u x u 2. Ž 18. Suppose Ž 17. holds; then the -pseudoconvexty ssumpton n Ž 2. gves, long wth the feslty of x for Ž MP., for ll P, f Ž t, x, x. f Ž t, u, u. Ž t. g Ž t, u, u.. Ž 19. Now suppose Ž 18. holds; then the equvlent form of the -qusconvexty ssumpton n Ž 2. gves, long wth the feslty of x for Ž MP., for some P, f Ž t, x, x. f Ž t, u, u. Ž t. g Ž t, u, u.. Ž 20. Ž. Ž. Ž. Ž. Ovously 19 nd 20 cn show tht nd 5 cnnot hold, whch completes the proof. The followng theorem s stted wthout proof. It wll e estlshed n mnner very smlr to tht of Theorem 2. Ž Ž.. TEOREM 3. Let x X nd u,, t Y, nd Ž 3. Ž t. g s -quscon ex. Ž 3. For ech P, 0 nd f Ž t. g s -qu- scon ex nd there exsts some k P such tht t s strctly k-pseudocon ex Ž wth the correspondng component of post e. k wth P 0. Then Ž. nd Ž. 5 cnnot hold. Ž Ž.. TEOREM. Let x X nd u,, t Y, nd Ž. Ž t. g s -quscon ex. Ž. For ech P, 0 nd f Ž t. g s - pseudocon ex wth 0. Then Ž. nd Ž. 5 cnnot hold. Ž. Proof. As n the cse of Theorem 2, ssume x u nd get 16. By mkng use of the conon 0 nd y our -pseudoconvexty

12 582 MUEREE AND RAO Ž. ssumpton n we otn Ž. Ž. Ž. f t, x, x t g t, x, x fž t, u, u. Ž t. g Ž t, u, u.. Ž. Now the feslty of x for MP nd the fct tht e 1 mply fž t, x, x. fž t, u, u. Ž t. g Ž t, u, u.. Clerly, ths concludes the theorem, snce 0 for ech P. The ssumpton tht Ž. t g s -qusconvex s very mportnt, s we see n the prevous theorems Ž 2.. Of course, to get the desred results wthout ths conon, other conons should e enforced, whch leds to the followng theorem. Ž Ž.. TEOREM 5. Let x X nd u,, t Y, nd Ž 5. For ech P, 0 nd f Ž t. g s oth -pseudocon ex nd -quscon ex wth 0. Then Ž. nd Ž. P 5 cnnot hold. Proof. Assume x u. From the dulty constrnt Ž. 1 we get Ž. 6. Now y ntegrton y prts, u u Ž x u. f Ž t, u, u. Ž t. g Ž t, u,u. t u u t Ž x u. f Ž t, u, u. Ž t. g Ž t, u, u. u u Ž DŽ x u.. f Ž t, u, u. Ž t. g Ž t, u, u.. Snce ech 0, P, from the conon e 1, we hve P u u Ž x u. f Ž t, u, u. Ž t. g Ž t, u,u. Ž. Ž. Ž. Ž. Ž. D x u fu t, u, u t gu t, u, u Gven tht P 0 nd x u 2 s lwys postve, Eq. Ž 21. x u 2. P

13 MULTIOBECTIVE VARIATIONAL PROBLEMS 583 Agn usng the nonnegtvty of ech for P, nd -pseudocon- vexty nd the equvlent form of -qusconvexty n Ž 5., t follows from the ove nequlty tht f Ž t, x, x. Ž t. gž t, x, x. f Ž t, u, u. Ž t. gž t, u, u. for ll P, nd for some P, Ž. Ž. Ž. f t, x, x t g t, x, x f Ž t, u, u. Ž t. gž t, u, u.. Now the fesltes of x for Ž MP. nd Žu,, Ž t.. for Ž MD. led us to the desred concluson tht Ž. nd Ž. 5 cnnot hold. Next we stte wthout proof the lst wek dulty theorem. It wll e proved n smlr mnner. Ž Ž.. TEOREM 6. Let x X nd u,, t Y, nd Ž 6. For ech P, 0 nd f Ž t. g s -con- ex wth 0, or Ž 6. f Ž t. g s strctly -con ex wth 0. Then Ž. nd Ž. 5 cnnot hold. The ssumpton Ž 6. tht f Ž t. gž t,.,.. s strctly -convex cn e replced y much weker conons. Ths de leds us to the followng corollry. COROLLARY 6. Let x X nd Žu,, Ž t.. Y, nd ssume s n Theorem 6, except tht nsted of Ž 6. for ech P, f Ž t. g s -con ex, nd for t lest one k P, f k Ž t. g s strctly -con ex Ž wth the correspondng component of post e. k k wth P 0. Then Ž. nd Ž. 5 cnnot hold. We next turn our ttenton to dscusson of strong dulty. The followng lemm s for tht purpose. LEMMA 1. Assume tht wek dulty Žny of the Theorems 1 6 or ny of the Corollres 1 6 holds etween Ž MP. nd Ž MD.. If Žu,, Ž t.. s fesle for Ž MD. wth Ž t. gž t, u, u. 0 nd u s fesle for Ž MP., then u s effcent for Ž MP. nd Žu,, Ž t.. s effcent for Ž MD.. Proof. Suppose, on the contrry, tht u s not effcent for Ž MP.; then there exsts fesle x for Ž MP. such tht f Ž t, x, x. f Ž t, u, u.

14 58 MUEREE AND RAO for ll P, nd for some P, f Ž t, x, x. f Ž t, u, u.. Ž. Ž. Ž Ž. Ž.. Snce t g t, u, u 0 t g t, u, u 0, we cn wrte f Ž t, u, u. Ž t. g Ž t, u, u. n plce of f Ž t, u, u. n the rght-sde terms of the ove two equtons. Then, snce Žu,, Ž t. Y nd x X, we get contrdcton to the wek dulty. ence u s effcent for Ž MP.. In smlr wy we cn esly show tht Žu,, Ž t.. s effcent for Ž MD.. Now utlzng ths lemm n conuncton wth the necessry optmlty conons Ž Proposton 1. of Secton 3, we otn the followng strong dulty theorem. TEOREM 7. Let x e n effcent soluton for Ž MP. nd ssume tht x stsfes the uhn Tucker constrnt qulfcton for Ž MP.. Then there exst p Ž. m nd pecewse smooth functon t : I such tht Ž x,, Ž t.. s fesle for Ž MD., long wth the conon Ž t. gž t, x, x. 0. Furthermore, f ny wek dulty Žny of the theorems 1 6 or ny of the Corollres 1 6. lso holds etween Ž MP. nd Ž MD., then Žx,, Ž t.. s effcent for Ž MD.. Proof. We hve ž / Ž t. gž t, x, x. 0 Ž t. g Ž t, x, x. 0. Ž 22. Snce x s n effcent soluton for Ž MP. nd snce every effcent soluton for Ž MP. s lso wek mnmum, ll of the conons of Proposton 1 re p stsfed, nd hence there exst nd pecewse smooth functon Ž. m t : I tht f Ž t, x, x. Ž t. g Ž t, x, x. D f Ž t, x, x. Ž t. g Ž t, x, x. x x x x Ž t. gž t, x, x. 0 Ž t. 0, e 1, 0. The ove three equtons show long wth Ž 22. tht Žx,, Ž t.. s fesle for Ž MD.. Now snce Žx,, Ž t.. s fesle soluton for Ž MD., ts effcency follows from Lemm 1. Snce we eleve tht the prevous oservtons out the cse of Ž. -convexty generlzed -convexty re stll vld n the cse of -nvexty

15 MULTIOBECTIVE VARIATIONAL PROBLEMS 585 Ž. generlzed -nvexty, ths topc could e the oect of further nvestgtons. 5. FURTER EXTENSIONS In the prevous secton t hs een shown tht, y mens of generlztons Ž.e., -convexty nd generlzed -convexty., t s possle to cheve the unfcton of the most well-known dulty results Žnmely Wolfe nd Mond Wer. n the clss of vrtonl prolems. In ths secton our purpose s to show tht the requrements of oectve nd constrnt functons Ž of the prml nd dul prolems of Secton 3., e.g., to e -convex, -pseudoconvex, or -qusconvex, cn e further wekened to e requred to e -nvex, -pseudonvex, nd -qusnvex respectvely. For ths purpose we reconsder here the prolems Ž MP. nd Ž MD. nd recll few defntons nd concepts pertnng to certn types of -nvex Ž generlzed -nvex. functons whch re used frequently throughout ths secton. If there exst vector functons Ž t, x, u.: I S S Žwth Ž t, x, u. 0t x u. nd : I S S nd rel numer such tht the functonl F x Ž s n Secton 2. stsfes u u F x F u Ž t, x, u. f Ž t, u, u. D Ž t, x, u. f Ž t, u, u. Ž t, x, u. 2, then F s sd to e -nvex t u S wth respect to nd. ere D Ž t, x, u. s the vector whose th component s D Ž t, x, u..in smlr wy the defntons of strct -nvexty, -pseudonvex, strct pseudonvex, nd -qusnvex cn esly e otned. From ths pont on we use the term generlzed -nvexty to ndcte -pseudonvexty, -qusnvexty, etc. From the ove defntons t s cler tht every -nvex functon Ž generlzed -nvex. s -convex functon Žgenerlzed -convex. wth Ž t, x, u. Ž x u. Ž t, x, u.. In prllel wth the results presented n Secton, we cn esly estlsh nlogous theorems Žtwo of them wthout proof re presented next s n exmple. for -nvex Ž generlzed -nvex. functons, snce only renterpretton of -convexty s nvolved. WEA DUALITY TEOREM. Let x X nd Žu,, Ž t.. Y, nd Ž. t g s -qusn ex, nd for ech P, 0 nd f Ž. t g s oth -qusn ex nd -pseudon ex wth P 0. Then Ž. nd Ž. 5 cnnot hold.

16 586 MUEREE AND RAO STRONG DUALITY TEOREM. Let x e n effcent soluton for Ž MP. nd ssume tht x stsfes the uhn Tucker constrnt qulfcton for Ž MP.. p Ž. m Then there exst nd pecewse smooth functon t : I such tht Žx,, Ž t.. s fesle for Ž MD. long wth the conon Ž. t gž t, x, x. 0. Furthermore, f wek dulty lso holds etween Ž MP. nd Ž MD. then Žx,, Ž t.. s effcent for Ž MD.. REFERENCES 1. D. Bht nd P. umr, Multoectve control prolem wth generlzed nvexty,. Mth. Anl. Appl. 189 Ž 1995., V. eykumr, Strong nd wek nvexty n mthemtcl progrmmng, Mth. Oper. Res. 55 Ž 1985., R. N. ul nd S. ur, Optmlty crter n nonlner progrmmng nvolvng nonconvex functons,. Mth. Anl. Appl. 105 Ž P. Vl, Strong nd wek convexty of sets nd functons, Mth. Oper. Res. 8 Ž 1983., T. Wer nd B. Mond, Generlzed convexty nd dulty n multple oectve progrmmng, Bull. Austrl. Mth. Soc. 39 Ž 1989., Zengkun Xu, Mxed type dulty n multoectve progrmmng prolems,. Mth. Anl. Appl. 198 Ž 1996.,

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

A New Algorithm Linear Programming

A New Algorithm Linear Programming A New Algorthm ner Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tlk Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.com Astrct In ths pper we propose two types of new lgorthms for lner progrmmng. The frst

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]: RGMIA Reserch Report Collecton, Vol., No. 1, 1999 http://sc.vu.edu.u/οrgm ON THE OSTROWSKI INTEGRAL INEQUALITY FOR LIPSCHITZIAN MAPPINGS AND APPLICATIONS S.S. Drgomr Abstrct. A generlzton of Ostrowsk's

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4)

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4) ON SIMPSON S INEQUALITY AND APPLICATIONS SS DRAGOMIR, RP AGARWAL, AND P CERONE Abstrct New neultes of Smpson type nd ther pplcton to udrture formule n Numercl Anlyss re gven Introducton The followng neulty

More information

Lecture notes. Fundamental inequalities: techniques and applications

Lecture notes. Fundamental inequalities: techniques and applications Lecture notes Fundmentl nequltes: technques nd pplctons Mnh Hong Duong Mthemtcs Insttute, Unversty of Wrwck Eml: m.h.duong@wrwck.c.uk Jnury 4, 07 Abstrct Inequltes re ubqutous n Mthemtcs (nd n rel lfe.

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

A Family of Multivariate Abel Series Distributions. of Order k

A Family of Multivariate Abel Series Distributions. of Order k Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind

More information

Modeling Labor Supply through Duality and the Slutsky Equation

Modeling Labor Supply through Duality and the Slutsky Equation Interntonl Journl of Economc Scences nd Appled Reserch 3 : 111-1 Modelng Lor Supply through Dulty nd the Slutsky Equton Ivn Ivnov 1 nd Jul Dorev Astrct In the present pper n nlyss of the neo-clsscl optmzton

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Lner nd Nonlner Optmzton Ynyu Ye Deprtment of Mngement Scence nd Engneerng Stnford Unversty Stnford, CA 9430, U.S.A. http://www.stnford.edu/~yyye http://www.stnford.edu/clss/msnde/ Ynyu Ye, Stnford, MS&E

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Sequences of Intuitionistic Fuzzy Soft G-Modules

Sequences of Intuitionistic Fuzzy Soft G-Modules Interntonl Mthemtcl Forum, Vol 13, 2018, no 12, 537-546 HIKARI Ltd, wwwm-hkrcom https://doorg/1012988/mf201881058 Sequences of Intutonstc Fuzzy Soft G-Modules Velyev Kemle nd Huseynov Afq Bku Stte Unversty,

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

An Introduction to Support Vector Machines

An Introduction to Support Vector Machines An Introducton to Support Vector Mchnes Wht s good Decson Boundry? Consder two-clss, lnerly seprble clssfcton problem Clss How to fnd the lne (or hyperplne n n-dmensons, n>)? Any de? Clss Per Lug Mrtell

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract Stochstc domnnce on optml portfolo wth one rsk less nd two rsky ssets Jen Fernnd Nguem LAMETA UFR Scences Economques Montpeller Abstrct The pper provdes restrctons on the nvestor's utlty functon whch re

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Pyramid Algorithms for Barycentric Rational Interpolation

Pyramid Algorithms for Barycentric Rational Interpolation Pyrmd Algorthms for Brycentrc Rtonl Interpolton K Hormnn Scott Schefer Astrct We present new perspectve on the Floter Hormnn nterpolnt. Ths nterpolnt s rtonl of degree (n, d), reproduces polynomls of degree

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

Systematic Construction of examples for cycling in the simplex method

Systematic Construction of examples for cycling in the simplex method Systemtc Constructon of emples for cyclng n the smple method Prof. r. Peter Zörng Prof. Assocdo Unversdde de Brsíl UnB eprtmento de Esttístc e-ml: peter@un.r ) Lner progrmmng prolem cnoncl form: stndrd

More information

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example.

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example. CIS587 - rtfcl Intellgence Uncertnty K for medcl dgnoss. Exmple. We wnt to uld K system for the dgnoss of pneumon. rolem descrpton: Dsese: pneumon tent symptoms fndngs, l tests: Fever, Cough, leness, WC

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order Hndw Publshng Corporton Interntonl Journl of Dfferentl Equtons Volume 0, Artcle ID 7703, pges do:055/0/7703 Reserch Artcle On the Upper Bounds of Egenvlues for Clss of Systems of Ordnry Dfferentl Equtons

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

Activator-Inhibitor Model of a Dynamical System: Application to an Oscillating Chemical Reaction System

Activator-Inhibitor Model of a Dynamical System: Application to an Oscillating Chemical Reaction System Actvtor-Inhtor Model of Dynmcl System: Applcton to n Osclltng Chemcl Recton System C.G. Chrrth*P P,Denn BsuP P * Deprtment of Appled Mthemtcs Unversty of Clcutt 9, A. P. C. Rod, Kolt-79 # Deprtment of

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that us. Introducton he us s the nverse of the us,.e., () Snce we now tht nd therefore then I V () V I () V I (4) So us reltes the nodl current njectons to the nodl voltges, s seen n (4). In developng the power

More information

NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS

NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS BERNARDO M. ÁBREGO, SILVIA FERNÁNDEZ-MERCHANT, AND BERNARDO LLANO Abstrct. Gven ntegers nd n, there s unque wy of wrtng n s n = n n... n so tht n <

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

S. S. Dragomir. 2, we have the inequality. b a

S. S. Dragomir. 2, we have the inequality. b a Bull Koren Mth Soc 005 No pp 3 30 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Abstrct Compnions of Ostrowski s integrl ineulity for bsolutely

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

An Ising model on 2-D image

An Ising model on 2-D image School o Coputer Scence Approte Inerence: Loopy Bele Propgton nd vrnts Prolstc Grphcl Models 0-708 Lecture 4, ov 7, 007 Receptor A Knse C Gene G Receptor B Knse D Knse E 3 4 5 TF F 6 Gene H 7 8 Hetunndn

More information

Homework Solution - Set 5 Due: Friday 10/03/08

Homework Solution - Set 5 Due: Friday 10/03/08 CE 96 Introduction to the Theory of Computtion ll 2008 Homework olution - et 5 Due: ridy 10/0/08 1. Textook, Pge 86, Exercise 1.21. () 1 2 Add new strt stte nd finl stte. Mke originl finl stte non-finl.

More information

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache INITE NEUTROSOPHIC COMPLEX NUMBERS W. B. Vsnth Kndsmy lorentn Smrndche ZIP PUBLISHING Oho 11 Ths book cn be ordered from: Zp Publshng 1313 Chespeke Ave. Columbus, Oho 31, USA Toll ree: (61) 85-71 E-ml:

More information

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1 mercn Interntonl Journl of Reserch n cence Technology Engneerng & Mthemtcs vlble onlne t http://wwwsrnet IN (Prnt: 38-349 IN (Onlne: 38-3580 IN (CD-ROM: 38-369 IJRTEM s refereed ndexed peer-revewed multdscplnry

More information

2.12 Pull Back, Push Forward and Lie Time Derivatives

2.12 Pull Back, Push Forward and Lie Time Derivatives Secton 2.2 2.2 Pull Bck Push Forwrd nd e me Dertes hs secton s n the mn concerned wth the follown ssue: n oserer ttched to fxed sy Crtesn coordnte system wll see mterl moe nd deform oer tme nd wll osere

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Best response equivalence

Best response equivalence Gmes nd Economc Behvor 49 2004) 260 287 www.elsever.com/locte/geb Best response equvlence Stephen Morrs,, Tksh U b Deprtment of Economcs, Yle Unversty, USA b Fculty of Economcs, Yokohm Ntonl Unversty,

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Machine Learning Support Vector Machines SVM

Machine Learning Support Vector Machines SVM Mchne Lernng Support Vector Mchnes SVM Lesson 6 Dt Clssfcton problem rnng set:, D,,, : nput dt smple {,, K}: clss or lbel of nput rget: Construct functon f : X Y f, D Predcton of clss for n unknon nput

More information

H-matrix theory and applications

H-matrix theory and applications MtTrd 205, Combr H-mtrx theory nd pplctons Mj Nedovć Unversty of Nov d, erb jont work wth Ljljn Cvetkovć Contents! H-mtrces nd DD-property Benefts from H-subclsses! Brekng the DD Addtve nd multplctve condtons

More information

Numerical Solution of Freholm-Volterra Integral Equations by Using Scaling Function Interpolation Method

Numerical Solution of Freholm-Volterra Integral Equations by Using Scaling Function Interpolation Method Aled Mthetcs 3 4 4-9 htt://ddoorg/436/34a3 Pulshed Onlne Jnury 3 (htt://wwwscrorg/ournl/) uercl Soluton of Frehol-Volterr Integrl Equtons y Usng Sclng Functon Interolton Method Yousef Al-Jrrh En-Bng Ln

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Numerical Solution of Linear Fredholm Fuzzy Integral Equations by Modified Homotopy Perturbation Method

Numerical Solution of Linear Fredholm Fuzzy Integral Equations by Modified Homotopy Perturbation Method Austrln Journl of Bsc nd Appled Scences, 4(): 646-643, ISS 99-878 umercl Soluton of Lner Fredholm Fuzzy Integrl Equtons y Modfed Homotopy Perturton Method S.M. Khorsn Ksr, M. Khezerloo, 3 M.H. Dogn Aghcheghloo

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

3/6/00. Reading Assignments. Outline. Hidden Markov Models: Explanation and Model Learning

3/6/00. Reading Assignments. Outline. Hidden Markov Models: Explanation and Model Learning 3/6/ Hdden Mrkov Models: Explnton nd Model Lernng Brn C. Wllms 6.4/6.43 Sesson 2 9/3/ courtesy of JPL copyrght Brn Wllms, 2 Brn C. Wllms, copyrght 2 Redng Assgnments AIMA (Russell nd Norvg) Ch 5.-.3, 2.3

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1. 398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

Advanced Machine Learning. An Ising model on 2-D image

Advanced Machine Learning. An Ising model on 2-D image Advnced Mchne Lernng Vrtonl Inference Erc ng Lecture 12, August 12, 2009 Redng: Erc ng Erc ng @ CMU, 2006-2009 1 An Isng model on 2-D mge odes encode hdden nformton ptchdentty. They receve locl nformton

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competition Saturday April 30, 2011 ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

More information

The Study of Lawson Criterion in Fusion Systems for the

The Study of Lawson Criterion in Fusion Systems for the Interntonl Archve of Appled Scences nd Technology Int. Arch. App. Sc. Technol; Vol 6 [] Mrch : -6 Socety of ducton, Ind [ISO9: 8 ertfed Orgnzton] www.soeg.co/st.html OD: IAASA IAAST OLI ISS - 6 PRIT ISS

More information

Handout 4. Inverse and Implicit Function Theorems.

Handout 4. Inverse and Implicit Function Theorems. 8.95 Hndout 4. Inverse nd Implicit Function Theorems. Theorem (Inverse Function Theorem). Suppose U R n is open, f : U R n is C, x U nd df x is invertible. Then there exists neighborhood V of x in U nd

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information