New Algorithms: Linear, Nonlinear, and Integer Programming

Size: px
Start display at page:

Download "New Algorithms: Linear, Nonlinear, and Integer Programming"

Transcription

1 New Algorthms: ner, Nonlner, nd Integer Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tl Rod, Pune-400, Ind Astrt In ths pper we propose new lgorthm for lner progrmmng. Ths new lgorthm s sed on tretng the ojetve funton s prmeter. We form mtrx usng oeffents n the system of equtons onsstng ojetve equton nd equtons otned from nequltes defnng onstrnt y ntrodung sl/surplus vrles. We otn redued row ehelon form for ths mtrx ontnng only one vrle, nmely, the ojetve funton tself s n unnown prmeter. We nlyze ths mtrx n the redued row ehelon form nd develop ler ut method to fnd the optml soluton for the prolem t hnd, f nd when t exsts. We see tht the entre optmzton proess n e developed through the proper nlyss of the sd mtrx n the redued row ehelon form. From the nlyss of the sd mtrx n the redued row ehelon form t wll e ler tht n order to fnd optml soluton we my need rryng out ertn proesses le rerrngng of the onstrnt equtons n prtulr wy nd/or performng pproprte elementry row trnsformtons on ths mtrx n the redued row ehelon form. These opertons re mnly med t hevng nonnegtvty of ll the entres n the olumns orrespondng to nons vrles n ths mtrx or ts sumtrx otned y olletng ertn rows of ths mtrx (.e. sumtrx wth rows hvng negtve oeffent for prmeter d, whh stnds for the ojetve funton s prmeter for mxmzton prolem nd sumtrx wth rows hvng postve oeffent prmeter d, gn representng the ojetve funton s prmeter for mnmzton prolem). The re s to e ten so tht the new mtrx rrved t y rerrngng the onstrnt equtons nd/or y rryng out sutle elementry row trnsformtons must e equvlent to orgnl mtrx. Ths equvlene s n the sense tht ll the fesle soluton sets for the prolem vrles otned for dfferent possle vlues of d wth orgnl mtrx nd trnsformed mtrx re sme. We then proeed to show tht ths de nturlly extends to del wth nonlner nd nteger progrmmng prolems. For nonlner nd nteger progrmmng prolems we use the tehnque of Groner ses (sne Groner ss s n equvlent of redued row ehelon form for system of nonlner equtons) nd the methods of solvng lner Dophntne equtons (sne the nteger progrmmng prolem demnds for optml nteger soluton) respetvely.. Introduton: There re two types of lner progrms (lner progrmmng prolems):. xmze: C T x Sujet to: Or. nmze: C T x Ax x 0

2 Sujet to: Ax x 0 where x s olumn vetor of sze n of unnown vrles. We ll these vrles the prolem vrles where C s olumn vetor of sze n of proft (for mxmzton T prolem) or ost (for mnmzton prolem) oeffents, nd C s row vetor of sze n otned y mtrx trnsposton of C. where A s mtrx of onstrnts oeffents of sze m n. where s olumn vetor of onstnts of sze m representng the oundres of onstrnts. By ntrodung the pproprte sl vrles (for mxmzton prolem) nd surplus vrles (for mnmzton prolem), the ove mentoned lner progrms gets onverted nto stndrd form s: xmze: Sujet to: C T (.) x Ax s = x 0, s 0 where s s sl vrle vetor of sze m. Ths s mxmzton prolem. Or nmze: C T x Sujet to: Ax s = (.) x 0, s 0 where s s surplus vrle vetor of sze m. Ths s mnmzton prolem. In geometrl lnguge, the onstrnts defned y the nequltes form regon n the form of onvex polyhedron, regon ounded y the onstrnt plnes, Ax =, nd the oordnte plnes. Ths regon s lled fesle regon nd t s strghtforwrd to estlsh tht there exsts t lest one vertex of ths polyhedron t whh the optml soluton for the prolem s stuted when the prolem t hnd s well defned,.e. nether nonsstent, nor unounded, nor nfesle. There my e unque optml soluton nd sometmes there my e nfntely mny optml solutons, e.g. when one of the onstrnt plnes s prllel to the ojetve plne we my hve multtude of optml solutons. The ponts on n entre plne or n entre edge n onsttute the optml soluton set. These prolems re hndled most populrly y usng the well nown smplex lgorthm or some of ts vrnt. Despte ts theoretl exponentl omplexty the smplex method wors qute effently for most of the prtl prolems. However, there re few omputtonl dffultes ssoted wth smplex lgorthm. In order to vew them n nutshell we egn wth sttng some ommon notons nd defntons tht re prevlent n the lterture. A vrle x s lled s vrle n gven equton f t ppers wth unt oeffent n tht equton nd wth zero oeffents n ll other equtons. A vrle whh s not s s lled nons vrle. A sequene of elementry row opertons tht hnges gven system of lner equtons nto n equvlent system (hvng the sme soluton set) nd n whh gven nons vrle n

3 e mde s vrle s lled pvot operton. An equvlent system ontnng s nd nons vrles otned y pplton of sutle elementry row opertons s lled nonl system. At tmes, the ntroduton of sl vrles for otnng stndrd form utomtlly produes nonl system, ontnng t lest one s vrle n eh equton. Sometmes sequene of pvot opertons s needed to e performed to get nonl system. The soluton otned from nonl system y settng the nons vrles to zero nd solvng for the s vrles s lled s soluton nd n ddton when ll the vrles hve nonnegtve vlues the soluton stsfyng ll the mposed onstrnts s lled s fesle soluton. Smplex method nnot strt wthout n ntl s fesle soluton. The proess of fndng suh soluton, whh s neessty n mny of prtl prolems, s lled Phse I of the smplex lgorthm. Smplex method strts ts Phse II wth n ntl s fesle soluton n nonl form t hnd. Then smplex tests whether ths soluton s optml y heng whether ll the vlues of reltve profts (profts tht result due to unt hnge n the vlues of nons vrles) of ll the nons vrles re nonpostve. When not optml, the smplex method otns n djent s fesle soluton y seletng nons vrle hvng lrgest reltve proft to eome s. Smplex then determnes nd rres out the extng of s vrle, y the so lled mnmum rto rule, to hnge t nto nons vrle ledng to formton of new nonl system. On ths new nonl system the whole proedure s repeted tll one rrves t n optml soluton. The mn omputtonl dffultes of the smplex method whh my use the reduton n ts omputtonl effeny re s follows: ] There n e more thn one nons vrle wth lrgest vlue for reltve proft nd so te n te ple whle seletng nons vrle to eome s. The hoe t ths stuton s done rtrrly nd so the hoe mde t ths stge usng lrgest possle per unt mprovement s not neessrly the one tht gves lrgest totl mprovement n the vlue of the ojetve funton nd so not neessrly mnmzes the numer of smplex tertons. ] Whle pplyng mnmum rto rule t s possle for more thn one onstrnt to gve the sme lest rto usng te n the seleton of s vrle to leve for eomng nons. Ths degenery n use further omplton, nmely, the smplex method n go on wthout ny mprovement n the ojetve funton nd the method my trp nto n nfnte loop nd fl to produe the desred optml soluton. Ths phenomenon s lled ylng whh enfores modfton n the lgorthm y ntrodung some ddtonl tme onsumng rules tht redue the effeny of the smplex lgorthm. ] Smplex s not effent on theoretl grounds slly euse t serhes djent s fesle solutons only nd ll other smplex vrnts whh exmne nondjent solutons s well hve not shown ny pprele hnge n the overll effeny of these modfed smplex lgorthms over the orgnl lgorthm. Beuse of the fr gret prtl mportne of the lner progrms nd other smlr prolems n the opertons reserh t s most desred thng to hve n lgorthm whh wors n sngle step, f not, n s few steps s possle. No method hs een found whh wll yeld n optml soluton to lner progrm n sngle step ([], Pge 9). We m to propose n lgorthm for

4 lner progrmmng whh ms t fulfllng ths requrement n est possle nd novel wy.. A New Algorthm for ner Progrmmng: We strt wth the followng equton: C T x = d (.) where d s n unnown prmeter, nd ll t the ojetve equton. The (prmetr) plne defned y ths equton wll e lled ojetve plne. Plese note tht we re dsussng frst the mxmzton prolems. A smlr pproh for mnmzton prolems wll e dsussed next. Gven mxmzton prolem, we frst onstrut the omned system of equtons ontnng the ojetve equton nd the equtons defned y the onstrnts mposed y the prolem under onsderton, omned nto sngle mtrx equton, vz., C A( T ( n) 0( m) m n) I ( m m) x s d = (.) et E = C A( T ( n) 0( m) m n) I ( m m) d, nd let F = et [E, F] denote the ugmented mtrx otned y ppendng the olumn vetor F to mtrx E s lst olumn. We then fnd R, the redued row ehelon form ([], pges 7-75) of the ove ugmented mtrx [E, F]. Thus, R = rref ([E, F]) (.) Note tht the ugmented mtrx [E, F] s well s ts redued row ehelon form R ontns only one prmeter, nmely, d nd ll other entres re onstnts. From R we n determne the soluton set S for every fxed x d, S = { /( fxed) d rels} s. The suset of ths soluton set of vetors x whh lso stsfes the nonnegtvty onstrnts s the set of ll fesle s solutons for tht d. It s ler tht ths suset n e empty for prtulr hoe of d tht s mde. The mxmzton prolem of lner progrmmng s to determne the unque d whh provdes fesle soluton nd hs mxmum vlue for d,.e., to determne the unque d,.e. the unque optml vlue for the ojetve funton, whh n e used to otn n optml soluton. In the se of n unounded lner progrm there s no upper (lower, n the se of mnmzton prolem) lmt for the vlue of d, whle n the se of n nfesle 4

5 lner progrm the set of fesle solutons s empty. The steps tht wll e exeuted to determne the optml soluton should lso tell y mplton when suh optml soluton does not exst n the se of n unounded or nfesle prolem. The generl form of the mtrx R representng the redued row ehelon form s R = ( m m ) m ( m ) n n n mn ( m ) n m ( m ) m ( m ) m m m mm ( m ) n ( m ) d e m d e d e d e d e m ( m ) The frst n olumns of the ove mtrx represent the oeffents of the prolem vrles (.e. vrles defned n the lner progrm) x, x,, xn. The next m olumns represent the oeffents of the sl vrles s, s,, s m used to onvert nequltes nto equltes to otn the stndrd form of the lner progrm. The lst olumn represents the trnsformed rght hnd sde of the equton (.) durng the proess ( sutle sequene of trnsformtons) tht s rred out to otn the redued row ehelon form. Note tht the lst olumn of R ontns the lner form d s prmeter whose optml vlue s to e determned suh tht the nonnegtvty onstrnts remn vld,.e. x 0, n nd s j 0, j m. Among frst ( n m) olumns of R ertn frst olumns orrespond to s vrles (olumns tht re unt vetors) nd the remnng ones to nons vrles (olumns tht re not unt vetors). For solvng lner progrm y our wy we proeed wth nlyss of the R. We m to fnd tht vlue of prmeter d whh s optml. To heve ths ts we my sometmes need to trnsform ths system further y ether rerrngng the onstrnt equtons y sutly permutng these equtons suh tht (s fr s possle) the vlues n the olumns of our strtng mtrx A ( m n ) get rerrnged n the followng wy: Ether they re rsng nd then eomng sttonry, or fllng nd then eomng sttonry, or fllng ntlly up to ertn length of the olumn vetor nd then rsng gn. After ths rerrngement to form trnsformed A ( m n ) we gn proeed to form ts orrespondng [E, F] nd gn fnd ts R = rref ([E, F]) whh wll most lely hve the desred representton n whh olumns for nons vrles ontn nonnegtve vlues. The de of rrngement of the olumns of A ( m n ) s mentoned ove s purely heurst nd s sed on the fvorle outome oserved durng pplyng ths de to lner progrmmng prolems whle tlng them. We hve not tred to dsover theoretl resonng ehnd hevng fvorle form for R n most of the ses nd hve left ths prolem for the reder 5

6 to solve nd to fnd out the theoretl resonng ehnd gettng ths fvorle form. Now, even fter rerrngement of the olumns of A ( m n ) s mentoned ove f stll some negtve entres remn present n the olumns of R orrespondng to some nons vrles then we rry out sutle elementry row trnsformtons on the otned R = rref ([E, F]) so tht the olumns of oeffents ssoted wth these nons vrles eome nonnegtve. We re dong ths euse s wll e seen elow we n then put zero vlue for these nons vrles nd n determne the vlues of ll the s vrles nd the lner progrm wll then e solved ompletely. It s esy to he tht for lner progrm f ll the oeffents of prmeter d n the lst olumn of R re postve then the lner progrm t hnd s unounded sne n suh se the prmeter d n e nresed rtrrly wthout voltng the nonnegtvty onstrnts on vrles x, s j. Also, for lner progrm f ll the oeffents of some nons vrle represented y olumn of R re nonpostve nd re strtly negtve n those rows hvng negtve oeffent to prmeterd tht ppers n the lst olumn of these rows then gn the prolem elongs to the tegory of unounded prolems sne we n nrese the vlue of d to ny hgh vlue wthout voltng the nonnegtvty onstrnts for the vrles y ssgnng suffently hgh vlue to ths nons sl vrle. Note tht the rows of R tully offer expressons for s vrles n terms of nons vrles nd terms of type d e, =,, ( m ) ontnng the prmeter d on the rght sde. The rows wth postve oeffent for the prmeter d represent those equtons n whh the prmeter d n e nresed rtrrly wthout voltng the nonnegtvty onstrnts on vrles x,. So, these equtons s j wth postve oeffent for the prmeter d re not mplyng ny upper ound on the mxmum possle vlue of prmeter d. However, these rows re useful n ertn stutons s they re useful to fnd lower ound on the vlue of prmeter d. The rows wth negtve oeffent for the prmeter d represent those equtons n whh the prmeter d nnot e nresed rtrrly wthout voltng the nonnegtvty onstrnts on vrles x,. So, these equtons s j wth negtve oeffent for the prmeter d re mplyng n upper ound on the mxmum possle vlue of prmeter d nd so mportnt ones for mxmzton prolems. Note tht tully every row of R s offerng us vlue for prmeter d whh n e otned y equtng to zero eh term of the type d e, =,, ( m ). Those vlues of d tht we otn n ths wy wll e denoted s d or d when then vlue of s negtve or postve respetvely. We denote y mn{ d }, the mnmum vlue mong d, nd we denote y mx{ d } the mxmum vlue mong the d. We now proeed to fnd out the sumtrx of R, sy R N, mde up of ll olumns of R nd 6

7 7 ontnng those rows j of R for whh the oeffents j of the prmeter d re negtve. et,,, oeffent of d n the rows of R whh re negtve. We ollet these rows wth negtve oeffent for d to form the mentoned sumtrx, N R, of R gven elow. Wth ths t s ler tht oeffents of d n ll other rows of R re greter thn or equl to zero. = m n m n m n m n N e d e d e d e d R It should e ler to see tht f N R s empty (.e. not ontnng sngle row) then the prolem t hnd s unounded. Among the frst ) ( m n olumns of N R frst n olumns represent the oeffents of prolem vrles nd next m olumns represent the oeffents of sl vrles. There re ertn olumns strtng from frst olumn nd pper n suessons whh re unt vetors. These olumns whh re unt vetors orrespond to s vrles. The olumns pperng n suessons fter these olumns nd not unt vetors orrespond to nons vrles. As mentoned, mong the olumns for nons vrles those hvng ll entres nonnegtve n only led to derement n the vlue of d when postve vlue s ssgned to them. Ths s undesrle s we m mxmzton of the vlue of d. So, we n sfely set the vlue of suh vrles equl to zero. When ll olumns orrespondng to nons vrles n N R re hvng ll entres nonnegtve nd further f mn{ d } mx{ d } then we n set ll nons vrles to zero, set d = mn{ d } n every row of R nd fnd the s fesle soluton whh wll e optml, wth mn{ d } s optml vlue for the ojetve funton t hnd. Stll further, When ll olumns orrespondng to nons vrles n N R re hvng ll entres nonnegtve ut mn{ d } < mx{ d } then f e > 0 then we n stll set ll nons vrles to zero, set d = mn{ d } n every row of R nd fnd the s fesle soluton whh wll e optml, wth mn{ d } s optml vlue for the ojetve funton t hnd,.e. f vlue of e > 0 n the expressons e d n the

8 rows of R other those n R N tht re hvng vlue of > 0 then we n proeed on smlr lnes to fnd optml vlue for d. In R N we now proeed to onsder those nons vrles for whh the olumns of R N ontn some (t lest one) postve vlues nd some negtve (t lest one) vlues. In suh se when we ssgn some postve vlue to suh nons vrle t leds to derese n the vlue of d n those rows n whh > 0 nd nrese n the vlue of d n those rows n whh < 0. We now need to onsder the wys of delng wth ths stuton. We del wth ths stuton s follows: In ths se, we hoose nd rry out pproprte nd legl elementry row trnsformtons on the mtrx R n the redued row ehelon form to heve nonnegtve vlue for ll the entres n the olumns orrespondng to nons vrles n the sumtrx R N of R. The elementry row trnsformtons re hosen to produe new mtrx whh remns equvlent to orgnl mtrx n the sense tht the soluton set of the mtrx equton wth orgnl mtrx nd mtrx equton wth trnsformed mtrx remn sme. Due to ths equvlene we n now set ll the nons vrles n ths trnsformed mtrx to zero nd otn wth justfton d mn = mn{ d } s optml vlue for the ojetve funton nd otn s fesle soluton s optml soluton y susttuton. et us now dsuss our new lgorthm n steps: Algorthm. (xmzton):. Express the gven prolem n stndrd form: xmze: C T x Sujet to: Ax s = x 0, s 0. Construt the ugmented mtrx [E F], where T C ( n) 0( m) E = d, nd F = A( m n) I ( m m) nd otn the redued row ehelon form: R = rref ([E, F]). If there s row (or rows) of zeroes t the ottom of R n the frst n olumns nd ontnng nonzero onstnt n the lst olumn then delre tht the prolem s nonsstent nd stop. Else f the oeffents of d n the lst olumn re ll postve or f there exsts olumn of R orrespondng to some nons vrle wth ll entres negtve then delre tht the prolem t hnd s unounded nd stop. 4. Else f for ny vlue of d one oserves tht nonnegtvty onstrnt for some vrle gets volted y t lest one of the vrles then delre tht the prolem t hnd s nfesle nd stop. 8

9 5. Else fnd the sumtrx of R, sy R N, mde up of those rows of R for whh the oeffent of d n the lst olumn s negtve. 6. Che whether the olumns of R N orrespondng to nons vrles re nonnegtve. Else, rerrnge the onstrnt equtons y sutly permutng these equtons suh tht (s fr s possle) the vlues n the olumns of our strtng mtrx A ( m n ) get rerrnged n the followng wy: Ether they re rsng nd then eomng sttonry, or fllng nd then eomng sttonry, or fllng ntlly up to ertn length of the olumn vetor nd then rsng gn. After ths rerrngement to form trnsformed A ( m n ) gn proeed s s done n step ove to form ts orrespondng ugmented mtrx [E, F] nd gn fnd ts R = rref ([E, F]) whh wll most lely hve the desred representton,.e. n the new R N tht one wll onstrut from the new R wll hve olumns for nons vrles whh wll e ontnnng nonnegtve entres. 7. Solve r d e r = 0 for eh suh term n the lst olumn of R N nd fnd the vlue of d = d r for r =,,, nd fnd d mn = mn{ d } r. Smlrly, solve r d e r = 0 for eh suh term n the lst olumn for rows of R other thn those n R N nd fnd the vlues d = d r for r =,,, nd fnd d mx = mx{ d } r. Che the olumns of R N orrespondng to nons vrles. If ll these olumns ontn only nonnegtve entres nd f mn{ d } mx{ d } then set ll nons vrles to zero. Susttute d = dmn n the lst olumn of R. Determne the s fesle soluton whh wll e optml nd stop. Further, f olumns orrespondng to nons vrles ontn only nonnegtve entres nd f mn{ d } < mx{ d } then he whether vlue of e > 0 n the expressons d e n these rows of R other those n R N tht re hvng vlue of > 0. If yes, then set ll nons vrles to zero. Susttute d = dmn n the lst olumn of R. Determne the s fesle soluton whh wll e gn optml. 8. Even fter proeedng wth rerrngng olumns of our strtng mtrx A ( m n ) y sutly permutng rows representng onstrnt equtons s s done n step 6, nd then proeedng s per step 7 nd hevng the vldty of mn{ d } mx{ d }, f stll there remn olumns n R N orrespondng to some nons vrles ontnng postve entres n some rows nd 9

10 negtve entres n some other rows then devse nd pply sutle elementry row trnsformtons on R suh tht the olumns representng oeffents of nons vrles of new trnsformed mtrx R or t lest ts sumtrx R orrespondng to new trnsformed R ontn only nonnegtve entres. N And step 7 eomes pplle. We now proeed wth some exmples: Exmple.: xmze: Sujet to: x y 4 x y 4x y x, y 0 x Soluton: For ths prolem we hve R = [, 0, 0, 0, /, -d6 ] [ 0,, 0, 0, -/, -6*d ] [ 0, 0,, 0, /, 0-*d ] [ 0, 0, 0,,, -*d ] So, lerly, R N = [, 0, 0, 0, /, -d6 ] [ 0, 0,, 0, /, 0-*d ] [ 0, 0, 0,,, -*d ] y For ths exmple the olumn formng oeffents for nons vrle s ontns nonegtve numers. So, we set s = 0. Clerly, d mn =. = Optml vlue for the ojetve funton. Usng ths vlue of optmum we hve x =.66, y = 0.66, s =, s =, s 0. 0 = Exmple.: We frst onsder the duel of the exmple suggested y E... Bele [], whh rngs nto exstene the prolem of ylng for the smplex method, nd provde soluton s per the ove new method whh offers t dretly wthout ny ylng phenomenon. xmze: 0.75 x 0 x 0.5 x 6 x 4 Sujet to: 0.5 x 8 x x 9 x x x 0.5 x x 4 0 x 0 x 0 x, x, x, 4 Soluton: For ths prolem we hve the followng 0

11 R = [, 0, 0, 0, /, 8/, 4/, ( 4/)d4/ ] [0,, 0, 0, 7/4, /4, /4, ( 5/4)d/ ] [0, 0,, 0, 0, 0,, ] [0, 0, 0,, /8, /8, /9, /9 (/8)d ] So, lerly, R = [, 0, 0, 0, /, 8/, 4/, ( 4/)d4/ ] N [0,, 0, 0, 7/4, /4, /4, ( 5/4)d/4 ] [0, 0, 0,, /8, /8, /9, /9 (/8)d ] We perform followng elementry row trnsformtons on R: et us denote the suessve rows of R y R(), R(), R(), R(4). We hnge () () () R() R() (6/4)*R(4), R() R() *R(4). R(4) 8*R(4) Ths leds to new trnsformed R s follows: R = [, 0, 0,, 0, 0, 6, 6-d] [0,, 0, /4, 0, /4, 5/8, 5/8-(/)d] [0, 0,, 0, 0, 0,, ] [0, 0, 0, 8,,,, d ] In the trnsformed R we hve nonnegtve olumns for ll nons vrles, whh re now those orrespondng to x 4, s,s. So, y settng x 4 = s = s = 0 nd settng ll expressons of type d e = 0 n the lst olumn we fnd r r d mn = mn{ d } =.5. Usng ths vlue n the lst olumn of the newly otned r trnsformed R we hve: x =.0000, x = 0, x =, x 4 = 0, s = , s = 0, s = 0, nd the mxmum vlue of d =.500. Exmple.: We now onsder n unounded prolem. The new method dretly mples the unounded nture of the prolem through the postvty of the oeffents of d n mtrx R for the prolem. xmze: x y Sujet to: x y x y 0 x y x, y 0 Soluton: The followng s the mtrx R : R = [, 0, 0, 0, -/5, (/5)d-/5 ] [ 0,, 0, 0, -/5, (/5)d-/5 ]

12 [ 0, 0,, 0, -4/5, (/5)d-4/5] [ 0, 0, 0,, /5, /5(/5)d] Here, ll the oeffents of d re postve. So, y settng vrle s = 0 we n see tht we n ssgn ny rtrrly lrge vlue to vrle d wthout volton of nonnegtvty onstrnts for vrles. Thus, the prolem hs n unounded soluton. Exmple.4: We now onsder prolem hvng n nfesle strtng ss. We see tht new lgorthm hs no dffulty to del wth t. xmze: x y Sujet to: x y 4 x y 5 x 4y x, y 0 Soluton: The followng s the mtrx R : R = [, 0, 0, 0, /7, (/7)d-/7 ] [ 0,, 0, 0, -/4, /7(/4)d] [ 0, 0,, 0, /4, 7/7-(5/4)d] [ 0, 0, 0,, -/4, 6/7-(9/4)d] R = [ 0, 0,, 0, /4, 7/7-(5/4)d] N [ 0, 0, 0,, -/4, 6/7-(9/4)d] Clerly, mn{ d } mx{ d }. So, we perform followng elementry row trnsformtons on R: et us denote the suessve rows of R y R(), R(), R(), R(4). We hnge () R(4) R(4) R() Ths leds to new trnsformed R N, R s follows: R = [ 0, 0,, 0, /4, (7/7)-(5/4)d] N [ 0, 0,,, 0, (6/7) d ] R = [, 0, 0, 0, /7, (/7)d-/7 ] [ 0,, 0, 0, -/4, /7(/4)d] [ 0, 0,, 0, /4, 7/7-(5/4)d] [ 0, 0,,, 0, (6/7) d ] R, RN orrespond to s vrles x, y. Sne, The frst two olumns of mn{ d } mx{ d } nd olumns orrespondng to nons vrles s ontn nonnegtve entres n R N,s, so we set these vrles to zero. From lst row

13 we hve s = 0 nd d mn = 9. Also from frst nd seond rows, x =.857, y =.074 Exmple.5: We now onsder n nfesle prolem. xmze: x y Sujet to: x y x y 0 x, y 0 Soluton: The followng s the mtrx R : R = [, 0, 0, -/4, (/4)d ] [ 0,, 0, /8, (/8)d ] [ 0, 0,, 7/8, (-/8)d-] Here, the oeffent of d s negtve only n the lst row nd so R N = [ 0, 0,, 7/8, (-/8)d-]. We perform followng elementry row trnsformtons on R: et us denote the suessve rows of R y R(), R(), R(), R(4). We hnge () R() (/7)*R(4) R() Ths leds to R = [, 0, /7, 0, /7*d-/7] [ 0,, 0, /8, (/8)d ] [ 0, 0,, 7/8, (-/8)d-] nd R = [ 0, 0,, 7/8, (-/8)d-] N Settng s,s equl to zero, we hve for onssteny of lst row d = (8/) nd usng ths vlue for d we hve y = (/). Thus, ths prolem s nfesle. Remr.: Klee nd nty [4], hve onstruted n exmple of set of lner n progrms wth n vrles for whh smplex method requres tertons to reh n optml soluton. Theoret wor of Borgwrdt [5] nd Smle [6] ndtes tht fortuntely the ourrene of prolems elongng to the lss of Klee nd nty, whh don t shre the verge ehvor, s so rre s to e neglgle. We now proeed to show tht there s no prolem of effeny for new lgorthm n delng wth the prolems elongng to ths lss. Exmple.6: We now onsder prolem for whh the smplex tertons re exponentl funton of the sze of the prolem. A prolem elongng to the lss

14 desred y Klee nd nty ontnng n vrles requres We see tht the new method doesn t requre ny spel effort xmze: 00 x 0 x x Sujet to: x 0 x x x 0 x x 0000 x, x, x 0 Soluton: The followng re the mtres R, RN : R = [, 0, 0, 0, /0, -/00, -90(/00)d] [0,, 0, 0, -, /5, 900-(/5)d] [0, 0,, 0, 0, -, d-0000 ] [0, 0, 0,, -/0, /00, 9-(/00)d ] R = [0,, 0, 0, -, /5, 900-(/5)d ] N [0, 0, 0,, -/0, /00, 9- (/00)d] n smplex steps. We perform followng elementry row trnsformtons on R: et us denote the suessve rows of R y R(), R(), R(), R(4). We hnge () () () R() 0R() R(), nd R(4) R() R(4) R() 0*R() Ths leds to new trnsformed R N, R s follows: R N = [0,, 0, 0, 0, /0, 000-(/0)*d] [, 0, 0,, 0, 0, ] R = [0, 0, 0, 0,, -/0, -900/0*d ] [0,, 0, 0, 0, /0, 000-(/0)*d] [0, 0,, 0, 0, -, *d-0000 ] [, 0, 0,, 0, 0, ] Sne, mn{ d } mx{ d } nd olumns orrespondng to nons vrles x,s ontn nonnegtve entres n R N, so we set these vrles to zero. We get esy omplete soluton s follows: x = 0, x = 0, x = 0000, s =, s = 00, s = 0, nd the mxmum vlue of d = Exmple.7: We now onsder n exmple for whh the redued row ehelon form ontns y tself the s vrles tht re requred to e present n the optml smplex tleu,.e. the tleu tht results t the end of the smplex lgorthm, for 4

15 whh only nonpostve entres our n the ottom row of the tleu representng reltve profts. Ths s understood y the nonnegtvty of entres n the olumns of R N orrespondng to nons vrles. xmze: x y Sujet to: x y 4 x y 4 x y x, y 0 Soluton: The followng s the mtrx R : R = [, 0, 0, 0, /5, (/5)d6/5 ] [ 0,, 0, 0, -/5, -9/5(/5)d] [ 0, 0,, 0, 8/5, 44/5-(/5)d] [ 0, 0, 0,, 0, 4-d ] So, lerly, R N = [ 0, 0,, 0, 8/5, 44/5-(/5)d] [ 0, 0, 0,, 0, 4-d ] Sne, mn{ d } mx{ d } nd olumns orrespondng to nons vrle R ontn nonnegtve entres n N, so we set these vrles to zero. Here, the nons vrle olumns dretly ontn nonnegtve entres ledng to deresng n proft when some postve vlue s ssgned to ths vrle nd so we set ths vrle to zero whh leds to the mxml s fesle soluton: d = 4, x = 4, y =, s = 6, s = 0, s = 0. We now onsder few exmples n whh rerrngement of onstrnt equtons utomtlly produe sutle form for redued row ehelon form: 6 x y Exmple.8:. xmze: Sujet to: x y 5 4x y x y 4 x, y 0 For ths prolem we get followng R, R N R = [, 0, 0, 0, /, /9*d-4/] [ 0,, 0, 0, -/, 8/-/9*d] [ 0, 0,, 0, /, /-/9*d] [ 0, 0, 0,, -/, 44/-7/9*d] s 5

16 R = [ 0,, 0, 0, -/, 8/-/9*d] N [ 0, 0,, 0, /, /-/9*d] [ 0, 0, 0,, -/, 44/-7/9*d] Here some entres n the lst ut one olumn orrespondng to nons vrle re mxed type,.e. entres n the frst nd thrd rows of R N re negtve whle entry n the seond row of R N s postve. We now rerrnge the onstrnts so tht ether entres n the new olumns re rsng nd then eomng sttonry, or fllng nd then eomng sttonry, or fllng ntlly up to ertn length of the olumn vetor nd then rsng gn, s mentoned ove. Thus, we just rewrte the prolem s: 6 x y xmze: Sujet to: x y 5 x y 4 4x y x, y 0 then form new A ( m n ) mtrx whh produe nd gn proeed to fnd redued row ehelon form for new R = [, 0, 0, 0, /, -/6*d6] [ 0,, 0, 0, -, -/*d] [ 0, 0,, 0, /, -/*d] [ 0, 0, 0,, -/, -7/6*d] R = [, 0, 0, 0, /, -/6*d6] N [ 0, 0,, 0, /, -/*d] Sne, mn{ d } mx{ d } nd olumns orrespondng to nons vrle R ontn nonnegtve entres n N, so we set these vrles to zero. Here, the nons vrle olumns dretly ontn nonnegtve entres ledng to deresng n proft when some postve vlue s ssgned to ths vrle nd so we set ths vrle to zero whh leds to the mxml s fesle soluton: d =, x = /, y = 8 /, s = 0, s = /, s 0. 7 = x y Exmple.9: xmze: Sujet to: x y 4 x y 5 x 4y x, y 0 For ths prolem we get followng R, R N R = [, 0, 0, 0, /7, /7*d-/7 ] s 6

17 [ 0,, 0, 0, -/4, /7/4*d] [ 0, 0,, 0, /4, 7/7-5/4*d] [ 0, 0, 0,, -/4, 6/7-9/4*d] R N = [ 0, 0,, 0, /4, 7/7-5/4*d] [ 0, 0, 0,, -/4, 6/7-9/4*d] Here some entres n the lst ut one olumn orrespondng to nons vrle re mxed type,.e. entres n the frst nd thrd rows of R N re negtve whle entry n the seond row of R N s postve. We now rerrnge the onstrnts so tht ether entres n the new olumns re rsng nd then eomng sttonry, or fllng nd then eomng sttonry, or fllng ntlly up to ertn length of the olumn vetor nd then rsng gn, s mentoned ove. Thus, we just rewrte the prolem s: x y xmze: Sujet to: x y 5 x 4y x y 4 x, y 0 then we form new A ( m n ) new mtrx whh produe nd gn proeed to fnd redued row ehelon form for R = [, 0, 0, 0, -, d-8] [ 0,, 0, 0,, -d] [ 0, 0,, 0,, 9-d] [ 0, 0, 0,, 4, 54-5*d] R N = [ 0,, 0, 0,, -d] [ 0, 0,, 0,, 9-d] [ 0, 0, 0,, 4, 54-5*d] Sne, mn{ d } mx{ d } nd olumn orrespondng to nons vrle R ontn nonnegtve entres n N, so we set ths vrle to zero. Here, the nons vrle olumns dretly ontn nonnegtve entres ledng to deresng n proft when some postve vlue s ssgned to ths vrle nd so we set ths vrle to zero whh leds to the mxml s fesle soluton: d = 9, x =, y =, s = 0, s = 9, s 0. = 4 x y Exmple.0: xmze: Sujet to: x.5 y 9 x y 8 s 7

18 x y 6 x, y 0 For ths prolem we get followng R, R N R = [, 0, 0, 0, -, d-8] [ 0,, 0, 0, 4, 4-d] [ 0, 0,, 0, -, -575/*d] [ 0, 0, 0,,, 0-d] R = [ 0,, 0, 0, 4, 4-d] N [ 0, 0, 0,,, 0-d] Clerly, though the seond lst olumn orrespondng to nons vrle ontns nonnegtve entres the nequlty mn{ d } mx{ d } s nvld! So, s frst ttempt, efore strtng to rry out elementry row trnsformton on R to heve nonnegtvty of entres n the olumns of R orrespondng nons vrles, let us frst try rerrngng the nequltes so tht ether entres n the new olumns re rsng nd then eomng sttonry, or fllng nd then eomng sttonry, or fllng ntlly up to ertn length of the olumn vetor nd then rsng gn, s mentoned ove. Thus, we just rewrte the prolem s: xmze: 4 x y Sujet to: x.5 y 9 x y 6 x y 8 x, y 0 then we form new A ( m n ) new mtrx whh produe nd gn proeed to fnd redued row ehelon form for R = [, 0, 0, 0, /, -/*d] [ 0,, 0, 0, -, -6d] [ 0, 0,, 0, /, 5-*d] [ 0, 0, 0,, /, 0-/*d] = R N [, 0, 0, 0, /, -/*d] [ 0, 0,, 0, /, 5-*d ] [ 0, 0, 0,, /, 0-/*d ] For ths rerrngement the seond lst olumn orrespondng to nons vrle ontns nonnegtve entres nd lso the nequlty mn{ d } mx{ d } s now vld! So, we set nons vrle s equl to zero whh leds to mxml s fesle soluton: d =7. 667, x =.665, y =.667, s = 0, s =.665, s = 0 8

19 x y x y x y 5 x 4y Exmple.: xmze: Sujet to: 4 Soluton: For ths prolem we hve R = [, 0, 0, 0, /7, (/7)d-/7 ] [ 0,, 0, 0, -/4, /7 (/4)d] [ 0, 0,, 0, /4, 7/7- (5/4)d] [ 0, 0, 0,, -/4, 6/7- (9/4)d] R = [ 0, 0,, 0, /4, 7/7-(5/4)d] N [ 0, 0, 0,, -/4, 6/7-(9/4)d] But, f we permute onstrnts s: (I) onstrnt onstrnt, (II) onstrnt onstrnt, nd (III) onstrnt onstrnt nd form new A ( m n ) nd further fnd out new R, R N then we get R = [, 0, 0, 0, -, d-8 ] [ 0,, 0, 0,, -d ] [ 0, 0,, 0,, 9-d ] [ 0, 0, 0,, 4, 54-5d ] R = [ 0,, 0, 0,, -d ] N [ 0, 0,, 0,, 9-d ] [ 0, 0, 0,, 4, 54-5d ] Sne, mn{ d } mx{ d } nd olumn orrespondng to nons vrle R ontn nonnegtve entres n N, so we set ths vrle to zero nd we dretly get the optml s fesle soluton from R = : d = d mn = 9, x =, y =, s = 0, s = 9, s = 0. We now see tht we n proeed wth n extly smlr wy nd del suessfully wth mnmzton lner progrmmng prolems. A prolem of mnmzton goes le: nmze: C T x Sujet to: Ax x 0 we frst onstrut the omned system of equtons ontnng the sme ojetve equton used n mxmzton prolem (ut ths tme we wnt to fnd mnmum vlue of prmeter d defned n the ojetve equton) nd the equtons defned s 9

20 y the onstrnts mposed y the prolem under onsderton, omned nto sngle mtrx equton, vz., C A( T ( n) 0( m) m n) I( m m) x = s d (.) et E = C A( T ( n) 0( m) m n) I( m m) d, nd let F = et [E, F] denote the ugmented mtrx otned y ppendng the olumn vetor F to mtrx E s lst olumn. We then fnd R, the redued row ehelon form of the ove ugmented mtrx [E, F]. Thus, R = rref ([E, F]) (.) Note tht the ugmented mtrx [E, F] s well s ts redued row ehelon form R ontns only one prmeter, nmely, d nd ll other entres re onstnts. From R we n determne the soluton set S for every fxed x d, S = { /( fxed) d rels} s. The suset of ths soluton set of vetors x whh lso stsfes the nonnegtvty onstrnts s the set of ll fesle s solutons for tht d. It s ler tht ths suset n e empty for prtulr hoe of d tht s mde. The mnmzton prolem of lner progrmmng s to determne the unque d whh provdes fesle soluton nd hs mnmum vlue,.e., to determne the unque d whh provdes n optml soluton. In the se of n unounded mnmzton lner progrm there s no lower ound for the vlue of d, whle n the se of n nfesle lner progrm the set of fesle solutons s empty. The steps tht wll e exeuted to determne the optml soluton should lso tell y mplton when suh optml soluton does not exst n the se of n unounded or nfesle prolem. The generl form of the mtrx R representng the redued row ehelon form s smlr s prevously dsussed mxmzton se: 0

21 R = ( m m ) m ( m ) n n n mn ( m ) n m ( m ) m ( m ) m m m mm ( m ) n d e m ( m ) d e d e d e d e m ( m ) The frst n olumns of the ove mtrx represent the oeffents of the prolem vrles (.e. vrles defned n the lner progrm) x, x,, xn. The next m olumns represent the oeffents of the surplus vrles s, s,, s m used to onvert nequltes nto equltes to otn the stndrd form of the lner progrm. The lst olumn represents the trnsformed rght hnd sde of the equton (.) durng the proess ( sutle sequene of trnsformtons) tht s rred out to otn the redued row ehelon form. Note tht the lst olumn of R ontns the lner form d s prmeter whose optml vlue s to e determned suh tht the nonnegtvty onstrnts remn vld,.e. x 0, n nd s j 0, j m. Among frst ) olumns of R ertn frst olumns orrespond to s vrles ( n m (olumns tht re unt vetors) nd the remnng ones to nons vrles (olumns tht re not unt vetors). For solvng the lner progrm we need to determne the vlues of ll nons vrles nd the optml vlue of d, from whh we n determne the vlues of ll the s vrles y susttuton nd the lner progrm s thus solved ompletely. For lner progrm f ll the oeffents of prmeter d n the lst olumn of R re negtve then the lner progrm t hnd s unounded (sne, the prmeter d n e deresed rtrrly wthout voltng the nonnegtvty onstrnts on vrles x, ). For lner progrm f ll the s j oeffents of some nons sl vrle represented y olumn of R re nonpostve nd re strtly negtve n those rows hvng postve oeffent to prmeter d tht ppers n the lst olumn of these rows then we n derese the vlue of d to ny low vlue wthout voltng the nonnegtvty onstrnts for the vrles y ssgnng suffently hgh vlue to ths nons sl vrle nd the prolem s gn elongs to the tegory of unounded prolems. Note tht the rows of R tully represent equtons wth vrles x, =,, n nd vrles, j =,, m on left sde nd expressons of type s j d e, =,, ( m ) ontnng the vrle d on the rght sde. The rows wth negtve oeffent for the prmeter d represent those equtons n whh the prmeter d n e deresed rtrrly wthout voltng the nonnegtvty onstrnts on vrles x,. So, these equtons wth negtve s j oeffent for the prmeter d re not mplyng ny lower ound on the mnmum

22 possle vlue of prmeter d. However, these rows re useful to now out upper ound on prmeter d. The rows wth postve oeffent for the prmeter d represent those equtons n whh the prmeter d nnot e deresed rtrrly wthout voltng the nonnegtvty onstrnts on vrles j s x,. So, these equtons wth postve oeffent for the prmeter d re mplyng lower ound on the mnmum possle vlue of prmeter d nd so mportnt ones n ths respet. So, we now proeed to fnd out the sumtrx of R, sy P R, mde up of ll olumns of R nd ontnng those rows j of R for whh the oeffents j of the prmeter d re postve. et,,, re ll nd re only postve rel numers n the rows olleted n P R gven elow nd ll other oeffents of d n other rows of R re greter thn or equl to zero. = n n m n m n m n P e d e d e d e d R If P R s empty (.e. ontnng not sngle row) then the prolem t hnd s unounded. There re ertn olumns strtng from frst olumn nd pper n suessons whh re unt vetors. These olumns whh re unt vetors orrespond to s vrles. The olumns pperng n suessons fter these olumns nd not unt vetors orrespond to nons vrles. As mentoned, mong the olumns of P R for nons vrles those hvng ll entres nonnegtve n only led to nrese n the vlue of d when postve vlue s ssgned to them. Ths s undesrle s we m mnmzton of the vlue of d. So, we desre to set the vlues of suh vrles equl to zero. When ll olumns orrespondng to nons vrles n P R re hvng ll entres nonnegtve nd further f the nequlty mn{ d } mx{ d } holds then we n set ll nons vrles to zero nd set d = mx{ d } n every row of R nd fnd the s fesle soluton whh wll e optml, wth mx{ d } s optml vlue for the ojetve funton t hnd. Stll further, When ll olumns orrespondng to nons vrles n P R re hvng ll entres nonnegtve ut mn{ d } < mx{ d } then f e > 0 then we n stll set ll nons vrles to zero, set d = mx{ d } n every row of R nd fnd the s

23 fesle soluton whh wll e optml, wth mx{ d } s optml vlue for the ojetve funton t hnd,.e. f vlue of e > 0 n the expressons d e n the rows of R rther those n R P tht re hvng vlue of > 0 then we n proeed on smlr lnes to fnd optml vlue for d. In R P we now proeed to onsder those nons vrles for whh the olumns of R P ontn some (t lest one) postve vlues nd some negtve (t lest one) vlues. In suh se when we ssgn some postve vlue to suh nons vrle t leds to derese n the vlue of d n those rows n whh > 0 nd nrese n the vlue of d n those rows n whh < 0. We now need to onsder the wys of delng wth ths stuton. We del wth ths stuton s follows: In ths se, we hoose nd rry out pproprte nd legl elementry row trnsformtons on the mtrx R n the redued row ehelon form to heve nonnegtve vlue for ll the entres n the olumns orrespondng to nons vrles n the sumtrx R P of R. The elementry row trnsformtons re hosen to produe new mtrx whh remns equvlent to orgnl mtrx n the sense tht the soluton set of the mtrx equton wth orgnl mtrx nd mtrx equton wth trnsformed mtrx remn sme. Due to ths equvlene we n now set ll the nons vrles n ths trnsformed mtrx to zero nd otn wth justfton d mx = mx{ d } s optml vlue for the ojetve funton nd otn s fesle soluton s optml soluton y susttuton. Algorthm. (nmzton):. Express the gven prolem n stndrd form: xmze: C T x Sujet to: Ax s = x 0, s 0. Construt the ugmented mtrx [E F], where T C ( n) 0( m) d E =, nd F = A( m n) I ( m m) nd otn the redued row ehelon form: R = rref ([E, F]). If there s row (or rows) of zeroes t the ottom of R n the frst n olumns nd ontnng nonzero onstnt n the lst olumn then delre tht the prolem s nonsstent nd stop. Else f the oeffents of d n the lst olumn re ll postve or f there exsts olumn of R orrespondng to some nons vrle wth ll entres negtve then delre tht the prolem t hnd s unounded nd stop.

24 4. Else f for ny vlue of d one oserves tht nonnegtvty onstrnt for some vrle gets volted y t lest one of the vrles then delre tht the prolem t hnd s nfesle nd stop. 5. Else fnd the sumtrx of R, sy R P, mde up of those rows of R for whh the oeffent of d n the lst olumn s postve. 6. Che whether the olumns of R P orrespondng to nons vrles re nonnegtve. Else, rerrnge the onstrnt equtons y sutly permutng these equtons suh tht (s fr s possle) the vlues n the olumns of our strtng mtrx A ( m n ) get rerrnged n the followng wy: Ether they re rsng nd then eomng sttonry, or fllng nd then eomng sttonry, or fllng ntlly up to ertn length of the olumn vetor nd then rsng gn. After ths rerrngement to form trnsformed A ( m n ) gn proeed s s done n step ove to form ts orrespondng ugmented mtrx [E, F] nd gn fnd ts R = rref ([E, F]) whh wll most lely hve the desred representton,.e. n the new R P tht one wll onstrut from the new R wll hve olumns for nons vrles whh wll e ontnng nonnegtve entres. 7. Solve r d e r = 0 for eh suh term n the lst olumn of R P nd fnd the vlue of d = d r for r =,,, nd fnd d mn = mn{ d } r. Smlrly, solve r d e r = 0 for eh suh term n the lst olumn for rows of R other thn those n R N nd fnd the vlues d = d r for r =,,, nd fnd d mx = mx{ d } r. Che the olumns of R P orrespondng to nons vrles. If ll these olumns ontn only nonnegtve entres nd f mn{ d } mx{ d } then set ll nons vrles to zero. Susttute d = d mx n the lst olumn of R. Determne the s fesle soluton whh wll e optml nd stop. Further, f olumns orrespondng to nons vrles ontn only nonnegtve entres nd f mn{ d } < mx{ d } then he whether vlue of e > 0 n the expressons d e n these rows of R other those n R P tht re hvng vlue of > 0. If yes, then set ll nons vrles to zero. d = d n the lst olumn of R. Determne the s fesle Susttute mx soluton whh wll e gn optml. 8. Even fter proeedng wth rerrngng olumns of our strtng mtrx A ( m n ) y sutly permutng rows representng onstrnt equtons s s 4

25 done n step 6, nd then proeedng s per step 7 nd hevng the vldty of mn{ d } mx{ d }, f stll there remn olumns n R P orrespondng to some nons vrles ontnng postve entres n some rows nd negtve entres n some other rows then devse nd pply sutle elementry row trnsformtons on R suh tht the olumns representng oeffents of nons vrles of new trnsformed mtrx R or t lest ts sumtrx R P orrespondng to new trnsformed R ontn only nonnegtve entres so tht step 7 eomes pplle. We now onsder few exmples for mnmzton prolems: Exmple.: Ths exmple for mnmzton s le Exmple.6 for mxmzton n whh the redued row ehelon form ontns y tself the s vrles tht re requred to e present n the optml smplex tleu,.e. the tleu tht results t the end of the smplex lgorthm, for whh only nonnegtve entres our n the ottom row of the tleu representng reltve osts. Ths s understood y the nonnegtvty of entres n the olumns of R P orrespondng to nons vrles. nmze: x x x Sujet to: x x x 4x x x x x x x x, x, x 0 Soluton: For ths prolem we hve R = [, 0, 0, 0, -, 0,, -d ] [ 0,, 0, 0, -, 0,, ] [ 0, 0,, 0, -, 0,, 5-d ] [ 0, 0, 0,,, 0,, 6d ] [ 0, 0, 0, 0, 0,,, 0 ] It s ler from seprtely equtng eh entry n the lst olumn of R tht the expeted nequlty, mn{ d } mx{ d }, holds good. Also, R = [ 0, 0, 0,,, 0,, 6d] P Sne ll the entres n the olumns orrespondng to nons vrles n postve so we put, s, s, s4 = 0 d = mx( d ) = further susttutons, we hve x = 4, x =, x = 9. s. Also, we put R P re. By 5

26 Exmple.: We now onsder mnmzton prml lner progrm for whh nether the prml nor the dul hs fesle soluton. nmze: x y Sujet to: x y x y x, y 0 Soluton: For ths prolem we hve R = [, 0, 0,, -d] [ 0,, 0,, -d] [ 0, 0,,, - ] R P s n empty mtrx. So, there s no lower lmt on the vlue of d. But, Here, from the lst row of R t s ler tht (for ny nonnegtve vlue of nons vrle, s ) the vlue of s s negtve nd so the prolem s thus nfesle. Smlrly, f we onsder the followng dul, vz, x y xmze: Sujet to: x y x y x, y 0 then we hve R = [, 0, 0,, -d] [ 0,, 0,, -4d] [ 0, 0,,, - ] R = [, 0, 0,, -d] N [ 0,, 0,, -4d] whh mples zero vlue for ler tht (even for ny nonnegtve vlue of nons vrle, negtve nd so the prolem s nfesle. s nd d =. But gn from the lst row of R t s s ) the vlue of y s Exmple.4: We now onsder mnmzton lner progrm for whh the prml s unounded nd the dul s nfesle. nmze: x y Sujet to: 5 x y x y 5 x, y 0 Soluton: For ths prolem we hve R = [, 0, 0, -/, -5/-(/)d ] [ 0,, 0, /, (-/)d5/] 6

27 [ 0, 0,, -, -0 ] Clerly, R p s empty so there s no ound to the vlue of d on the lower sde nd y gvng vlue 0 to nons vrle s we n vod negtvty of s, so the prolem s unounded. Also, let us pply followng elementry trnsformtons on R: et us denote the suessve rows of R y R(), R(), R(), R(4). We hnge () () R() R() R(), nd R() R() R() R = [,, 0, 0, -d ] [ 0,, 0, /, (-/)d5/] [ 0,,, 0, -d -5 ] So, y settng = 0, s d 5 we n he tht ths prolem n unounded elow. Now, f we onsder the followng dul, vz, xmze: 5x 5y Sujet to: x y We hve x y x, y 0 R = [, 0, 0, -/, /(/0)d] [ 0,, 0, -/, /-(/0)d] [ 0, 0,,, - ] R = [ 0,, 0, -/, /-(/0)d] N Agn from the lst row of R t s ler tht even for ny nonnegtve vlue of nons vrle, s the vlue of s s negtve nd so the prolem s nfesle. Exmple.5: nmze: 4 Sujet to: x x x x4 x x 4x x x, x, x 0 We hve followng R, RP for ths prolem: R = [, 0, 0, -, -6, -4, -7*d56] [ 0,, 0,, 4,, -4*d] [ 0, 0,, 0, -7, -, 5-*d ] x 4 x x R = [ 0,, 0,, 4,, -4*d] P 7

28 Sne t s ler from seprtely equtng eh entry n the lst olumn of R tht the expeted nequlty, mn{ d } mx{ d }, holds good. Also, sne ll the entres n the olumns orrespondng to nons vrles n R P re postve so we put x s, s 0. Also, we put d = mx( d ) = 7 4, = = 7, x = 0, x = hve x 4.. By further susttutons, we Remr.: It s ler from the dsusson mde so fr tht our m should e to heve the stuton n whh ll the olumns orrespondng to nons vrles n R N, R P ontn nonnegtve entres. Ths stuton orresponds to dretly hvng the possesson of mxml/mnml s fesle soluton. By hevng ths one gets dretly the optml s fesle soluton y smply settng ll the nons vrles to zero nd fndng the s soluton. Ths s the stuton n sense of hvng dretly the optml smplex tleu for whh one sets ll the nons vrles to zero s they n ft led to derement/nrement n the otherwse mxml/mnml vlue of d for mxmzton/mnmzton lner progrmmng prolems under onsderton. Thus, we n fnd the soluton of ny mxmzton/mnmzton lner progrm y properly nlyzng the R, R N, R P mtres, nd tng the relevnt tons s per the outomes of the nlyss. A, to form new E, F wthout Remr.: Insted of shufflng rows of mtrx hngng the ontent of the prolem, we n lso heve the sme effet of rerrngement of onstrnt y smply shufflng rows of dentty mtrx I n E nd proeed wth formton of new E, F wthout hngng the ontent of the prolem nd hevng sme effet n the sense tht the orrespondng redued row ehelon form wll utomtlly produe sme effet. Remr.: The nonnegtvty of the entres tht re present n the olumns of nons vrles of the onerned redued row ehelon form R N or R P s n effet smlr to otn the optml smplex tleu,.e. the tleu t whh the smplex lgorthm termntes nd where the s fesle soluton represents the optml soluton.. A New Algorthm for Nonlner Progrmmng: We now proeed show tht we n del wth nonlner progrms (nonlner onstrned optmzton prolems) usng the sme ove gven tehnque used to del wth lner progrms. The lgorthms developed y Bruno Buherger whh trnsformed the strt noton of Groner ss nto fundmentl tool n omputtonl lger wll e utlzed. The tehnque of Groner ses s essentlly verson of redued row ehelon form (used ove to hndle the lner progrms mde up of lner polynomls) for hgher degree polynomls [7]. A typl nonlner progrm n e stted s follows: xmze/nmze: f (x) Sujet to: h j ( x) = 0, j =,,, m m m 8

29 g j ( x) 0, j = m, m,, p x 0, =,,, n Gven nonlner optmzton prolem we frst onstrut the followng nonlner system of equtons: f ( x) d = 0 (.) h j x) = 0, j =,,, m (.) g ( ( x) s = 0, j = m, m, p (.) j j, where d s the unnown prmeter whose optml vlue s to e determned sujet to nonnegtvty ondtons on prolem vrles nd sl vrles. For ths to heve we frst trnsform the system of equtons nto n equvlent system of equtons erng the sme soluton set suh tht the system s eser to solve. We hve seen so fr tht the effetve wy to del wth lner progrms s to otn the redued row ehelon form for the omned system of equtons norportng ojetve equton nd onstrnt equtons. We wll see tht for the nonlner se the effetve wy to del wth s to otn the equvlent of redued row ehelon form, nmely, the Groner ss representton for ths system of equtons (.)-(.). We then set up the equtons otned y equtng the prtl dervtves of d wth respet to prolem vrles x nd sl vrles s to zero nd utlze the stndrd theory nd methods used n lulus. We demonstrte the essene of ths method y solvng ertn exmples. where d s the unnown prmeter whose optml vlue s to e determned sujet to nonnegtvty ondtons on prolem vrles nd sl vrles. For ths to heve we frst trnsform the system of equtons nto n equvlent system of equtons erng the sme soluton set suh tht the system s eser to solve. We hve seen so fr tht the effetve wy to del wth lner progrms s to otn the redued row ehelon form for the omned system of equtons norportng ojetve equton nd onstrnt equtons. We wll see tht for the nonlner se the effetve wy to del wth s to otn the equvlent of redued row ehelon form for the set of polynomls, nmely, the Groner ss representton for ths system of equtons (.)-(.). We then set up the equtons otned y equtng the prtl dervtves of d wth respet to prolem vrles x nd sl vrles s to zero nd utlze the stndrd theory nd methods used n lulus. We demonstrte the essene of ths method y solvng n exmple: These exmples re ten from [8], [9]. These exmples suffently llustrte the power of ths new method of usng powerful tehnque of Groner ss to suessfully nd effently del wth nonlner progrmmng prolems. Exmple.: xmze: x 4x x Sujet to: x x 4 x x 5 x 4x Soluton: We uld the followng system of equtons: 9

30 x 4x x d = 0 x x s 4 = 0 x x s 5 = 0 x 4x s = 0 x x, s, s, s suh tht:, 0 We now trnsform the nonlner/lner polynomls on the left hnd sde of the ove equtons y otnng Groner ss for them s follows: 486 8d 8s 6s 6s 8ss s = 0 (..) 9 9s 5s s = 0 (..) 9 s s 9x = 0 (..) 8 4s s 9x = 0 (..4) d d Settng = 0 nd = 0 we get equtons: s s s 8s = 8 8s s = 6 d rn defent system. Note tht for mxmzton of d f we set = 0 s the vlue of s tht mxmzes d, nmely, s = ( 8/ ) (8s /), negtve vlue for ny nonnegtve vlue of s. So, we set s = 0. Smlrly, for d mxmzton of d f we set = 0 we get the vlue of s tht mxmzes d, s nmely, s = 8 4s( = 8), settng s = 0. But, y settng s = 0 n the we get seond equton ove the lrgest possle vlue for s tht one n hve (s otned y settng s = 0nd t) s 9, when s = 0. Thus, settng s = 0, s = 9 n the frst equton we get d = 9. From thrd nd fourth equton we get x =, x =. Exmple.: xmze: 8x 6x 4x 56x Sujet to: x x 4 x x 5 x 4x x, x 0 Soluton: We uld the followng system of equtons: 8x 6x 4x 56x d = 0 0

31 x s 4 x s 5 x s x = x = x 4 = We now trnsform the nonlner/lner polynomls on the left hnd sde of the ove equtons y otnng Groner ss for them s follows: 504 9d 8s 6s 56s 8s = 0 (..) 9 9s 5s s = 0 (..) 9 s s 9x = 0 (..) 8 4s s 9x = 0 (..4) from frst equton (..), n order to mxmze d, we determne the vlues of s,s s follows: d If we set = 0 s Smlrly, f we set = 0 s 7 we get the vlue of s tht mxmzes d, nmely, d 4 s =. we get the vlue of s tht mxmzes d, nmely, s =. Puttng these vlues of s,s n the frst nd seond equton we get respetvely the mxmum vlue of d = 67 nd the vlue of s = 4 =.5, x. Usng further these vlues n the thrd nd fourth equton we get x =. 75. Exmple.: nmze: ( x ) ( x 4) Sujet to: x x = Soluton: We form the ojetve equton nd onstrnt equtons s s done n the ove exmples nd then fnd the Groner ss whh yelds: 5x d x 0 = 0 x x = 0 d Settng = 0 we get the vlue of x Ths yelds = 9. 8 d nd x =. 6 Exmple.4: nmze: x x Sujet to: x x = 6 x x tht mnmzes d, nmely, = 0. x.

A New Algorithm Linear Programming

A New Algorithm Linear Programming A New Algorthm ner Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tlk Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.com Astrct In ths pper we propose two types of new lgorthms for lner progrmmng. The frst

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B]

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B] Conept of Atvty Equlbrum onstnt s thermodynm property of n equlbrum system. For heml reton t equlbrum; Conept of Atvty Thermodynm Equlbrum Constnts A + bb = C + dd d [C] [D] [A] [B] b Conentrton equlbrum

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains /4/3 I529: Mhne Lernng n onformts (Sprng 23 Mrkov Models Yuzhen Ye Shool of Informts nd omputng Indn Unversty, loomngton Sprng 23 Outlne Smple model (frequeny & profle revew Mrkov hn pg slnd queston Model

More information

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY THEORETICAL PHYSICS REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY V. CHIRIÞOIU 1, G. ZET 1 Poltehn Unversty Tmºor, Tehnl Physs Deprtment, Romn E-ml: vorel.hrtou@et.upt.ro

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

Systematic Construction of examples for cycling in the simplex method

Systematic Construction of examples for cycling in the simplex method Systemtc Constructon of emples for cyclng n the smple method Prof. r. Peter Zörng Prof. Assocdo Unversdde de Brsíl UnB eprtmento de Esttístc e-ml: peter@un.r ) Lner progrmmng prolem cnoncl form: stndrd

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

 = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction Eletromgnet Induton nd Frdy s w Eletromgnet Induton Mhel Frdy (1791-1867) dsoered tht hngng mgnet feld ould produe n eletr urrent n ondutor pled n the mgnet feld. uh urrent s lled n ndued urrent. The phenomenon

More information

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods Engneerng Prt I 009-0, Pper 4, Mthemtl Methods, Fst Course, J.B.Young CMBRIDGE UNIVERSITY ENGINEERING DEPRTMENT PRT I (Frst Yer) 009-00 Pper 4 : Mthemtl Methods Leture ourse : Fst Mths Course, Letures

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Mixed Type Duality for Multiobjective Variational Problems

Mixed Type Duality for Multiobjective Variational Problems Ž. ournl of Mthemtcl Anlyss nd Applctons 252, 571 586 2000 do:10.1006 m.2000.7000, vlle onlne t http: www.delrry.com on Mxed Type Dulty for Multoectve Vrtonl Prolems R. N. Mukheree nd Ch. Purnchndr Ro

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that us. Introducton he us s the nverse of the us,.e., () Snce we now tht nd therefore then I V () V I () V I (4) So us reltes the nodl current njectons to the nodl voltges, s seen n (4). In developng the power

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp:

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp: Results n Projetve Geometry PG( r,), r, Emd Bkr Al-Zngn* Deprtment of Mthemts, College of Sene, Al-Mustnsryh Unversty, Bghdd, Ir Abstrt In projetve plne over fnte feld F, on s the unue omplete ( ) r nd

More information

MCA-205: Mathematics II (Discrete Mathematical Structures)

MCA-205: Mathematics II (Discrete Mathematical Structures) MCA-05: Mthemts II (Dsrete Mthemtl Strutures) Lesson No: I Wrtten y Pnkj Kumr Lesson: Group theory - I Vette y Prof. Kulp Sngh STRUCTURE.0 OBJECTIVE. INTRODUCTION. SOME DEFINITIONS. GROUP.4 PERMUTATION

More information

Greedy Algorithms. Greedy Algorithms. Piyush Kumar

Greedy Algorithms. Greedy Algorithms. Piyush Kumar Gree s goo. Gree s rght. Gree works. Gree lrfes, uts through, n ptures the essene of the evolutonry sprt. - Goron Geko (Mhel Dougls) Anlyss of Algorthms Pyush Kumr (Leture 4: Greey Algorthms) Welome to

More information

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get rgsdle (zdr8) HW6 dtmre (58335) Ths prnt-out should hve 5 questons Multple-choce questons my contnue on the next column or pge fnd ll choces efore nswerng 00 (prt of ) 00 ponts The currents re flowng n

More information

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION Advnes n Fuzzy ets nd ystems 05 Pushp Pulshng House Allhd nd Pulshed Onlne: Novemer 05 http://dx.do.org/0.7654/afde05_097_3 Volume 0 Numer 05 Pges 97-3 N: 0973-4X REGUAR CUBC ANGUAGE AND REGUAR CUBC EXPREON

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

An Introduction to Support Vector Machines

An Introduction to Support Vector Machines An Introducton to Support Vector Mchnes Wht s good Decson Boundry? Consder two-clss, lnerly seprble clssfcton problem Clss How to fnd the lne (or hyperplne n n-dmensons, n>)? Any de? Clss Per Lug Mrtell

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity Generlzed Lorentz Trnsformton Allowng the Relte Veloty of Inertl Referene Systems Greter Thn the Lght Veloty Yu-Kun Zheng Memer of the Chnese Soety of Grtton nd Reltst Astrophyss Eml:yzheng@puorgn Astrt:

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9 CS434/541: Pttern Recognton Prof. Olg Veksler Lecture 9 Announcements Fnl project proposl due Nov. 1 1-2 prgrph descrpton Lte Penlt: s 1 pont off for ech d lte Assgnment 3 due November 10 Dt for fnl project

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then Slrs-7.2-ADV-.7 Improper Definite Integrls 27.. D.dox Pge of Improper Definite Integrls Before we strt the min topi we present relevnt lger nd it review. See Appendix J for more lger review. Inequlities:

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

Effectiveness and Efficiency Analysis of Parallel Flow and Counter Flow Heat Exchangers

Effectiveness and Efficiency Analysis of Parallel Flow and Counter Flow Heat Exchangers Interntonl Journl of Applton or Innovton n Engneerng & Mngement (IJAIEM) Web Ste: www.jem.org Eml: edtor@jem.org Effetveness nd Effeny Anlyss of Prllel Flow nd Counter Flow Het Exngers oopes wr 1, Dr.Govnd

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7 TELOM 3 Tme Vryng Queues Dvd Tpper Assote Professor Grdute Teleommuntons nd Networkng Progrm Unversty of Pttsburgh ldes 7 Tme Vryng Behvor Teletrff typlly hs lrge tme of dy vrtons Men number of lls per

More information

CONTINUE ON LEADS PLACEMENT

CONTINUE ON LEADS PLACEMENT Hert Letrure ECG leds, ECE4610, Z. Moussv CONTINUE ON LEADS PLACEMENT A I L LA I II III 0 II F III Three ddtonl leds re unpolr eletrodes euse they onsst of the potentl pperng on one eletrode tken th respet

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets. I MATRIX ALGEBRA INTRODUCTION TO MATRICES Referene : Croft & Dvison, Chpter, Blos, A mtri ti is retngulr rr or lo of numers usull enlosed in rets. A m n mtri hs m rows nd n olumns. Mtri Alger Pge If the

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

Polynomials. Polynomials. Curriculum Ready ACMNA:

Polynomials. Polynomials. Curriculum Ready ACMNA: Polynomils Polynomils Curriulum Redy ACMNA: 66 www.mthletis.om Polynomils POLYNOMIALS A polynomil is mthemtil expression with one vrile whose powers re neither negtive nor frtions. The power in eh expression

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays Appled Mehans and Materals Onlne: 03-0- ISSN: 66-748, Vols. 78-80, pp 60-604 do:0.408/www.sentf.net/amm.78-80.60 03 rans eh Publatons, Swtzerland H Controller Desgn for Networed Control Systems n Multple-paet

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

TOPIC: LINEAR ALGEBRA MATRICES

TOPIC: LINEAR ALGEBRA MATRICES Interntionl Blurete LECTUE NOTES for FUTHE MATHEMATICS Dr TOPIC: LINEA ALGEBA MATICES. DEFINITION OF A MATIX MATIX OPEATIONS.. THE DETEMINANT deta THE INVESE A -... SYSTEMS OF LINEA EQUATIONS. 8. THE AUGMENTED

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS The University of ottinghm SCHOOL OF COMPUTR SCIC A LVL 2 MODUL, SPRIG SMSTR 2015 2016 MACHIS AD THIR LAGUAGS ASWRS Time llowed TWO hours Cndidtes my omplete the front over of their nswer ook nd sign their

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design nd Anlysis LECTURE 5 Supplement Greedy Algorithms Cont d Minimizing lteness Ching (NOT overed in leture) Adm Smith 9/8/10 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov,

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Fun Gme Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Fun Gme Properties Arrow s Theorem Leture Overview 1 Rep 2 Fun Gme 3 Properties

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

Towards a Flexible Air Traffic Management: Dealing With Conflicts

Towards a Flexible Air Traffic Management: Dealing With Conflicts Towrds Flexle Ar Trff Mngement: Delng Wth Conflts Stefn Resmert C. Doppler Lortory for Emedded Softwre Systems Unversty of Slzurg A-5020 Slzurg, Austr E-ml: stefn.resmert@s.un-slzurg.t Mhel Heymnn Deprtment

More information

Reducing the Computational Effort of Stochastic Multi-Period DC Optimal Power Flow with Storage

Reducing the Computational Effort of Stochastic Multi-Period DC Optimal Power Flow with Storage Redung the Computtonl Effort of Stohst Mult-Perod DC Optml Power Flow wth Storge Olver Mégel Görn Andersson Power Systems Lbortory ETH Zürh Zürh, Swtzerlnd {megel, ndersson}@eeh.ee.ethz.h Johnn L. Mtheu

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market CHAPTER - 7 Frefly Algorthm sed Strtegc Bddng to Mxmze Proft of IPPs n Compettve Electrcty Mrket 7. Introducton The renovton of electrc power systems plys mjor role on economc nd relle operton of power

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4 Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one

More information

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M NLELE ŞTIINŢIICE LE UNIERSITĂŢII L.I.CUZ IŞI Toul XLII, s.i, Mtetă, 2001, f.2. STRENGTH IELDS ND LGRNGINS ON GOs 2 M BY DRIN SNDOICI strt. In ths pper we stud the strength felds of the seond order on the

More information

A Study on the Properties of Rational Triangles

A Study on the Properties of Rational Triangles Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

More information

Shuai Dong. Using Math and Science to improve your game

Shuai Dong. Using Math and Science to improve your game Computtonl phscs Shu Dong Usng Mth nd Sene to mprove our gme Appromton of funtons Lner nterpolton Lgrnge nterpolton Newton nterpolton Lner sstem method Lest-squres ppromton Mllkn eperment Wht s nterpolton?

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Exercise sheet 6: Solutions

Exercise sheet 6: Solutions Eerise sheet 6: Solutions Cvet emptor: These re merel etended hints, rther thn omplete solutions. 1. If grph G hs hromti numer k > 1, prove tht its verte set n e prtitioned into two nonempt sets V 1 nd

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design nd Anlysis LECTURE 8 Mx. lteness ont d Optiml Ching Adm Smith 9/12/2008 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov, K. Wyne Sheduling to Minimizing Lteness Minimizing

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

Three hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Wednesday 16th January 2013 Time: 09:45-12:45

Three hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Wednesday 16th January 2013 Time: 09:45-12:45 Three hours UNIVERSITY OF MANHESTER SHOOL OF OMPUTER SIENE Prllel Progrms nd ther Performnce Dte: Wednesdy 16th Jnury 2013 Tme: 09:45-12:45 Plese nswer ny TWO Questons from the FOUR Questons provded. Ths

More information

Pyramid Algorithms for Barycentric Rational Interpolation

Pyramid Algorithms for Barycentric Rational Interpolation Pyrmd Algorthms for Brycentrc Rtonl Interpolton K Hormnn Scott Schefer Astrct We present new perspectve on the Floter Hormnn nterpolnt. Ths nterpolnt s rtonl of degree (n, d), reproduces polynomls of degree

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information