A New Algorithm Linear Programming

Size: px
Start display at page:

Download "A New Algorithm Linear Programming"

Transcription

1 A New Algorthm ner Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tlk Rod, Pune-400, Ind Astrct In ths pper we propose two types of new lgorthms for lner progrmmng. The frst type of these new lgorthms uses lgerc methods whle the second type of these new lgorthms uses geometrc methods. The frst type of lgorthms s sed on tretng the ojectve functon s prmeter. In ths method, we form mtrx usng coeffcents n the system of equtons consstng ojectve equton nd equtons otned from nequltes defnng constrnt y ntroducng slck/surplus vrles. We otn reduced row echelon form for ths mtrx contnng only one vrle, nmely, the ojectve functon tself s n unknown prmeter. We nlyze ths mtrx n the reduced row echelon form nd develop cler cut method to fnd the optml soluton for the prolem t hnd, f nd when t exsts. We see tht the entre optmzton process cn e developed through the proper nlyss of the sd mtrx n the reduced row echelon form. The second type of lgorthms tht we propose for lner progrmmng re nspred y geometrcl consdertons nd use smple mthemtcs relted to fndng ntersectons of lnes nd plnes. All these lgorthms hve common m: they ll try to pproch closer nd closer to centrod or some centrlly locted nteror pont for speedng up the process of rechng n optml soluton! Imgne the lne prllel to vector C, where C T x denotes the ojectve functon to e optmzed, nd further suppose tht ths lne s lso pssng through the pont representng optml soluton. The new lgorthms tht we propose n ths pper essentlly try to rech t some fesle nteror pont whch s n the close vcnty of ths lne, n successve steps. When one wll e le to rrve fnlly t pont elongng to smll neghorhood of some pont on ths lne then y movng from ths pont prllel to vector C one cn rech to the pont elongng to the suffcently smll neghorhood of the pont representng optml soluton. We then proceed to show tht the lgerc method developed ove for lner progrmmng nturlly extends to nonlner nd nteger progrmmng prolems. For nonlner nd nteger progrmmng prolems we use the technque of Groner ses (snce Groner ss s n equvlent of reduced row echelon form for system of nonlner equtons) nd the methods of solvng lner Dophntne equtons (snce the nteger progrmmng prolem demnds for optml nteger soluton) respectvely.. Introducton: There re two types of lner progrms (lner progrmmng prolems):. xmze: C T x Suject to: Or. nmze: C T x Ax x 0

2 Suject to: Ax x 0 where x s column vector of sze n of unknown vrles. We cll these vrles the prolem vrles where C s column vector of sze n of proft (for mxmzton T prolem) or cost (for mnmzton prolem) coeffcents, nd C s row vector of sze n otned y mtrx trnsposton of C. where A s mtrx of constrnts coeffcents of sze m n. where s column vector of constnts of sze m representng the oundres of constrnts. By ntroducng the pproprte slck vrles (for mxmzton prolem) nd surplus vrles (for mnmzton prolem), the ove mentoned lner progrms gets converted nto stndrd form s: xmze: C T x Suject to: Ax s = (.) x 0, s 0 where s s slck vrle vector of sze m. Ths s mxmzton prolem. Or nmze: C T x Suject to: Ax s = (.) x 0, s 0 where s s surplus vrle vector of sze m. Ths s mnmzton prolem. In geometrcl lnguge, the constrnts defned y the nequltes form regon n the form of convex polyhedron, regon ounded y the constrnt plnes, Ax =, nd the coordnte plnes. Ths regon s clled fesle regon nd t s strghtforwrd to estlsh tht there exsts t lest one vertex of ths polyhedron t whch the optml soluton for the prolem s stuted when the prolem t hnd s well defned,.e. nether nconsstent, nor unounded, nor nfesle. There my e unque optml soluton nd sometmes there my e nfntely mny optml solutons, e.g. when one of the constrnt plnes s prllel to the ojectve plne we my hve multtude of optml solutons. The ponts on n entre plne or n entre edge cn consttute the optml soluton set. These prolems re hndled most populrly y usng the well known smplex lgorthm or some of ts vrnt. Despte ts theoretcl exponentl complexty the smplex method works qute effcently for most of the prctcl prolems. However, there re few computtonl dffcultes ssocted wth smplex lgorthm. In order to vew them n nutshell we egn wth sttng some common notons nd defntons tht re prevlent n the lterture. A vrle x s clled sc vrle n gven equton f t ppers wth unt coeffcent n tht equton nd wth zero coeffcents n ll other equtons. A vrle whch s not sc s clled nonsc vrle. A sequence of elementry row opertons tht chnges gven system of lner equtons nto n equvlent system (hvng the sme soluton set) nd n whch gven nonsc vrle cn

3 e mde sc vrle s clled pvot operton. An equvlent system contnng sc nd nonsc vrles otned y pplcton of sutle elementry row opertons s clled cnoncl system. At tmes, the ntroducton of slck vrles for otnng stndrd form utomtclly produces cnoncl system, contnng t lest one sc vrle n ech equton. Sometmes sequence of pvot opertons s needed to e performed to get cnoncl system. The soluton otned from cnoncl system y settng the nonsc vrles to zero nd solvng for the sc vrles s clled sc soluton nd n ddton when ll the vrles hve nonnegtve vlues the soluton stsfyng ll the mposed constrnts s clled sc fesle soluton. Smplex method cnnot strt wthout n ntl sc fesle soluton. The process of fndng such soluton, whch s necessty n mny of prctcl prolems, s clled Phse I of the smplex lgorthm. Smplex method strts ts Phse II wth n ntl sc fesle soluton n cnoncl form t hnd. Then smplex tests whether ths soluton s optml y checkng whether ll the vlues of reltve profts (profts tht result due to unt chnge n the vlues of nonsc vrles) of ll the nonsc vrles re nonpostve. When not optml, the smplex method otns n djcent sc fesle soluton y selectng nonsc vrle hvng lrgest reltve proft to ecome sc. Smplex then determnes nd crres out the extng of sc vrle, y the so clled mnmum rto rule, to chnge t nto nonsc vrle ledng to formton of new cnoncl system. On ths new cnoncl system the whole procedure s repeted tll one rrves t n optml soluton. The mn computtonl dffcultes of the smplex method whch my cuse the reducton n ts computtonl effcency re s follows: ] There cn e more thn one nonsc vrle wth lrgest vlue for reltve proft nd so te cn tke plce whle selectng nonsc vrle to ecome sc. The choce t ths stuton s done rtrrly nd so the choce mde t ths stge cusng lrgest possle per unt mprovement s not necessrly the one tht gves lrgest totl mprovement n the vlue of the ojectve functon nd so not necessrly mnmzes the numer of smplex tertons. ] Whle pplyng mnmum rto rule t s possle for more thn one constrnt to gve the sme lest rto cusng te n the selecton of sc vrle to leve for ecomng nonsc. Ths degenercy cn cuse further complcton, nmely, the smplex method cn go on wthout ny mprovement n the ojectve functon nd the method my trp nto n nfnte loop nd fl to produce the desred optml soluton. Ths phenomenon s clled cyclng whch enforces modfcton n the lgorthm y ntroducng some ddtonl tme consumng rules tht reduce the effcency of the smplex lgorthm. ] Smplex s not effcent on theoretcl grounds sclly ecuse t serches djcent sc fesle solutons only nd ll other smplex vrnts whch exmne nondjcent solutons s well hve not shown ny pprecle chnge n the overll effcency of these modfed smplex lgorthms over the orgnl lgorthm. Becuse of the fr gret prctcl mportnce of the lner progrms nd other smlr prolems n the opertons reserch t s most desred thng to hve n lgorthm whch works n sngle step, f not, n s few steps s possle. No method hs een found whch wll yeld n optml soluton to lner progrm n sngle step ([], Pge 9). We m to propose n lgorthm for

4 lner progrmmng whch ms t fulfllng ths requrement n est possle nd novel wy.. Two Types of New Algorthms for ner Progrmmng: In ths secton we propose nd dscuss two types of new lgorthms for solvng lner progrmmng prolems. The frst type of lgorthms use lgerc methods whle the second type of lgorthms use geometrc methods. We egn wth frst type of lgorthms sed on tretng ojectve functon s prmeter nd ms t fndng ts optml vlue. We strt wth the followng equton: C T x = d (.) where d s n unknown prmeter, nd cll t the ojectve equton. The (prmetrc) plne defned y ths equton wll e clled ojectve plne. Plese note tht we re dscussng frst the mxmzton prolems. A smlr pproch for mnmzton prolems wll e dscussed next. Gven mxmzton prolem, we frst construct the comned system of equtons contnng the ojectve equton nd the equtons defned y the constrnts mposed y the prolem under consderton, comned nto sngle mtrx equton, vz., C A( T ( n) 0( m) m n) I ( m m) x s d = (.) et E = C A( T ( n) 0( m) m n) I ( m m) d, nd let F = et [E, F] denote the ugmented mtrx otned y ppendng the column vector F to mtrx E s lst column. We then fnd R, the reduced row echelon form ([], pges 7-75) of the ove ugmented mtrx [E, F]. Thus, R = rref ([E, F]) (.) Note tht the ugmented mtrx [E, F] s well s ts reduced row echelon form R contns only one prmeter, nmely, d nd ll other entres re constnts. From R we cn determne the soluton set S for every fxed x d, S = { /( fxed) d rels} s. The suset of ths soluton set of vectors x whch lso stsfes the nonnegtvty constrnts s the set of ll fesle s solutons for tht d. It s cler tht ths suset cn e empty for prtculr choce of d tht s mde. The mxmzton prolem of lner progrmmng s to determne the unque d whch provdes fesle soluton nd hs mxmum 4

5 vlue for d,.e., to determne the unque d,.e. the unque optml vlue for the ojectve functon, whch cn e used to otn n optml soluton. In the cse of n unounded lner progrm there s no upper (lower, n the cse of mnmzton prolem) lmt for the vlue of d, whle n the cse of n nfesle lner progrm the set of fesle solutons s empty. The steps tht wll e executed to determne the optml soluton should lso tell y mplcton when such optml soluton does not exst n the cse of n unounded or nfesle prolem. The generl form of the mtrx R representng the reduced row echelon form s R = ( m m ) m ( m ) n n n mn ( m ) n m ( m ) m ( m ) m m m mm ( m ) n c ( m ) c d e c m c d e d e d e c d e m ( m ) The frst n columns of the ove mtrx represent the coeffcents of the prolem vrles (.e. vrles defned n the lner progrm) x, x,, xn. The next m columns represent the coeffcents of the slck vrles s, s,, s m used to convert nequltes nto equltes to otn the stndrd form of the lner progrm. The lst column represents the trnsformed rght hnd sde of the equton (.) durng the process ( sutle sequence of trnsformtons) tht s crred out to otn the reduced row echelon form. Note tht the lst column of R contns the lner form d s prmeter whose optml vlue s to e determned such tht the nonnegtvty constrnts remn vld,.e. x 0, n nd s j 0, j m. Among frst ( n m) columns of R certn frst columns correspond to sc vrles (columns tht re unt vectors) nd the remnng ones to nonsc vrles (columns tht re not unt vectors). For solvng lner progrm y our wy we proceed wth nlyss of the R. We m to fnd tht vlue of prmeter d whch s optml. To cheve ths tsk we my sometmes need to trnsform ths system further y ether rerrngng the constrnt equtons y sutly permutng these equtons such tht (s fr s possle) the vlues n the columns of our strtng mtrx A ( m n ) get rerrnged n the followng wy: Ether they re rsng nd then ecomng sttonry, or fllng nd then ecomng sttonry, or fllng ntlly up to certn length of the column vector nd then rsng gn. After ths rerrngement to form trnsformed A ( m n ) we gn proceed to form ts correspondng [E, F] nd gn fnd ts R = rref ([E, F]) whch wll most lkely hve the desred representton n whch columns for nonsc vrles contn 5

6 nonnegtve vlues. The de of rrngement of the columns of A ( m n ) s mentoned ove s purely heurstc nd s sed on the fvorle outcome oserved durng pplyng ths de to lner progrmmng prolems whle tcklng them. We hve not tred to dscover theoretcl resonng ehnd chevng fvorle form for R n most of the cses nd hve left ths prolem for the reder to solve nd to fnd out the theoretcl resonng ehnd gettng ths fvorle form. Now, even fter rerrngement of the columns of A ( m n ) s mentoned ove f stll some negtve entres remn present n the columns of R correspondng to some nonsc vrles then we crry out sutle elementry row trnsformtons on the otned R = rref ([E, F]) so tht the columns of coeffcents ssocted wth these nonsc vrles ecome nonnegtve. We re dong ths ecuse s wll e seen elow we cn then put zero vlue for these nonsc vrles nd cn determne the vlues of ll the sc vrles nd the lner progrm wll then e solved completely. It s esy to check tht for lner progrm f ll the coeffcents of prmeter d n the lst column of R re postve then the lner progrm t hnd s unounded snce n such cse the prmeter d cn e ncresed rtrrly wthout voltng the nonnegtvty constrnts on vrles x, s j. Also, for lner progrm f ll the coeffcents of some nonsc vrle represented y column of R re nonpostve nd re strctly negtve n those rows hvng negtve coeffcent to prmeterd tht ppers n the lst column of these rows then gn the prolem elongs to the ctegory of unounded prolems snce we cn ncrese the vlue of d to ny hgh vlue wthout voltng the nonnegtvty constrnts for the vrles y ssgnng suffcently hgh vlue to ths nonsc slck vrle. Note tht the rows of R ctully offer expressons for sc vrles n terms of nonsc vrles nd terms of type ckd ek, k =,, ( m ) contnng the prmeter d on the rght sde. The rows wth postve coeffcent for the prmeter d represent those equtons n whch the prmeter d cn e ncresed rtrrly wthout voltng the nonnegtvty constrnts on vrles x,. So, these equtons s j wth postve coeffcent for the prmeter d re not mplyng ny upper ound on the mxmum possle vlue of prmeter d. However, these rows re useful n certn stutons s they re useful to fnd lower ound on the vlue of prmeter d. The rows wth negtve coeffcent for the prmeter d represent those equtons n whch the prmeter d cnnot e ncresed rtrrly wthout voltng the nonnegtvty constrnts on vrles x,. So, these equtons s j wth negtve coeffcent for the prmeter d re mplyng n upper ound on the mxmum possle vlue of prmeter d nd so mportnt ones for mxmzton prolems. Note tht ctully every row of R s offerng us vlue for prmeter d whch cn e otned y equtng to zero ech term of the type ckd ek, k =,, ( m ). Those vlues of d tht we otn n ths wy wll e denoted s d or d when then vlue of c k s negtve or postve 6

7 7 respectvely. We denote y mn{ d }, the mnmum vlue mong d, nd we denote y mx{ d } the mxmum vlue mong the d. We now proceed to fnd out the sumtrx of R, sy N R, mde up of ll columns of R nd contnng those rows j of R for whch the coeffcents j c of the prmeter d re negtve. et k c c c,,, coeffcent of d n the rows of R whch re negtve. We collect these rows wth negtve coeffcent for d to form the mentoned sumtrx, N R, of R gven elow. Wth ths t s cler tht coeffcents of d n ll other rows of R re greter thn or equl to zero. = k k k k k k k k m n m n m n m n N e d c e d c e d c e d c R It should e cler to see tht f N R s empty (.e. not contnng sngle row) then the prolem t hnd s unounded. Among the frst ) ( m n columns of N R frst n columns represent the coeffcents of prolem vrles nd next m columns represent the coeffcents of slck vrles. There re certn columns strtng from frst column nd pper n successons whch re unt vectors. These columns whch re unt vectors correspond to sc vrles. The columns pperng n successons fter these columns nd not unt vectors correspond to nonsc vrles. As mentoned, mong the columns for nonsc vrles those hvng ll entres nonnegtve cn only led to decrement n the vlue of d when postve vlue s ssgned to them. Ths s undesrle s we m mxmzton of the vlue of d. So, we cn sfely set the vlue of such vrles equl to zero. When ll columns correspondng to nonsc vrles n N R re hvng ll entres nonnegtve nd further f mn{ d } mx{ d } then we cn set ll nonsc vrles to zero, set d = mn{ d } n every row of R nd fnd the sc fesle soluton whch wll e optml, wth mn{ d } s optml vlue for the ojectve functon t hnd. Stll further, When ll columns correspondng to nonsc vrles n N R re hvng ll entres nonnegtve ut mn{ d } < mx{ d } then f k e > 0 then we cn stll set ll nonsc vrles to zero, set d = mn{ d } n every row of R nd fnd the sc

8 fesle soluton whch wll e optml, wth mn{ d } s optml vlue for the ojectve functon t hnd,.e. f vlue of e k > 0 n the expressons c kd ek n the rows of R other those n R N tht re hvng vlue of c k > 0 then we cn proceed on smlr lnes to fnd optml vlue for d. In R N we now proceed to consder those nonsc vrles for whch the columns of R N contn some (t lest one) postve vlues nd some negtve (t lest one) vlues. In such cse when we ssgn some postve vlue to such nonsc vrle t leds to decrese n the vlue of d n those rows n whch c k > 0 nd ncrese n the vlue of d n those rows n whch c k < 0. We now need to consder the wys of delng wth ths stuton. We del wth ths stuton s follows: In ths cse, we choose nd crry out pproprte nd legl elementry row trnsformtons on the mtrx R n the reduced row echelon form to cheve nonnegtve vlue for ll the entres n the columns correspondng to nonsc vrles n the sumtrx R N of R. The elementry row trnsformtons re chosen to produce new mtrx whch remns equvlent to orgnl mtrx n the sense tht the soluton set of the mtrx equton wth orgnl mtrx nd mtrx equton wth trnsformed mtrx remn sme. Due to ths equvlence we cn now set ll the nonsc vrles n ths trnsformed mtrx to zero nd otn wth justfcton d mn = mn{ d } s optml vlue for the ojectve functon nd otn sc fesle soluton s optml soluton y susttuton. et us now dscuss our new lgorthm n steps: Algorthm. (xmzton):. Express the gven prolem n stndrd form: xmze: C T x Suject to: Ax s = x 0, s 0. Construct the ugmented mtrx [E F], where T C ( n) 0( m) E = A I d, nd F = ( m n) ( m m) nd otn the reduced row echelon form: R = rref ([E, F]). If there s row (or rows) of zeroes t the ottom of R n the frst n columns nd contnng nonzero constnt n the lst column then declre tht the prolem s nconsstent nd stop. Else f the coeffcents of d n the lst column re ll postve or f there exsts column of R correspondng to some nonsc vrle wth ll entres negtve then declre tht the prolem t hnd s unounded nd stop. 8

9 4. Else f for ny vlue of d one oserves tht nonnegtvty constrnt for some vrle gets volted y t lest one of the vrles then declre tht the prolem t hnd s nfesle nd stop. 5. Else fnd the sumtrx of R, sy R N, mde up of those rows of R for whch the coeffcent of d n the lst column s negtve. 6. Check whether the columns of R N correspondng to nonsc vrles re nonnegtve. Else, rerrnge the constrnt equtons y sutly permutng these equtons such tht (s fr s possle) the vlues n the columns of our strtng mtrx A ( m n ) get rerrnged n the followng wy: Ether they re rsng nd then ecomng sttonry, or fllng nd then ecomng sttonry, or fllng ntlly up to certn length of the column vector nd then rsng gn. After ths rerrngement to form trnsformed A ( m n ) gn proceed s s done n step ove to form ts correspondng ugmented mtrx [E, F] nd gn fnd ts R = rref ([E, F]) whch wll most lkely hve the desred representton,.e. n the new R N tht one wll construct from the new R wll hve columns for nonsc vrles whch wll e contnnng nonnegtve entres. 7. Solve c r d e r = 0 for ech such term n the lst column of R N nd fnd the vlue of d = d r for r =,,, k nd fnd d mn = mn{ d } r. Smlrly, solve c r d e r = 0 for ech such term n the lst column for rows of R other thn those n R N nd fnd the vlues d = d r for r =,,, k nd fnd d mx = mx{ d } r. Check the columns of R N correspondng to nonsc vrles. If ll these columns contn only nonnegtve entres nd f mn{ d } mx{ d } then set ll nonsc vrles to zero. Susttute d = dmn n the lst column of R. Determne the sc fesle soluton whch wll e optml nd stop. Further, f columns correspondng to nonsc vrles contn only nonnegtve entres nd f mn{ d } < mx{ d } then check whether vlue of e k > 0 n the expressons c kd ek n these rows of R other those n R N tht re hvng vlue of c k > 0. If yes, then set ll nonsc vrles to zero. Susttute d = dmn n the lst column of R. Determne the sc fesle soluton whch wll e gn optml. 8. Even fter proceedng wth rerrngng columns of our strtng mtrx A ( m n ) y sutly permutng rows representng constrnt equtons s s 9

10 done n step 6, nd then proceedng s per step 7 nd chevng the vldty of mn{ d } mx{ d }, f stll there remn columns n R N correspondng to some nonsc vrles contnng postve entres n some rows nd negtve entres n some other rows then devse nd pply sutle elementry row trnsformtons on R such tht the columns representng coeffcents of nonsc vrles of new trnsformed mtrx R or t lest ts sumtrx R correspondng to new trnsformed R contn only nonnegtve entres. N And step 7 ecomes pplcle. We now proceed wth some exmples: Exmple.: xmze: Suject to: x y 4 x y 4x y x, y 0 x Soluton: For ths prolem we hve R = [, 0, 0, 0, /, -d6 ] [ 0,, 0, 0, -/, -6*d ] [ 0, 0,, 0, /, 0-*d ] [ 0, 0, 0,,, -*d ] So, clerly, R N = [, 0, 0, 0, /, -d6 ] [ 0, 0,, 0, /, 0-*d ] [ 0, 0, 0,,, -*d ] y For ths exmple the column formng coeffcents for nonsc vrle s contns nonegtve numers. So, we set s = 0. Clerly, d mn =. = Optml vlue for the ojectve functon. Usng ths vlue of optmum we hve x =.66, y = 0.66, s =, s =, s 0. 0 = Exmple.: We frst consder the duel of the exmple suggested y E... Bele [], whch rngs nto exstence the prolem of cyclng for the smplex method, nd provde soluton s per the ove new method whch offers t drectly wthout ny cyclng phenomenon. xmze: 0.75 x 0 x 0.5 x 6 x 4 Suject to: 0.5 x 8 x x 9 x x x 0.5 x 4 x 0 0

11 x 0 x 0 x, x, x, 4 Soluton: For ths prolem we hve the followng R = [, 0, 0, 0, /, 8/, 4/, ( 4/)d4/ ] [0,, 0, 0, 7/4, /4, /4, ( 5/4)d/ ] [0, 0,, 0, 0, 0,, ] [0, 0, 0,, /8, /8, /9, /9 (/8)d ] So, clerly, R = [, 0, 0, 0, /, 8/, 4/, ( 4/)d4/ ] N [0,, 0, 0, 7/4, /4, /4, ( 5/4)d/4 ] [0, 0, 0,, /8, /8, /9, /9 (/8)d ] We perform followng elementry row trnsformtons on R: et us denote the successve rows of R y R(), R(), R(), R(4). We chnge () () () R() R() (6/4)*R(4), R() R() *R(4). R(4) 8*R(4) Ths leds to new trnsformed R s follows: R = [, 0, 0,, 0, 0, 6, 6-d] [0,, 0, /4, 0, /4, 5/8, 5/8-(/)d] [0, 0,, 0, 0, 0,, ] [0, 0, 0, 8,,,, d ] In the trnsformed R we hve nonnegtve columns for ll nonsc vrles, whch re now those correspondng to x 4, s,s. So, y settng x 4 = s = s = 0 nd settng ll expressons of type c d e = 0 n the lst column we fnd r r d mn = mn{ d } =.5. Usng ths vlue n the lst column of the newly otned r trnsformed R we hve: x =.0000, x = 0, x =, x 4 = 0, s = , s = 0, s = 0, nd the mxmum vlue of d =.500. Exmple.: We now consder n unounded prolem. The new method drectly mples the unounded nture of the prolem through the postvty of the coeffcents of d n mtrx R for the prolem. xmze: x y Suject to: x y x y 0 x y

12 x, y 0 Soluton: The followng s the mtrx R : R = [, 0, 0, 0, -/5, (/5)d-/5 ] [ 0,, 0, 0, -/5, (/5)d-/5 ] [ 0, 0,, 0, -4/5, (/5)d-4/5] [ 0, 0, 0,, /5, /5(/5)d] Here, ll the coeffcents of d re postve. So, y settng vrle s = 0 we cn see tht we cn ssgn ny rtrrly lrge vlue to vrle d wthout volton of nonnegtvty constrnts for vrles. Thus, the prolem hs n unounded soluton. Exmple.4: We now consder prolem hvng n nfesle strtng ss. We see tht new lgorthm hs no dffculty to del wth t. xmze: x y Suject to: x y 4 x y 5 x 4y x, y 0 Soluton: The followng s the mtrx R : R = [, 0, 0, 0, /7, (/7)d-/7 ] [ 0,, 0, 0, -/4, /7(/4)d] [ 0, 0,, 0, /4, 7/7-(5/4)d] [ 0, 0, 0,, -/4, 6/7-(9/4)d] R = [ 0, 0,, 0, /4, 7/7-(5/4)d] N [ 0, 0, 0,, -/4, 6/7-(9/4)d] Clerly, mn{ d } mx{ d }. So, we perform followng elementry row trnsformtons on R: et us denote the successve rows of R y R(), R(), R(), R(4). We chnge () R(4) R(4) R() Ths leds to new trnsformed R N, R s follows: R = [ 0, 0,, 0, /4, (7/7)-(5/4)d] N [ 0, 0,,, 0, (6/7) d ] R = [, 0, 0, 0, /7, (/7)d-/7 ] [ 0,, 0, 0, -/4, /7(/4)d] [ 0, 0,, 0, /4, 7/7-(5/4)d] [ 0, 0,,, 0, (6/7) d ]

13 R, RN correspond to sc vrles x, y. Snce, The frst two columns of mn{ d } mx{ d } nd columns correspondng to nonsc vrles s,s contn nonnegtve entres n we hve s = 0 nd mn x =.857, y = R N, so we set these vrles to zero. From lst row d = 9. Also from frst nd second rows,.074 Exmple.5: We now consder n nfesle prolem. xmze: x y Suject to: x y x y 0 x, y 0 Soluton: The followng s the mtrx R : R = [, 0, 0, -/4, (/4)d ] [ 0,, 0, /8, (/8)d ] [ 0, 0,, 7/8, (-/8)d-] Here, the coeffcent of d s negtve only n the lst row nd so R N = [ 0, 0,, 7/8, (-/8)d-]. We perform followng elementry row trnsformtons on R: et us denote the successve rows of R y R(), R(), R(), R(4). We chnge () R() (/7)*R(4) R() Ths leds to R = [, 0, /7, 0, /7*d-/7] [ 0,, 0, /8, (/8)d ] [ 0, 0,, 7/8, (-/8)d-] nd R = [ 0, 0,, 7/8, (-/8)d-] N Settng s,s equl to zero, we hve for consstency of lst row d = (8/) nd usng ths vlue for d we hve y = (/). Thus, ths prolem s nfesle. Remrk.: Klee nd nty [4], hve constructed n exmple of set of lner n progrms wth n vrles for whch smplex method requres tertons to rech n optml soluton. Theoretc work of Borgwrdt [5] nd Smle [6] ndctes tht fortuntely the occurrence of prolems elongng to the clss of Klee nd nty,

14 whch don t shre the verge ehvor, s so rre s to e neglgle. We now proceed to show tht there s no prolem of effcency for new lgorthm n delng wth the prolems elongng to ths clss. Exmple.6: We now consder prolem for whch the smplex tertons re exponentl functon of the sze of the prolem. A prolem elongng to the clss n descred y Klee nd nty contnng n vrles requres smplex steps. We see tht the new method doesn t requre ny specl effort xmze: 00 x 0 x x Suject to: x 0 x x x 0 x x 0000 x, x, x 0 Soluton: The followng re the mtrces R, RN : R = [, 0, 0, 0, /0, -/00, -90(/00)d] [0,, 0, 0, -, /5, 900-(/5)d] [0, 0,, 0, 0, -, d-0000 ] [0, 0, 0,, -/0, /00, 9-(/00)d ] R = [0,, 0, 0, -, /5, 900-(/5)d ] N [0, 0, 0,, -/0, /00, 9- (/00)d] We perform followng elementry row trnsformtons on R: et us denote the successve rows of R y R(), R(), R(), R(4). We chnge () () () R() 0R() R(), nd R(4) R() R(4) R() 0*R() Ths leds to new trnsformed R N, R s follows: R N = [0,, 0, 0, 0, /0, 000-(/0)*d] [, 0, 0,, 0, 0, ] R = [0, 0, 0, 0,, -/0, -900/0*d ] [0,, 0, 0, 0, /0, 000-(/0)*d] [0, 0,, 0, 0, -, *d-0000 ] [, 0, 0,, 0, 0, ] Snce, mn{ d } mx{ d } nd columns correspondng to nonsc vrles x,s contn nonnegtve entres n R N, so we set these vrles to zero. We get esy complete soluton s follows: 4

15 x = 0, x = 0, x = 0000, s =, s = 00, s = 0, nd the mxmum vlue of d = Exmple.7: We now consder n exmple for whch the reduced row echelon form contns y tself the sc vrles tht re requred to e present n the optml smplex tleu,.e. the tleu tht results t the end of the smplex lgorthm, for whch only nonpostve entres occur n the ottom row of the tleu representng reltve profts. Ths s understood y the nonnegtvty of entres n the columns of R N correspondng to nonsc vrles. xmze: x y Suject to: 4 x y x y 4 x y x, y 0 Soluton: The followng s the mtrx R : R = [, 0, 0, 0, /5, (/5)d6/5 ] [ 0,, 0, 0, -/5, -9/5(/5)d] [ 0, 0,, 0, 8/5, 44/5-(/5)d] [ 0, 0, 0,, 0, 4-d ] So, clerly, R N = [ 0, 0,, 0, 8/5, 44/5-(/5)d] [ 0, 0, 0,, 0, 4-d ] Snce, mn{ d } mx{ d } nd columns correspondng to nonsc vrle R contn nonnegtve entres n N, so we set these vrles to zero. Here, the nonsc vrle columns drectly contn nonnegtve entres ledng to decresng n proft when some postve vlue s ssgned to ths vrle nd so we set ths vrle to zero whch leds to the mxml sc fesle soluton: d = 4, x = 4, y =, s = 6, s = 0, s = 0. We now consder few exmples n whch rerrngement of constrnt equtons utomtclly produce sutle form for reduced row echelon form: 6 x y Exmple.8:. xmze: Suject to: x y 5 4x y x y 4 x, y 0 For ths prolem we get followng R, R N s 5

16 R = [, 0, 0, 0, /, /9*d-4/] [ 0,, 0, 0, -/, 8/-/9*d] [ 0, 0,, 0, /, /-/9*d] [ 0, 0, 0,, -/, 44/-7/9*d] R = [ 0,, 0, 0, -/, 8/-/9*d] N [ 0, 0,, 0, /, /-/9*d] [ 0, 0, 0,, -/, 44/-7/9*d] Here some entres n the lst ut one column correspondng to nonsc vrle re mxed type,.e. entres n the frst nd thrd rows of R N re negtve whle entry n the second row of R N s postve. We now rerrnge the constrnts so tht ether entres n the new columns re rsng nd then ecomng sttonry, or fllng nd then ecomng sttonry, or fllng ntlly up to certn length of the column vector nd then rsng gn, s mentoned ove. Thus, we just rewrte the prolem s: 6 x y xmze: Suject to: x y 5 x y 4 4x y x, y 0 then form new A ( m n ) mtrx whch produce nd gn proceed to fnd reduced row echelon form for new R = [, 0, 0, 0, /, -/6*d6] [ 0,, 0, 0, -, -/*d] [ 0, 0,, 0, /, -/*d] [ 0, 0, 0,, -/, -7/6*d] R = [, 0, 0, 0, /, -/6*d6] N [ 0, 0,, 0, /, -/*d] Snce, mn{ d } mx{ d } nd columns correspondng to nonsc vrle R contn nonnegtve entres n N, so we set these vrles to zero. Here, the nonsc vrle columns drectly contn nonnegtve entres ledng to decresng n proft when some postve vlue s ssgned to ths vrle nd so we set ths vrle to zero whch leds to the mxml sc fesle soluton: d =, x = /, y = 8 /, s = 0, s = /, s 0. 7 = x y Exmple.9: xmze: Suject to: x y 4 s 6

17 x y 5 x 4y x, y 0 For ths prolem we get followng R, R N R = [, 0, 0, 0, /7, /7*d-/7 ] [ 0,, 0, 0, -/4, /7/4*d] [ 0, 0,, 0, /4, 7/7-5/4*d] [ 0, 0, 0,, -/4, 6/7-9/4*d] R N = [ 0, 0,, 0, /4, 7/7-5/4*d] [ 0, 0, 0,, -/4, 6/7-9/4*d] Here some entres n the lst ut one column correspondng to nonsc vrle re mxed type,.e. entres n the frst nd thrd rows of R N re negtve whle entry n the second row of R N s postve. We now rerrnge the constrnts so tht ether entres n the new columns re rsng nd then ecomng sttonry, or fllng nd then ecomng sttonry, or fllng ntlly up to certn length of the column vector nd then rsng gn, s mentoned ove. Thus, we just rewrte the prolem s: x y xmze: Suject to: x y 5 x 4y x y 4 x, y 0 then we form new A ( m n ) new mtrx whch produce nd gn proceed to fnd reduced row echelon form for R = [, 0, 0, 0, -, d-8] [ 0,, 0, 0,, -d] [ 0, 0,, 0,, 9-d] [ 0, 0, 0,, 4, 54-5*d] R N = [ 0,, 0, 0,, -d] [ 0, 0,, 0,, 9-d] [ 0, 0, 0,, 4, 54-5*d] Snce, mn{ d } mx{ d } nd column correspondng to nonsc vrle R contn nonnegtve entres n N, so we set ths vrle to zero. Here, the nonsc vrle columns drectly contn nonnegtve entres ledng to decresng n proft when some postve vlue s ssgned to ths vrle nd so we set ths vrle to zero whch leds to the mxml sc fesle soluton: d = 9, s 7

18 x =, y =, s = 0, s = 9, s 0. = 4 x y Exmple.0: xmze: Suject to: x.5 y 9 x y 8 x y 6 x, y 0 For ths prolem we get followng R, R N R = [, 0, 0, 0, -, d-8] [ 0,, 0, 0, 4, 4-d] [ 0, 0,, 0, -, -575/*d] [ 0, 0, 0,,, 0-d] R = [ 0,, 0, 0, 4, 4-d] N [ 0, 0, 0,,, 0-d] Clerly, though the second lst column correspondng to nonsc vrle contns nonnegtve entres the nequlty mn{ d } mx{ d } s nvld! So, s frst ttempt, efore strtng to crry out elementry row trnsformton on R to cheve nonnegtvty of entres n the columns of R correspondng nonsc vrles, let us frst try rerrngng the nequltes so tht ether entres n the new columns re rsng nd then ecomng sttonry, or fllng nd then ecomng sttonry, or fllng ntlly up to certn length of the column vector nd then rsng gn, s mentoned ove. Thus, we just rewrte the prolem s: xmze: 4 x y Suject to: x.5 y 9 x y 6 x y 8 x, y 0 then we form new A ( m n ) new mtrx whch produce nd gn proceed to fnd reduced row echelon form for R = [, 0, 0, 0, /, -/*d] [ 0,, 0, 0, -, -6d] [ 0, 0,, 0, /, 5-*d] [ 0, 0, 0,, /, 0-/*d] = R N [, 0, 0, 0, /, -/*d] [ 0, 0,, 0, /, 5-*d ] [ 0, 0, 0,, /, 0-/*d ] For ths rerrngement the second lst column correspondng to nonsc vrle contns nonnegtve entres nd lso the nequlty mn{ d } mx{ d } s now 8

19 vld! So, we set nonsc vrle s equl to zero whch leds to mxml sc fesle soluton: d =7. 667, x =.665, y =.667, s = 0, s =.665, s Exmple.: xmze: Suject to: 4 = x y x y x y 5 x 4y Soluton: For ths prolem we hve R = [, 0, 0, 0, /7, (/7)d-/7 ] [ 0,, 0, 0, -/4, /7 (/4)d] [ 0, 0,, 0, /4, 7/7- (5/4)d] [ 0, 0, 0,, -/4, 6/7- (9/4)d] R = [ 0, 0,, 0, /4, 7/7-(5/4)d] N [ 0, 0, 0,, -/4, 6/7-(9/4)d] But, f we permute constrnts s: (I) constrnt constrnt, (II) constrnt constrnt, nd (III) constrnt constrnt nd form new A ( m n ) nd further fnd out new R, R N then we get R = [, 0, 0, 0, -, d-8 ] [ 0,, 0, 0,, -d ] [ 0, 0,, 0,, 9-d ] [ 0, 0, 0,, 4, 54-5d ] R = [ 0,, 0, 0,, -d ] N [ 0, 0,, 0,, 9-d ] [ 0, 0, 0,, 4, 54-5d ] Snce, mn{ d } mx{ d } nd column correspondng to nonsc vrle R contn nonnegtve entres n N, so we set ths vrle to zero nd we drectly get the optml sc fesle soluton from R = : d = d mn = 9, x =, y =, s = 0, s = 9, s = 0. We now see tht we cn proceed wth n exctly smlr wy nd del successfully wth mnmzton lner progrmmng prolems. A prolem of mnmzton goes lke: nmze: C T x 0 s 9

20 Suject to: Ax x 0 we frst construct the comned system of equtons contnng the sme ojectve equton used n mxmzton prolem (ut ths tme we wnt to fnd mnmum vlue of prmeter d defned n the ojectve equton) nd the equtons defned y the constrnts mposed y the prolem under consderton, comned nto sngle mtrx equton, vz., C A( T ( n) 0( m) m n) I( m m) x = s d (.) et E = C A( T ( n) 0( m) m n) I( m m) d, nd let F = et [E, F] denote the ugmented mtrx otned y ppendng the column vector F to mtrx E s lst column. We then fnd R, the reduced row echelon form of the ove ugmented mtrx [E, F]. Thus, R = rref ([E, F]) (.) Note tht the ugmented mtrx [E, F] s well s ts reduced row echelon form R contns only one prmeter, nmely, d nd ll other entres re constnts. From R we cn determne the soluton set S for every fxed x d, S = { /( fxed) d rels} s. The suset of ths soluton set of vectors x whch lso stsfes the nonnegtvty constrnts s the set of ll fesle s solutons for tht d. It s cler tht ths suset cn e empty for prtculr choce of d tht s mde. The mnmzton prolem of lner progrmmng s to determne the unque d whch provdes fesle soluton nd hs mnmum vlue,.e., to determne the unque d whch provdes n optml soluton. In the cse of n unounded mnmzton lner progrm there s no lower ound for the vlue of d, whle n the cse of n nfesle lner progrm the set of fesle solutons s empty. The steps tht wll e executed to determne the optml soluton should lso tell y mplcton when such optml soluton does not exst n the cse of n unounded or nfesle prolem. The generl form of the mtrx R representng the reduced row echelon form s smlr s prevously dscussed mxmzton cse: 0

21 R = ( m m ) m ( m ) n n n mn ( m ) n m ( m ) m ( m ) m m m mm ( m ) n c c d e c m ( m ) c d e d e d e c d e m ( m ) The frst n columns of the ove mtrx represent the coeffcents of the prolem vrles (.e. vrles defned n the lner progrm) x, x,, xn. The next m columns represent the coeffcents of the surplus vrles s, s,, s m used to convert nequltes nto equltes to otn the stndrd form of the lner progrm. The lst column represents the trnsformed rght hnd sde of the equton (.) durng the process ( sutle sequence of trnsformtons) tht s crred out to otn the reduced row echelon form. Note tht the lst column of R contns the lner form d s prmeter whose optml vlue s to e determned such tht the nonnegtvty constrnts remn vld,.e. x 0, n nd s j 0, j m. Among frst ( n m) columns of R certn frst columns correspond to sc vrles (columns tht re unt vectors) nd the remnng ones to nonsc vrles (columns tht re not unt vectors). For solvng the lner progrm we need to determne the vlues of ll nonsc vrles nd the optml vlue of d, from whch we cn determne the vlues of ll the sc vrles y susttuton nd the lner progrm s thus solved completely. For lner progrm f ll the coeffcents of prmeter d n the lst column of R re negtve then the lner progrm t hnd s unounded (snce, the prmeter d cn e decresed rtrrly wthout voltng the nonnegtvty constrnts on vrles x, s j ). For lner progrm f ll the coeffcents of some nonsc slck vrle represented y column of R re nonpostve nd re strctly negtve n those rows hvng postve coeffcent to prmeter d tht ppers n the lst column of these rows then we cn decrese the vlue of d to ny low vlue wthout voltng the nonnegtvty constrnts for the vrles y ssgnng suffcently hgh vlue to ths nonsc slck vrle nd the prolem s gn elongs to the ctegory of unounded prolems. Note tht the rows of R ctully represent equtons wth vrles x, =,, n nd vrles, j =,, m on left sde nd expressons of type s j ckd ek, k =,, ( m ) contnng the vrle d on the rght sde. The rows wth negtve coeffcent for the prmeter d represent those equtons n whch the prmeter d cn e decresed rtrrly wthout voltng the nonnegtvty constrnts on vrles x,. So, these equtons wth negtve s j coeffcent for the prmeter d re not mplyng ny lower ound on the mnmum

22 possle vlue of prmeter d. However, these rows re useful to know out upper ound on prmeter d. The rows wth postve coeffcent for the prmeter d represent those equtons n whch the prmeter d cnnot e decresed rtrrly wthout voltng the nonnegtvty constrnts on vrles j s x,. So, these equtons wth postve coeffcent for the prmeter d re mplyng lower ound on the mnmum possle vlue of prmeter d nd so mportnt ones n ths respect. So, we now proceed to fnd out the sumtrx of R, sy P R, mde up of ll columns of R nd contnng those rows j of R for whch the coeffcents j c of the prmeter d re postve. et k c c c,,, re ll nd re only postve rel numers n the rows collected n P R gven elow nd ll other coeffcents of d n other rows of R re greter thn or equl to zero. = k k k k k k k k n n m n m n m n P e d c e d c e d c e d c R If P R s empty (.e. contnng not sngle row) then the prolem t hnd s unounded. There re certn columns strtng from frst column nd pper n successons whch re unt vectors. These columns whch re unt vectors correspond to sc vrles. The columns pperng n successons fter these columns nd not unt vectors correspond to nonsc vrles. As mentoned, mong the columns of P R for nonsc vrles those hvng ll entres nonnegtve cn only led to ncrese n the vlue of d when postve vlue s ssgned to them. Ths s undesrle s we m mnmzton of the vlue of d. So, we desre to set the vlues of such vrles equl to zero. When ll columns correspondng to nonsc vrles n P R re hvng ll entres nonnegtve nd further f the nequlty mn{ d } mx{ d } holds then we cn set ll nonsc vrles to zero nd set d = mx{ d } n every row of R nd fnd the sc fesle soluton whch wll e optml, wth mx{ d } s optml vlue for the ojectve functon t hnd. Stll further, When ll columns correspondng to nonsc vrles n P R re hvng ll entres nonnegtve ut mn{ d } < mx{ d } then f k e > 0 then we cn stll set ll nonsc vrles to zero, set d = mx{ d } n every row of R nd fnd the sc

23 fesle soluton whch wll e optml, wth mx{ d } s optml vlue for the ojectve functon t hnd,.e. f vlue of e k > 0 n the expressons c kd ek n the rows of R rther those n R P tht re hvng vlue of c k > 0 then we cn proceed on smlr lnes to fnd optml vlue for d. In R P we now proceed to consder those nonsc vrles for whch the columns of R P contn some (t lest one) postve vlues nd some negtve (t lest one) vlues. In such cse when we ssgn some postve vlue to such nonsc vrle t leds to decrese n the vlue of d n those rows n whch c k > 0 nd ncrese n the vlue of d n those rows n whch c k < 0. We now need to consder the wys of delng wth ths stuton. We del wth ths stuton s follows: In ths cse, we choose nd crry out pproprte nd legl elementry row trnsformtons on the mtrx R n the reduced row echelon form to cheve nonnegtve vlue for ll the entres n the columns correspondng to nonsc vrles n the sumtrx R P of R. The elementry row trnsformtons re chosen to produce new mtrx whch remns equvlent to orgnl mtrx n the sense tht the soluton set of the mtrx equton wth orgnl mtrx nd mtrx equton wth trnsformed mtrx remn sme. Due to ths equvlence we cn now set ll the nonsc vrles n ths trnsformed mtrx to zero nd otn wth justfcton d mx = mx{ d } s optml vlue for the ojectve functon nd otn sc fesle soluton s optml soluton y susttuton. Algorthm. (nmzton):. Express the gven prolem n stndrd form: xmze: C T x Suject to: Ax s = x 0, s 0. Construct the ugmented mtrx [E F], where T C ( n) 0( m) d E =, nd F = A( m n) I ( m m) nd otn the reduced row echelon form: R = rref ([E, F]). If there s row (or rows) of zeroes t the ottom of R n the frst n columns nd contnng nonzero constnt n the lst column then declre tht the prolem s nconsstent nd stop. Else f the coeffcents of d n the lst column re ll postve or f there exsts column of R correspondng to some nonsc vrle wth ll entres negtve then declre tht the prolem t hnd s unounded nd stop.

24 4. Else f for ny vlue of d one oserves tht nonnegtvty constrnt for some vrle gets volted y t lest one of the vrles then declre tht the prolem t hnd s nfesle nd stop. 5. Else fnd the sumtrx of R, sy R P, mde up of those rows of R for whch the coeffcent of d n the lst column s postve. 6. Check whether the columns of R P correspondng to nonsc vrles re nonnegtve. Else, rerrnge the constrnt equtons y sutly permutng these equtons such tht (s fr s possle) the vlues n the columns of our strtng mtrx A ( m n ) get rerrnged n the followng wy: Ether they re rsng nd then ecomng sttonry, or fllng nd then ecomng sttonry, or fllng ntlly up to certn length of the column vector nd then rsng gn. After ths rerrngement to form trnsformed A ( m n ) gn proceed s s done n step ove to form ts correspondng ugmented mtrx [E, F] nd gn fnd ts R = rref ([E, F]) whch wll most lkely hve the desred representton,.e. n the new R P tht one wll construct from the new R wll hve columns for nonsc vrles whch wll e contnng nonnegtve entres. 7. Solve c r d e r = 0 for ech such term n the lst column of R P nd fnd the vlue of d = d r for r =,,, k nd fnd d mn = mn{ d } r. Smlrly, solve c r d e r = 0 for ech such term n the lst column for rows of R other thn those n R N nd fnd the vlues d = d r for r =,,, k nd fnd d mx = mx{ d } r. Check the columns of R P correspondng to nonsc vrles. If ll these columns contn only nonnegtve entres nd f mn{ d } mx{ d } then set ll nonsc vrles to zero. Susttute d = d mx n the lst column of R. Determne the sc fesle soluton whch wll e optml nd stop. Further, f columns correspondng to nonsc vrles contn only nonnegtve entres nd f mn{ d } < mx{ d } then check whether vlue of e k > 0 n the expressons c kd ek n these rows of R other those n R P tht re hvng vlue of c k > 0. If yes, then set ll nonsc vrles to zero. d = d n the lst column of R. Determne the sc fesle Susttute mx soluton whch wll e gn optml. 8. Even fter proceedng wth rerrngng columns of our strtng mtrx A ( m n ) y sutly permutng rows representng constrnt equtons s s 4

25 done n step 6, nd then proceedng s per step 7 nd chevng the vldty of mn{ d } mx{ d }, f stll there remn columns n R P correspondng to some nonsc vrles contnng postve entres n some rows nd negtve entres n some other rows then devse nd pply sutle elementry row trnsformtons on R such tht the columns representng coeffcents of nonsc vrles of new trnsformed mtrx R or t lest ts sumtrx R P correspondng to new trnsformed R contn only nonnegtve entres so tht step 7 ecomes pplcle. We now consder few exmples for mnmzton prolems: Exmple.: Ths exmple for mnmzton s lke Exmple.6 for mxmzton n whch the reduced row echelon form contns y tself the sc vrles tht re requred to e present n the optml smplex tleu,.e. the tleu tht results t the end of the smplex lgorthm, for whch only nonnegtve entres occur n the ottom row of the tleu representng reltve costs. Ths s understood y the nonnegtvty of entres n the columns of R P correspondng to nonsc vrles. nmze: x x x Suject to: x x x 4x x x x x x x x, x, x 0 Soluton: For ths prolem we hve R = [, 0, 0, 0, -, 0,, -d ] [ 0,, 0, 0, -, 0,, ] [ 0, 0,, 0, -, 0,, 5-d ] [ 0, 0, 0,,, 0,, 6d ] [ 0, 0, 0, 0, 0,,, 0 ] It s cler from seprtely equtng ech entry n the lst column of R tht the expected nequlty, mn{ d } mx{ d }, holds good. Also, R = [ 0, 0, 0,,, 0,, 6d] P Snce ll the entres n the columns correspondng to nonsc vrles n postve so we put, s, s, s4 = 0 d = mx( d ) = further susttutons, we hve x = 4, x =, x = 9. s. Also, we put R P re. By 5

26 Exmple.: We now consder mnmzton prml lner progrm for whch nether the prml nor the dul hs fesle soluton. nmze: x y Suject to: x y x y x, y 0 Soluton: For ths prolem we hve R = [, 0, 0,, -d] [ 0,, 0,, -d] [ 0, 0,,, - ] R P s n empty mtrx. So, there s no lower lmt on the vlue of d. But, Here, from the lst row of R t s cler tht (for ny nonnegtve vlue of nonsc vrle, s ) the vlue of s s negtve nd so the prolem s thus nfesle. Smlrly, f we consder the followng dul, vz, x y x y x y x, y 0 xmze: Suject to: then we hve R = [, 0, 0,, -d] [ 0,, 0,, -4d] [ 0, 0,,, - ] R = [, 0, 0,, -d] N [ 0,, 0,, -4d] whch mples zero vlue for cler tht (even for ny nonnegtve vlue of nonsc vrle, negtve nd so the prolem s nfesle. s nd d =. But gn from the lst row of R t s s ) the vlue of y s Exmple.4: We now consder mnmzton lner progrm for whch the prml s unounded nd the dul s nfesle. nmze: x y Suject to: 5 x y x y 5 x, y 0 Soluton: For ths prolem we hve R = [, 0, 0, -/, -5/-(/)d ] [ 0,, 0, /, (-/)d5/] 6

27 [ 0, 0,, -, -0 ] Clerly, R p s empty so there s no ound to the vlue of d on the lower sde nd y gvng vlue 0 to nonsc vrle s we cn vod negtvty of s, so the prolem s unounded. Also, let us pply followng elementry trnsformtons on R: et us denote the successve rows of R y R(), R(), R(), R(4). We chnge () () R() R() R(), nd R() R() R() R = [,, 0, 0, -d ] [ 0,, 0, /, (-/)d5/] [ 0,,, 0, -d -5 ] So, y settng = 0, s d 5 we cn check tht ths prolem n unounded elow. Now, f we consder the followng dul, vz, xmze: 5x 5y Suject to: We hve x y x y x, y 0 R = [, 0, 0, -/, /(/0)d] [ 0,, 0, -/, /-(/0)d] [ 0, 0,,, - ] R = [ 0,, 0, -/, /-(/0)d] N Agn from the lst row of R t s cler tht even for ny nonnegtve vlue of nonsc vrle, s the vlue of s s negtve nd so the prolem s nfesle. Exmple.5: nmze: 4 Suject to: x x x x4 x x 4x x x, x, x 0 We hve followng R, RP for ths prolem: R = [, 0, 0, -, -6, -4, -7*d56] [ 0,, 0,, 4,, -4*d] [ 0, 0,, 0, -7, -, 5-*d ] x 4 x x R = [ 0,, 0,, 4,, -4*d] P 7

28 Snce t s cler from seprtely equtng ech entry n the lst column of R tht the expected nequlty, mn{ d } mx{ d }, holds good. Also, snce ll the entres n the columns correspondng to nonsc vrles n R P re postve so we put x s, s 0. Also, we put d = mx( d ) = 7 4, = = 7, x = 0, x = hve x 4.. By further susttutons, we Remrk.: It s cler from the dscusson mde so fr tht our m should e to cheve the stuton n whch ll the columns correspondng to nonsc vrles n R N, R P contn nonnegtve entres. Ths stuton corresponds to drectly hvng the possesson of mxml/mnml sc fesle soluton. By chevng ths one gets drectly the optml sc fesle soluton y smply settng ll the nonsc vrles to zero nd fndng the sc soluton. Ths s the stuton n sense of hvng drectly the optml smplex tleu for whch one sets ll the nonsc vrles to zero s they n fct led to decrement/ncrement n the otherwse mxml/mnml vlue of d for mxmzton/mnmzton lner progrmmng prolems under consderton. Thus, we cn fnd the soluton of ny mxmzton/mnmzton lner progrm y properly nlyzng the R, R N, R P mtrces, nd tkng the relevnt ctons s per the outcomes of the nlyss. Remrk.: Insted of shufflng rows of mtrx A, to form new E, F wthout chngng the content of the prolem, we cn lso cheve the sme effect of rerrngement of constrnt y smply shufflng rows of dentty mtrx I m m n E nd proceed wth formton of new E, F wthout chngng the content of the prolem nd chevng sme effect n the sense tht the correspondng reduced row echelon form wll utomtclly produce sme effect. Remrk.: The nonnegtvty of the entres tht re present n the columns of nonsc vrles of the concerned reduced row echelon form R N or R P s n effect smlr to otn the optml smplex tleu,.e. the tleu t whch the smplex lgorthm termntes nd where the sc fesle soluton represents the optml soluton. As mentoned n the egnnng of ths secton we now proceed wth the dscusson of second type of lgorthms tht use geometrc methods. We now dscuss some novel lgorthms for lner progrmmng nspred y geometrcl consdertons. All these lgorthms hve common m: they ll try to pproch closer nd closer to centrod or some centrlly locted nteror pont for speedng up the process of rechng n optml soluton! Imgne the lne prllel to vector C, where C T x denotes the ojectve functon to e optmzed, nd further suppose tht ths lne s lso pssng through the pont representng optml soluton. The new lgorthms tht we propose n ths pper essentlly try to rech t some fesle nteror pont whch s n the close vcnty of ths lne, n successve steps. When one wll e le to rrve fnlly t pont elongng to smll neghorhood of some pont on ths lne then y movng from ths pont prllel to vector C one cn rech to the pont elongng to the suffcently smll neghorhood of the pont representng optml soluton. 8

29 The method tht we propose now ttempts to utlze the geometrcl structure of the lner progrmmng prolem. As mentoned ove, n geometrcl lnguge every lner progrmmng prolem defnes convex polyhedron formed y ntersectng constrnt plnes nd coordnte plnes. The regon nsde of ths convex polyhedron s clled the fesle regon. It s mde up of fesle nteror ponts lyng nsde ths convex polyhedron. These so clled fesle nteror ponts stsfy ll oundry constrnts nd re nonnegtve. Solvng the mxmzton (mnmzton) lner progrmmng prolem n geometrcl terms essentlly conssts of pushng ths ojectve plne outwrds (nwrds) n the drecton of C such tht ths ojectve plne wll rech to the extreme end of the polyhedron nd wll contn the extreme vertex. Ths extreme vertex s ctully the optml soluton of the prolem t hnd. In geometrcl terms solvng lner progrmmng prolem mens to rrve t the pont representng extreme vertex, to determne coordntes of ths pont, nd further to fnd vlue of the ojectve functon (the so clled optml ojectve vlue) t ths pont. Becuse of the fr gret prctcl mportnce of the lner progrms nd other smlr prolems n the opertons reserch t s most desred thng to hve n lgorthm whch works n sngle step, f not, n s few steps s possle. No method hs so fr een found whch wll yeld n optml soluton to lner progrm n sngle step ([], Pge 9). We wsh to emphsze n ths pper tht when one s lucky enough to rrve t some nteror fesle pont elongng to the lne prllel to vector C whch s lso pssng through the pont representng optml soluton, where C T x denotes the ojectve functon to e optmzed, then one cn fnd the pont representng optml soluton to the lner progrm under consderton n sngle step y just movng long ths lne tll one reches the desred extreme vertex on ths lne t the oundry of the convex polyhedron!! We wsh to develop some NEW lgorthms for solvng lner progrmmng prolems. We now proceed wth ref descrpton of these lgorthms. We wll try to cpture the essence of the methods wth the help two geometrcl fgures, FIG. nd FIG. gven elow. We hope tht these fgures wll mke explct the geometrcl motvton tht les ehnd these lgorthms. Coordnte Plnes Strtng nteror pont C lne prllel to vector C through Optml Soluton Constrnt Plnes Interor pont ner oundry C per New strtng nteror pont Ojectve Plne Optml soluton Interor pont ner oundry FIG. 9

New Algorithms: Linear, Nonlinear, and Integer Programming

New Algorithms: Linear, Nonlinear, and Integer Programming New Algorthms: ner, Nonlner, nd Integer Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tl Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.om Astrt In ths pper we propose new lgorthm for lner progrmmng. Ths

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Mixed Type Duality for Multiobjective Variational Problems

Mixed Type Duality for Multiobjective Variational Problems Ž. ournl of Mthemtcl Anlyss nd Applctons 252, 571 586 2000 do:10.1006 m.2000.7000, vlle onlne t http: www.delrry.com on Mxed Type Dulty for Multoectve Vrtonl Prolems R. N. Mukheree nd Ch. Purnchndr Ro

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Systematic Construction of examples for cycling in the simplex method

Systematic Construction of examples for cycling in the simplex method Systemtc Constructon of emples for cyclng n the smple method Prof. r. Peter Zörng Prof. Assocdo Unversdde de Brsíl UnB eprtmento de Esttístc e-ml: peter@un.r ) Lner progrmmng prolem cnoncl form: stndrd

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that us. Introducton he us s the nverse of the us,.e., () Snce we now tht nd therefore then I V () V I () V I (4) So us reltes the nodl current njectons to the nodl voltges, s seen n (4). In developng the power

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

An Introduction to Support Vector Machines

An Introduction to Support Vector Machines An Introducton to Support Vector Mchnes Wht s good Decson Boundry? Consder two-clss, lnerly seprble clssfcton problem Clss How to fnd the lne (or hyperplne n n-dmensons, n>)? Any de? Clss Per Lug Mrtell

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Pyramid Algorithms for Barycentric Rational Interpolation

Pyramid Algorithms for Barycentric Rational Interpolation Pyrmd Algorthms for Brycentrc Rtonl Interpolton K Hormnn Scott Schefer Astrct We present new perspectve on the Floter Hormnn nterpolnt. Ths nterpolnt s rtonl of degree (n, d), reproduces polynomls of degree

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market CHAPTER - 7 Frefly Algorthm sed Strtegc Bddng to Mxmze Proft of IPPs n Compettve Electrcty Mrket 7. Introducton The renovton of electrc power systems plys mjor role on economc nd relle operton of power

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Lner nd Nonlner Optmzton Ynyu Ye Deprtment of Mngement Scence nd Engneerng Stnford Unversty Stnford, CA 9430, U.S.A. http://www.stnford.edu/~yyye http://www.stnford.edu/clss/msnde/ Ynyu Ye, Stnford, MS&E

More information

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get rgsdle (zdr8) HW6 dtmre (58335) Ths prnt-out should hve 5 questons Multple-choce questons my contnue on the next column or pge fnd ll choces efore nswerng 00 (prt of ) 00 ponts The currents re flowng n

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4 Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one

More information

Triangle-based Consistencies for Cost Function Networks

Triangle-based Consistencies for Cost Function Networks Nonme mnuscrpt No. (wll e nserted y the edtor) Trngle-sed Consstences for Cost Functon Networks Hep Nguyen Chrstn Bessere Smon de Gvry Thoms Schex Receved: dte / Accepted: dte Astrct Cost Functon Networks

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache INITE NEUTROSOPHIC COMPLEX NUMBERS W. B. Vsnth Kndsmy lorentn Smrndche ZIP PUBLISHING Oho 11 Ths book cn be ordered from: Zp Publshng 1313 Chespeke Ave. Columbus, Oho 31, USA Toll ree: (61) 85-71 E-ml:

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Three hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Wednesday 16th January 2013 Time: 09:45-12:45

Three hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Wednesday 16th January 2013 Time: 09:45-12:45 Three hours UNIVERSITY OF MANHESTER SHOOL OF OMPUTER SIENE Prllel Progrms nd ther Performnce Dte: Wednesdy 16th Jnury 2013 Tme: 09:45-12:45 Plese nswer ny TWO Questons from the FOUR Questons provded. Ths

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9 CS434/541: Pttern Recognton Prof. Olg Veksler Lecture 9 Announcements Fnl project proposl due Nov. 1 1-2 prgrph descrpton Lte Penlt: s 1 pont off for ech d lte Assgnment 3 due November 10 Dt for fnl project

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

Modeling Labor Supply through Duality and the Slutsky Equation

Modeling Labor Supply through Duality and the Slutsky Equation Interntonl Journl of Economc Scences nd Appled Reserch 3 : 111-1 Modelng Lor Supply through Dulty nd the Slutsky Equton Ivn Ivnov 1 nd Jul Dorev Astrct In the present pper n nlyss of the neo-clsscl optmzton

More information

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract Stochstc domnnce on optml portfolo wth one rsk less nd two rsky ssets Jen Fernnd Nguem LAMETA UFR Scences Economques Montpeller Abstrct The pper provdes restrctons on the nvestor's utlty functon whch re

More information

Torsion, Thermal Effects and Indeterminacy

Torsion, Thermal Effects and Indeterminacy ENDS Note Set 7 F007bn orson, herml Effects nd Indetermncy Deformton n orsonlly Loded Members Ax-symmetrc cross sectons subjected to xl moment or torque wll remn plne nd undstorted. At secton, nternl torque

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions: Physcs 121 Smple Common Exm 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7 Nme (Prnt): 4 Dgt ID: Secton: Instructons: Answer ll 27 multple choce questons. You my need to do some clculton. Answer ech queston on the

More information

Convert the NFA into DFA

Convert the NFA into DFA Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p*

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p* R. Smpth Kumr, R. Kruthk, R. Rdhkrshnn / Interntonl Journl of Engneerng Reserch nd Applctons (IJERA) ISSN: 48-96 www.jer.com Vol., Issue 4, July-August 0, pp.5-58 Constructon Of Mxed Smplng Plns Indexed

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert Demnd Demnd nd Comrtve Sttcs ECON 370: Mcroeconomc Theory Summer 004 Rce Unversty Stnley Glbert Usng the tools we hve develoed u to ths ont, we cn now determne demnd for n ndvdul consumer We seek demnd

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1 mercn Interntonl Journl of Reserch n cence Technology Engneerng & Mthemtcs vlble onlne t http://wwwsrnet IN (Prnt: 38-349 IN (Onlne: 38-3580 IN (CD-ROM: 38-369 IJRTEM s refereed ndexed peer-revewed multdscplnry

More information

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example.

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example. CIS587 - rtfcl Intellgence Uncertnty K for medcl dgnoss. Exmple. We wnt to uld K system for the dgnoss of pneumon. rolem descrpton: Dsese: pneumon tent symptoms fndngs, l tests: Fever, Cough, leness, WC

More information

6.6 The Marquardt Algorithm

6.6 The Marquardt Algorithm 6.6 The Mqudt Algothm lmttons of the gdent nd Tylo expnson methods ecstng the Tylo expnson n tems of ch-sque devtves ecstng the gdent sech nto n tetve mtx fomlsm Mqudt's lgothm utomtclly combnes the gdent

More information

Computing a complete histogram of an image in Log(n) steps and minimum expected memory requirements using hypercubes

Computing a complete histogram of an image in Log(n) steps and minimum expected memory requirements using hypercubes Computng complete hstogrm of n mge n Log(n) steps nd mnmum expected memory requrements usng hypercubes TAREK M. SOBH School of Engneerng, Unversty of Brdgeport, Connectcut, USA. Abstrct Ths work frst revews

More information

a b a In case b 0, a being divisible by b is the same as to say that

a b a In case b 0, a being divisible by b is the same as to say that Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

Soft Set Theoretic Approach for Dimensionality Reduction 1

Soft Set Theoretic Approach for Dimensionality Reduction 1 Interntonl Journl of Dtbse Theory nd pplcton Vol No June 00 Soft Set Theoretc pproch for Dmensonlty Reducton Tutut Herwn Rozd Ghzl Mustf Mt Ders Deprtment of Mthemtcs Educton nversts hmd Dhln Yogykrt Indones

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Smart Motorways HADECS 3 and what it means for your drivers

Smart Motorways HADECS 3 and what it means for your drivers Vehcle Rentl Smrt Motorwys HADECS 3 nd wht t mens for your drvers Vehcle Rentl Smrt Motorwys HADECS 3 nd wht t mens for your drvers You my hve seen some news rtcles bout the ntroducton of Hghwys Englnd

More information

Lecture 2e Orthogonal Complement (pages )

Lecture 2e Orthogonal Complement (pages ) Lecture 2e Orthogonl Complement (pges -) We hve now seen tht n orthonorml sis is nice wy to descrie suspce, ut knowing tht we wnt n orthonorml sis doesn t mke one fll into our lp. In theory, the process

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Lecture notes. Fundamental inequalities: techniques and applications

Lecture notes. Fundamental inequalities: techniques and applications Lecture notes Fundmentl nequltes: technques nd pplctons Mnh Hong Duong Mthemtcs Insttute, Unversty of Wrwck Eml: m.h.duong@wrwck.c.uk Jnury 4, 07 Abstrct Inequltes re ubqutous n Mthemtcs (nd n rel lfe.

More information

10. AREAS BETWEEN CURVES

10. AREAS BETWEEN CURVES . AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in

More information

Work and Energy (Work Done by a Varying Force)

Work and Energy (Work Done by a Varying Force) Lecture 1 Chpter 7 Physcs I 3.5.14 ork nd Energy (ork Done y Vryng Force) Course weste: http://fculty.uml.edu/andry_dnylov/techng/physcsi Lecture Cpture: http://echo36.uml.edu/dnylov13/physcs1fll.html

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

ICS 252 Introduction to Computer Design

ICS 252 Introduction to Computer Design ICS 252 Introducton to Computer Desgn Prttonng El Bozorgzdeh Computer Scence Deprtment-UCI Prttonng Decomposton of complex system nto smller susystems Done herrchclly Prttonng done untl ech susystem hs

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F 0 E 0 F E Q W

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

2.12 Pull Back, Push Forward and Lie Time Derivatives

2.12 Pull Back, Push Forward and Lie Time Derivatives Secton 2.2 2.2 Pull Bck Push Forwrd nd e me Dertes hs secton s n the mn concerned wth the follown ssue: n oserer ttched to fxed sy Crtesn coordnte system wll see mterl moe nd deform oer tme nd wll osere

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information