Triangle-based Consistencies for Cost Function Networks

Size: px
Start display at page:

Download "Triangle-based Consistencies for Cost Function Networks"

Transcription

1 Nonme mnuscrpt No. (wll e nserted y the edtor) Trngle-sed Consstences for Cost Functon Networks Hep Nguyen Chrstn Bessere Smon de Gvry Thoms Schex Receved: dte / Accepted: dte Astrct Cost Functon Networks (k Weghted CSP) llow to model vrety of prolems, such s optmzton of determnstc nd stochstc grphcl models ncludng Mrkov rndom Felds nd Byesn Networks. Solvng cost functon networks s thus n mportnt prolem for determnstc nd prolstc resonng. Ths pper focuses on locl consstences whch defne essentl tools to smplfy Cost Functon Networks, nd provde lower ounds on ther optml soluton cost. To strengthen rc consstency ounds, we follow the de of trngle-sed domn consstences for hrd constrnt networks (pth nverse consstency, restrcted or mx-restrcted pth consstences), descre ther systemtc extenson to cost functon networks, study ther reltve strengths, defne enforcng lgorthms, nd experment wth them on lrge set of enchmrk prolems. On some of these prolems, our mproved lower ounds seem necessry to solve them. Keywords Cost functon networks Weghted CSP Constrnt optmzton prolems Hgh order consstences Restrcted pth consstency Pth nverse consstency Mx-restrcted pth consstency Hep Nguyen MIAT, UR 875, Unversté de Toulouse, INRA, Cstnet-Tolosn, Frnce E-ml: f.nthhep@gml.com Chrstn Bessere Unversty of Montpeller, Montpeller, Frnce E-ml: essere@lrmm.fr Smon de Gvry MIAT, UR 875, Unversté de Toulouse, INRA, Cstnet-Tolosn, Frnce E-ml: degvry@toulouse.nr.fr Thoms Schex MIAT, UR 875, Unversté de Toulouse, INRA, Cstnet-Tolosn, Frnce E-ml: tschex@toulouse.nr.fr

2 2 Hep Nguyen et l. 1 Introducton Grphcl model processng s centrl prolem n AI. The Cost Functon Network frmework (CFN [25] s n nstnce of the vlued CSP frmework.), where the gol s to optmze the comned cost of locl cost functons, cptures prolems such s weghted MxSAT, Weghted CSP or Mxmum Prolty Explnton n prolstc networks. 1 CFNs hve pplctons n resource llocton [4], comntorl uctons, onformtcs [27, 26]... Dynmc progrmmng pproches such s ucket or cluster tree elmnton cn e used to tckle such prolems ut re nherently lmted y ther exponentl tme nd spce ehvor on grphcl models wth hgh tree-wdth. Insted, Depth Frst Brnch nd Bound llows to keep polynoml spce complexty ut requres good (strong nd chep) lower ounds on the mnmum cost to e effcent. In the lst yers, ncresngly etter lower ounds hve een desgned y enforcng soft locl consstences on CFNs. Arc consstences such s AC*, DAC*, FDAC*, EDAC* [17] or VAC [6] re nspred from rc consstency n hrd constrnt networks. They hve smll order polynoml enforcng tme ut do not lwys provde tght enough lower-ounds. The lner progrmmng sed OSAC consstency [9] provenly gves the strongest lower ound tht cn e otned y rc consstency ut s usully too expensve to compute. It now ecomes useful to look eyond rc consstences. Up to now, few hgher order consstences hve een proposed for CFNs [8, 12]. In ths pper, we show tht strong soft consstences cn e defned for CFNs y extendng hrd hgh order consstences defned for CSPs. Among hrd hgh order consstences, the fmly of trngle-sed consstences (Restrcted Pth Consstency or RPC, Pth Inverse Consstency or PIC, nd mxrestrcted Pth Consstency or mxrpc) re specfclly nterestng ecuse they hve stronger prunng power thn rc consstency, nd cheper computtonl cost thn other hgh order consstences. Ther extenson to CFNs s however non trvl, nd enforcng lgorthms crete ternry cost functons. The rest of the pper s orgnzed s follows. Secton 2 s ckground secton on constrnt nd cost functon networks, ssocted locl consstences nd enforcng opertons. The next sectons focus on our contrutons. Secton 3 gves defnton of new locl consstences. Secton 4 ntroduces dfferent wys to compre the strength of soft consstences n generl. Ths s then used to compre the proposed consstences to ech other nd to exstng consstences. Secton 5 focuses on the lgorthms for enforcng the proposed consstences. The lst secton gves expermentl results when these consstences re used s pre-processng or mntned durng serch on lrge set of enchmrks. We oserve tht the strengthened ound provded y trngle consstences (TRICs) re necessry to solve some prolems tht could not e solved otherwse. 1 We use the termnology of Cost Functon Networks y smlrty to Constrnt Networks. The Weghted Constrnt Stsfcton Prolem (WCSP) s the prolem of solvng CFN. For outsders, guessng wht Cost Functon Network could e, s lso much eser.

3 Trngle-sed Consstences for Cost Functon Networks 3 2 Bckground A constrnt stsfcton prolem (CSP) s trple (X, D, C) where X s set of n vrles, D s set of n domns (vrle X tkes vlues from D D), nd C s set of constrnts. Ech constrnt c S C defned over set S of vrles specfes the llowed ssgnments τ S of vlues for vrles n S, denoted y τ S c S. S nd S re the scope nd the rty of the constrnt c S. For smplcty, c {}, c {,j} re denoted s c, c j. The constrnts c, c j, c S wth S > 2 re respectvely clled unry, nry nd non-nry. A vlue for vrle s denoted y (, ) or y. Gven set of vrles S, l(s) denotes the set of ssgnments (tuples) of vlues for vrles n S, tht s, l(s) = D S = S D. Gven tuple τ S, vrle S nd suset S S, τ S [] nd τ S [S ] denote the projecton of tuple τ S on nd S respectvely. A tuple τ S s consstent f t stsfes ll the constrnts whose scope s ncluded n S. A soluton s consstent complete ssgnment. The prolem s consstent f t hs t lest one soluton. Defnton 1 (Locl consstences) Gven CSP P = (X, D, C), P s rc consstent (AC) f X, D, c S C such tht S, there exsts tuple τ l(s) such tht τ[] = nd τ c S. Such tuple τ s clled the support of vlue (, ) n the constrnt c S. P s restrcted pth consstent (RPC, [3]) ff t s AC nd X, D, c j C on whch hs only one support D j, k lnked to nd j y c k, c jk, there exsts vlue c D k such tht (, c) c k nd (, c) c jk. P s pth nverse consstent (PIC, [14]) ff t s AC nd X, D, j, k such tht, j, k re lnked one-y-one y nry constrnts, there exsts vlue D j, c D k such tht (, ) c j, (, c) c k nd (, c) c jk. P s mx-restrcted pth consstent (mxrpc, [11]) ff t s AC nd X, D, c j C, hs support D j such tht k lnked to oth, j y c k, c jk, there exsts vlue c D k such tht (, c) c k nd (, c) c jk. Let Φ e hrd consstency nd P CSP. The Φ closure of P s the CSP Φ(P ) = (X, D Φ, C) such tht DΦ X DX, Φ(P ) s Φ-consstent, nd there does not exst D such tht DΦ X D X nd (X, D, C) s Φ-consstent. CFNs extend CSPs y ssoctng costs to tuples [25,24]. A CFN s tuple (X, D, C, m) where X nd D re respectvely sets of vrles nd domns, s n clsscl CSPs. C s set of cost functons. Ech cost functon c S C ssgns non negtve nteger costs to tuples τ S l(s).e. c S l(s) [0..m] where m {1,..., + }. The ddton nd sutrcton of costs re ounded opertons, defned s + m = mn( +, m), m = f < m nd m otherwse. The comned cost of tuple τ S n CFN P s the sum of costs Vl P (τ S ) = (S S) (c S C) c S (τ S [S ]), where summton s done usng + m. τ S s nconsstent f Vl P (τ S ) = m, nd consstent otherwse. A soluton of P s complete consstent tuple τ X. An optml soluton hs mnmum Vl P (τ X ). It s mportnt to note tht CSPs re just CFNs usng m = 1. In such prolems, tuple whch receves cost of 1 s fordden. A cost of 0 s used for llowed tuples.

4 4 Hep Nguyen et l. We ssume the exstence of unry cost functon c for every vrle, nd nullry cost functon, noted c. Ths constnt non-negtve cost defnes lower ound on the cost of every soluton. A CFN P cn e trnsformed nto n equvlent CFN P (.e., Vl P (τ) = Vl P (τ) τ) y pplyng so-clled equvlence-preservng trnsformtons (EPTs) tht shft costs etween cost functons. The EPT Shft(τ S, c S, α) (Algorthm 1) moves n mount of cost α etween cost functon c S nd tuple τ S such tht S S. The condtons (2) nd (3) gurntee tht the operton wll not crete ny negtve cost n the prolem. Shft llows to defne the three usul EPTs [10] Project (from c S to τ S, α > 0), Extend (from τ S to c S, α < 0) nd UnryProject (from to c, α > 0, S = {}, S = ). Algorthm 1: Operton for shftng costs n CFNs 1 Procedure Shft(τ S, c S, α) // condton:(1) S S, (2)c S (τ S )+ mα 0, (3)c S (τ S ) α τ S l(s ), τ S [S] = τ S 2 c S (τ S ) c S (τ S ) + m α; 3 forech τ S l(s ) s.t τ S [S] = τ S do 4 c S (τ S ) c S (τ S ) m α; By pplyng EPTs to n orgnl CFN, t s possle to trnsform t n n equvlent CFN tht stsfes gven locl consstency property. Ths my ncrese the lower ound c. The smplest locl consstency, node consstency (NC [16]), requres tht X, D c ()+c < m nd there exsts vlue D such tht c () = 0. Defnton 2 (Soft rc consstences) Gven nry CFN P = (X, D, C, m) nd n order < on vrles, P s rc consstent (AC [24]) ff X, D nd c j C, there exsts D j such tht c j (, ) = 0. s clled (smple) support for (, ) n c j. 2 P s drectonl rc consstent (DAC [7]) w.r.t < ff, D, c j such tht < j, there exsts vlue D j such tht c j (, ) + c j () = 0. s clled full support for (, ) n c j. P s full drectonl rc consstent (FDAC [19]) w.r.t < ff t s AC nd DAC. P s exstentl rc consstent (EAC [17]) ff X, there exsts vlue D such tht c () = 0 nd c j C, there exsts D j such tht c j (, ) + c j () = 0. Vlue s clled the exstentl rc consstent support of. P s exstentl drectonl rc consstent (EDAC [17]) ff t s EAC nd FDAC. 2 There exsts tny vrtons on the defnton of AC for CFNs. Ths pper uses the defnton n [20] whch smplfes the defnton n [10] y not consderng the propgton of nconsstent tuples.

5 Trngle-sed Consstences for Cost Functon Networks 5 Bool(P ) s CSP defned s CFN (X, D, C, 1) such tht c S C ff c S C, S nd τ c S c S (τ) > 0. P s vrtul rc consstent (VAC [6]) ff the AC closure of Bool(P ) s non-empty. For smplcty, we restrct ourselves to nry CFNs. A nry CFN s AC, DAC, FDAC, EAC, EDAC f t s NC nd respectvely AC, DAC, FDAC, EAC, EDAC [16]. Defntons of soft rc consstences for non-nry CFNs hve een gven n [10,5,21,22]. 3 Soft trngle-sed consstences (TRICs) In ths secton, we extend the hrd locl consstences RPC, PIC nd mxrpc, defned on trngles of vrles to CFNs. For ech hrd consstency, we defne sx soft vrnts, lso clled softenng levels: smple, drectonl, full drectonl, exstentl, exstentl drectonl, nd vrtul. Ths gves rse to eghteen new soft locl consstences. In ddton to soft ACs, ll these soft versons gurntee the extenslty of rc supports on extr thrd vrles on so-clled wtness. Defnton 3 (Wtness) Gven vlue (, ), pr of vlues (, j ) nd vrle k lnked oth to nd j, A smple wtness of (, j ) on k s vlue c D k such tht c k (, c) + c jk (, c) + c jk (,, c) = 0. A full wtness of (, j ) on k s vlue c D k such tht c k (c) + c k (, c) + c jk (, c) + c jk (,, c) = 0. Defnton 4 (Extenslty of pr of vlues on vrle) Gven pr of vlues (, j ) nd vrle k lnked oth to nd j, (, j ) s smply extensle on k f there exsts smple wtness on k for t. (, j ) s fully extensle on k f there exsts full wtness on k for t. Defnton 5 (Extenslty of vlue on trngle) A trngle s trple of vrles (, j, k) tht re lnked one-y-one y nry cost functons. It s noted s jk. Gven vlue (, ) nd trngle jk. (, ) s smply extensle on trngle jk f there exsts smple rc support for (, ) n c j tht s smply extensle on k. (, ) s fully extensle on trngle jk f there exsts full rc support for (, ) n c j tht s fully extensle on k. Defnton 6 (Extenslty of pr of vlues) For pr of vlues (, j ) nd n order < on the vrles, (, j ) s: smply extensle f t s smply extensle on every k lnked to oth nd j. fully extensle f t s fully extensle on every k lnked to oth nd j. drectonlly-fully extensle f t s fully extensle on every k > lnked to oth nd j. sem-fully extensle f t s smply extensle on every k < lnked oth to nd j nd s fully extensle on every k > lnked oth to nd j.

6 6 Hep Nguyen et l. Notce tht full extenslty mples sem-full extenslty. Sem-full extenslty mples drectonl-full nd smple extenslty. Conversely, oth drectonl-full nd smple extenslty do not mply ny other extenslty. Exmples n Fgure 1 llustrte the dfferent extensltes of prs of vlues. k 2 c 1 k 2 c 1 c k 2 c k 2 c k 2 k 1 c () j k 1 1 c () j k 1 c (c) j k 1 1 c (d) j k 1 c (e) j Fg. 1 Exmple of dfferent extensltes of the pr of vlues (, j ). k 1 < < j < k 2. An edge ppers etween prs of vlues wth non zero cost. In CFN(), (, j ) s not smply extensle on k 1. In CFN(), (, j ) s smply extensle (on oth k 1, k 2 ) ut s not drectonlly-fully extensle (ecuse t s not fully extensle on k 2 ). In CFN(c), (, j ) s drectonlly-fully extensle w.r.t k 2 ut s not sem-fully extensle (ecuse t s not smply extensle on k 1 ). In CFN(d), (, j ) s sem-fully extensle (fully extensle on k 2 nd smply extensle on k 1 ) ut s not fully extensle (ecuse t s not fully extensle on k 1 ). In CFN(e), (, j ) s fully extensle (on oth k 1, k 2 ). 3.1 Soft restrcted pth consstences The de of soft RPC consstences s to only check the extenslty of prs of vlues (, j ) tht wll mke vlue soft rc nconsstent f ther nry cost ecomes postve. If vlue (, ) hs only one smple support (j, ) on c j nd ths support (, j ) s not extensle on some thrd vrle k, every 3-vlues tuple over {, j, k}, nvolvng (, j ), hs postve comned cost. Becuse (j, ) s the unque rc support of (, ), every complete tuple nvolvng (, ) hs postve cost evluton. Thus, the unry cost c () cn e ncresed y equvlence preservng trnsformtons. Defnton 7 (Soft restrcted pth consstences (Soft RPCs)) Gven CFN P = (X, C, D, m) nd n order < on vrles, P s RPC f t s AC nd X, D, c j C on whch (, ) hs only one smple rc support D j, (, j ) s smply extensle. P s drectonl RPC (DRPC) f t s DAC nd X, D, c j C such tht < j nd (, ) hs only one full rc support D j, (, j ) s drectonlly-fully extensle. P s full drectonl RPC (FDRPC) f t s FDAC nd X, D, c j C such tht (1) f > j nd (, ) hs only one smple rc support D j then (, j ) s smply extensle, or (2) f < j nd (, ) hs only one full rc support D j then (, j ) s sem-fully extensle.

7 Trngle-sed Consstences for Cost Functon Networks 7 P s exstentl RPC (ERPC) f X, there exsts vlue D such tht (1) c () = 0, (2) hs full rc support n every cost functon (.e., P s EAC), nd (3) c j C on whch (, ) hs only one full rc support D j, (, j ) s fully extensle. Such vlue (, ) s the ERPC support for. P s exstentl drectonl RPC (EDRPC) f t s ERPC nd FDRPC. P s vrtul RPC (VRPC) f the RPC closure of Bool(P ) s non-empty. VRPC s defned sed on the hrd CSP Bool(P ) nd hrd RPC. The other softenng levels of RPC dffer from ech other y (1) the strength of supports (smple or full) (2) the strength of wtnesses (smple, full, drectonl-full, semfull) nd (3) the scope of pplcton of these propertes (every domn vlue or one vlue per domn, every cost functon or some specfc cost functons). Exmple 1 Consder the CFNs n Fgure 1. CFN() s VRPC ecuse the RPC closure of Bool(P ) s not empty, contnng vlues ( ), (j, ), (k 1, ), (k 1, c), (k 2, ), (k 2, c). However, t s not RPC ecuse the unque support (, j ) of (, ) on c j s not smply extensle on k 1 CFN() s RPC: oth (, j ) nd (, j ) (respectvely the unque smple rc support of (, ), (j, ) on c j nd of (, ), (j, ) on c j ) re smply extensle on k 1 nd k 2 t smple wtnesses (k 1, ) nd (k 2, ) respectvely. However, t s not DRPC ecuse the unque full rc support (, j ) of (, ) n c j s not fully extensle on k 2 >. CFN(c) s DRPC ecuse oth (, j ) nd (, j ) (respectvely the unque full rc support of (, ) n c j nd of (, ) n c j ) re fully extensle on k 2 > t (k 2, ). Vrle k 1 < s not nvolved n DRPC for. However, t s not FDRPC ecuse the unque full support (, j ) of vlue (, ) on c j s not smply extensle on k 1. CFN(d) s FDRPC where the supports (, j ) nd (, j ) re fully extensle on k 2 t (k 2, ) nd smply extensle on k 1 t (k 1, ). At the sme tme, t s ERPC where (, ), (j, ), (k 1, ), (k 2, ) re ERPC supports for vrles, j, k 1 nd k Soft pth nverse consstences We now consder soft pth nverse consstences. They gurntee the extenslty of domn vlues on trngles of vrles. For ll trngles jk shrng two vrles, j of cost functon c j, PICs requre tht one of the rc supports of (, ) n c j s extensle on k. The rc supports of (, ) tht re extensle on dfferent k cn e dfferent. Defnton 8 (Soft pth nverse consstences (Soft PICs)) Gven CFN P = (X, C, D, m) nd n order < on vrles, P s PIC f t s AC nd X, D, jk, (, ) s smply extensle on jk.

8 8 Hep Nguyen et l. P s drectonl PIC (DPIC) f t s DAC nd X, D, jk such tht < j, < k, (, ) s fully extensle on jk. P s full drectonl PIC (FDPIC) f t s FDAC nd X, D, jk, (, ) s fully extensle on jk f < j, < k nd smply extensle on jk otherwse. P s exstentl PIC (EPIC) f X, there exsts vlue D such tht (1) c () = 0, (2) hs full rc support n every cost functon (.e., P s EAC) nd (3) (, ) s fully extensle on every trngle. P s exstentl drectonl PIC (EDPIC) f t s EPIC nd FDPIC. P s vrtul PIC (VPIC) f the PIC closure of Bool(P ) s non-empty. See exmples n Fgure 2. As n the cse of RPC, VPIC s defned sed on the hrd CSP Bool(P ) nd hrd PIC. The other softenng levels dffer from ech other y the strength of supports, the strength of wtnesses, nd the scope of pplcton of these propertes. k 2 c k 2 c 1 k 2 c k 2 c c j c j c j c j k 1 c () not PIC k 1 () PIC not DPIC c k 1 c (c) DPIC not FDPIC k 1 c (d) EDPIC Fg. 2 Exmple of soft PIC consstences. k 1 < < k 2 < j nd jk1, jk2. The CFN() s not PIC ecuse vlue (, ) s not smply extensle to trngle jk1. The CFN() s PIC ut s not DPIC ecuse vlue (, ) s not fully extensle to trngle jk2 wth < j, < k 2. The CFN(c) s DPIC (ecuse every vlue n D cn e fully extended to jk2 (the only trngle concerned y DPIC for ) ut t s not FDPIC (ecuse vlue (, ) s not smply extensle to trngle jk1 ). The CFN(d) s FDPIC where every vrle s smply extensle to 2 trngles nd s fully extensle to (, j, k 2 ). The CFN(d) s lso EPIC where (, ), (j, ), (k 1, ), (k 2, ) re respectvely EPIC supports of, j, k 1, k Soft mx-restrcted pth consstences Stronger thn PICs, soft mx-restrcted pth consstences (soft mxrpcs) check the exstence of n extensle rc support for ech vlue on ech nry cost functon whtever the numer of rc supports the vlue hs. In contrst to soft PICs, mxrpcs requre the extenslty of the sme rc support t the sme tme on ll thrd vrles. If vlue (, ) hs no such extensle rc support n some nry cost functon c j, ech support (, j ) of (, ) n c j s not extensle n some extr vrle k,.e. the comned cost of every tuple (, j, k c ) s postve. Thus, the nry cost of every rc support of (, ) n c j cn e ncresed y equvlence preservng trnsformtons nd then (, ) wll no longer e rc consstent.

9 Trngle-sed Consstences for Cost Functon Networks 9 Defnton 9 (Soft mx-restrcted pth consstences (Soft mxr- PCs)) Gven CFN P = (X, D, C, m) nd n order < on the vrles, P s mxrpc f t s AC nd X, D, c j C there exsts smple rc support D j such tht (, j ) s smply extensle. P s drectonl mxrpc (DmxRPC) f t s DAC nd X, D, c j C such tht < j, there exsts full rc support D j such tht (, j ) s drectonlly-fully extensle. P s full drectonl mxrpc (FDmxRPC) f t s FDAC nd for D, D, c j C (1) f > j, there exsts smple rc support D j such tht (, j ) s smply extensle. (2) otherwse, f < j, there exsts full rc support D j such tht (, j ) s sem-fully extensle. P s exstentl mxrpc (EmxRPC) f X, there exsts vlue D such tht (1) c () = 0, (2) hs full rc support n every cost functon (.e., P s EAC) nd (3) c j C, there exsts full rc support D j such tht (, j ) s fully extensle. P s exstentl drectonl mxrpc (EDmxRPC) f t s EmxRPC nd FDmxRPC. P s vrtul mxrpc (VmxRPC) f the mxrpc closure of Bool(P ) s non-empty See exmples n Fgure 3. Here gn, VmxRPC s defned sed on the hrd CSP Bool(P ) nd hrd mxrpc. The other softenng levels dffer from ech other y the strength of supports, the strength of wtnesses, nd the scope of pplcton of these propertes. k 2 c k 2 c 1 k 2 c k 2 c c j c j c j c j k 1 c () EmxRPC not mxrpc k 1 c () mxrpc not DmxRPC k 1 c (c) DmxRPC not FDmxRPC k 1 c (d) FDmxRPC EDmxRPC Fg. 3 Exmple of soft mxrpcs. k 1 < < k 2 < j nd jk1, jk2. The CFN() s not mxrpc ecuse vlue (, ) hs no rc support n c j (etween (, j ) nd (, j c)) tht s smply extensle on oth k 1, k 2. The CFN() s mxrpc ut s not DmxRPC ecuse vlue (, ) hs no full rc support n c j (etween (, j ) nd (, j c)) tht s fully extensle to k 2. The CFN(c) s DmxRPC (ecuse every vlue n D hs full rc support n c j, c k2 tht s respectvely fully extensle on k 2 nd j. Trngle jk1 s not nvolved n DmxRPC for ). The CFN(c) s not FDmxRPC ecuse vlue (, ) hs no full support n c j (etween (, j ) nd (, j c)) tht s smply extensle on k 1. The CFN(d) s oth FDmxRPC nd EmxRPC where (, ), (k 1, ), (j, ), (k 2, ) re respectvely EmxRPC supports of vrles, k 1, j, k 2.

10 10 Hep Nguyen et l. 4 Comprng soft locl consstences In ths secton, we compre the strength of the dfferent soft consstences proposed n the prevous secton nd soft rc consstences. Soft consstences rse specfc dffcultes when comprson of strength s consdered. Most of the consstences we consdered re domn consstences n the sense tht they defne propertes tht vlues must stsfy nd enforcng them my ncrese unry costs tht NC my ultmtely use to ncrese the lower ound c. However, vrtul locl consstences re dfferent ecuse they drectly try to ncrese c nd do not try to ncrese unry costs for NC. Thus, the strength of vrtul consstences cn e drectly mesured y the qulty of the lower ound provded. For the other soft consstences, ths strength s etter mesured y the lty to move costs to lower rtes. We therefore need to ntroduce two dfferent order reltons etween locl consstences to cpture ths dfference etween vrtul nd other consstences. We denote y c [P ] the lower ound c n prolem P. Furthermore, soft locl consstences re not confluent. A sngle prolem P my hve dfferent equvlent prolems stsfyng gven locl consstency property A. For gven CFN P nd soft locl consstency A, A(P ) s therefore defned s the set of prolems tht cn e otned fter enforcng A n P. When P lredy stsfes A, we ssume tht A(P ) = {P }.e., tht enforcng A on prolem stsfyng A does not chnge P (whch s effectvely the cse for ll enforcng lgorthms). Smlrly, focusng on lower ounds, enforcng weker consstency wll not chnge the lower ound. Defnton 10 (Stronger relton) Gven two soft consstences A nd B, A s stronger thn B, noted y A B, ff for every CFN P tht stsfes A, P lso stsfes B,.e. B(P ) = {P }. A s stronger thn B n terms of lower ound, noted y A c B, ff for every CFN P tht stsfes A nd ny P B(P ), then c [P ] = c [P ]. A s strctly stronger thn B, noted A > B, ff A B nd CFN P such tht P stsfes B nd A(P ) {P }. A s strctly stronger thn B n terms of lower ound, noted A > c B, ff A c B nd CFN P such tht P stsfes B nd P A(P ), c [P ] > c [P ]. We frst show tht entls c. Proposton 1 Gven two soft consstences A nd B, f A B then A c B. Proof Becuse A B, B(P ) = {P } for every P tht stsfes A. So we hve P B(P ), c [P ] c [P ] nd thus A c B. Smlrly to the stronger nd strctly stronger reltons for hrd consstences, our reltons for soft consstences re trnstve. Proposton 2 (Trnstvty) Gven three soft consstences A, B, nd C,. If A B nd B C then A C.

11 Trngle-sed Consstences for Cost Functon Networks 11. If A > B nd B > C then A > C. c. If A > B nd B c C then A c C. Proof. Let P e CFN tht stsfes A. Becuse A B nd P stsfes A, B(P ) = {P },.e. P lso stsfes B. Becuse B C nd P stsfes B, C(P ) = {P }. Thus, f P stsfes A, C(P ) = {P },.e. A C.. (1) Becuse > mples, we hve A B nd B C. So A C from the property (). (2) Becuse A > B, there exsts CFN P stsfyng B nd A(P ) {P }. Becuse P stsfes B nd B C, P lso stsfes C. Thus there exsts P tht stsfes C nd A(P ) {P }. So A > C. c. Becuse > mples, we hve A B. Let P e CFN tht stsfes A, P lso stsfes B. Becuse B c C nd P stsfes B, P C(P ), c [P ] = c [P ]. Thus, for every CFN whch stsfes A, P C(P ), c [P ] = c [P ]..e. A c C. To show tht soft consstency A s not stronger (resp. not stronger n terms of lower ound thn B), t s enough to show tht there exsts CFN P n whch A holds nd B does etter thn A: B(P ) {P } (resp. P B(P ), c [P ] c [P ]). Two consstences A nd B re ncomprle ff A s not stronger thn B nd B s not stronger thn A. Defnton 11 (Incomprle relton) Gven two soft consstences A nd B, A nd B re ncomprle, noted A / B, ff A / B nd B / A A nd B re ncomprle n terms of lower ound, noted A / c B, f A / c B nd A / c B Fgure 4 s the Hsse dgrm tht summrzes the reltons mong soft ACs, RPCs, PICs nd mxrpcs. A row of the grph corresponds to sx soft consstences ssocted wth sme hrd consstency nd column corresponds to the soft consstences t sme softenng level. A drected pth from consstency A to B, wthout or wth dshed rrow, respectvely mens tht A > B or A > c B. If there does not exst ny drected pth etween A nd B, they re ncomprle. Frst, we consder the relton etween vrtul consstences nd domn consstences. Then, domn consstences re consdered ccordng to the rows nd the columns of the grph. Theorem 1 Gven two hrd locl consstences A, B {AC,RPC,PIC,mxRPC}, f we denote y V A, V B ther correspondng vrtul consstences nd A, B ny other softenng level of A nd B,. VA > c A.. If A > B then 1 VA > VB 2 VA > c B. Proof. We frst prove tht VA c A y contrdcton. Suppose tht there exsts CFN P stsfyng VA nd enforcng A cn stll ncrese c from

12 12 Hep Nguyen et l. AC DAC FDAC EAC RPC DRPC EDAC VAC FDRPC ERPC PIC DPIC EDRPC VRPC FDPIC EPIC mxrpc DmxRPC EDPIC VPIC FDmxRPC EmxRPC EDmxRPC VmxRPC Fg. 4 Hsse dgrm of reltons etween soft consstences A B A > B A B C mples A C A B A > c B A B C mples A C vrle x. All vlues nd tuples whose costs hve een necessry for ncresng c y A re lso fordden when enforcng A n the clssc CSP Bool(P ). So, f we elmnte these vlues nd tuples n the sme order tht costs re moved y A n P, x wll e wped-out n Bool(P ). Thus P s not VA nd the ssumpton s flse. Ths mens tht VA c A. Secondly, Fgure 12 shows prolem tht stsfes every non-vrtul vrnt of AC, RPC, PIC, mxrpc ut not the vrtul ones. Enforcng the vrtul one wll led to strctly stronger c.. Consder frst the cse of V B. Frst, we prove tht VA V B. Let P e CFN whch s VA. The A closure of Bool(P ) s not empty. Becuse A B, the B closure of Bool(P ) wll e not empty. Thus, P lso stsfes VB,.e. VB(P ) = {P }. Now we prove tht VA V B,.e. VmxRPC > VPIC > VRPC > VAC. Fgures 5, 6, 7 respectvely show CFN whch s VAC ut not VRPC, VRPC ut not VPIC, VPIC ut not VmxRPC nd c cn e ncresed y the unstsfed consstences. We now consder the cse of ny other soft consstency B ssocted wth B. From VA > VB (just ove) nd from V B > c B (Theorem 1()), y Proposton 2(c), we deduce tht VA c B. Now, we wll prove tht VA > c B. Becuse V B > c B, there exsts CFN P such tht P s B nd V B cn stll ncrese the lower ound c [P ]. Ths mens tht the B closure of Bool(P ) s empty. Becuse A > B, the A closure of Bool(P ) s lso empty. Thus, enforcng VA on P wll ncrese c whle P stsfes B. The followng theorem shows tht gven softenng level, the correspondng soft mxrpc s strctly stronger thn the correspondng soft PIC, whch

13 Trngle-sed Consstences for Cost Functon Networks 13 s strctly stronger thn the correspondng soft RPC, whch tself s strctly stronger thn the correspondng soft AC. Theorem 2 (Vertcl comprson). mxrpc > PIC > RPC > AC.. DmxRPC > DPIC > DRPC > DAC. c. FDmxRPC > FDPIC > FDRPC > FDAC. d. EmxRPC > EPIC > ERPC > EAC. e. EDmxRPC > EDPIC > EDRPC > EDAC. Proof Frst, we cn note tht the stronger thn relton holds etween the consdered prs of consstences, sed on ther defnton: t ech softenng level, the soft vrnt of mxrpc mples the soft vrnt of PIC. The sme pples for PIC nd RPC, s well s RPC nd AC. Second, we prove the strctly stronger thn relton etween them y showng CFNs n whch the weker consstences hold whle the stronger ones do not.. Fgure 5 shows CFN tht stsfes AC ut does not stsfy RPC. Fgure 6 shows CFN tht stsfes RPC ut does not stsfy PIC. Fgure 7 shows CFN tht stsfes PIC ut does not stsfy mxrpc. Thus mxrpc > PIC > RPC > AC. -e. The proof s smlr to tht for () y usng Fgure 5, 6 nd 7. The followng theorem wll show tht for ny hrd consstency: (1) the ssocted exstentl drectonl consstency s strctly stronger thn oth the exstentl nd the full drectonl ones, (2) the ssocted full drectonl consstency s strctly stronger thn oth the non-drectonl nd the drectonl ones, (3) other prs of soft consstences re ncomprle. Theorem 3 (Horzontl comprson) Gven two dfferent hrd consstences A nd B n {AC, RP C, P IC, mxrp C}, gven A, DA, F DA, EA, EDA the smple, drectonl, full drectonl, exstentl, exstentl drectonl vrnt of A nd B, DB, F DB the smple, drectonl, full drectonl vrnt of B,. (column 2-1): A / DB. (column 3-1,2): F DA > A, DA c. (column 4-1,2,3): EA / B, DB, F DB d. (column 5-3,4): EDA > F DA, EA Proof. A / DB: usng Fgures 8 nd 9.. F DA > A, DA. The stronger thn relton s mpled y the defnton of the consstences. F DA > A: Fgure 8 shows prolem whch s mxrpc, PIC, RPC, AC ut s not FDmxRPC, FDPIC, FDRPC, FDAC. F DA > DA: Fgure 9 shows prolem whch s DmxRPC, DPIC, DRPC, DAC ut s not FDmxRPC, FDPIC, FDRPC, FDAC. c. EA / B, DB, F DB: usng Fgures 10 nd 11. d. EDA > F DA, EA. The proof drectly follows from the defntons.

14 14 Hep Nguyen et l. Theorem 4 (Incomprlty) For ny pr of consstences whch s not covered y the three prevous theorems, the consstences re ncomprle. Proof FDAC / RPC,PIC,mxRPC, DRPC,DPIC,DmxRPC: usng Fgures 5, 8 nd 9. FDRPC / PIC,mxRPC, DPIC,DmxRPC: usng Fgures 6, 8 nd 9. FDPIC / mxrpc, DmxRPC: usng Fgures 7, 8 nd 9. EDAC / (E/FD/D/-)(RPC/PIC/mxRPC): usng Fgures 5, 10 nd 11. EDRPC / EPIC, EmxRPC, FDPIC, FDmxRPC, DPIC, DmxRPC, PIC, mxrpc: usng Fgures 6, 10 nd 11. EDPIC / EmxRPC, FDmxRPC, DmxRPC, mxrpc: usng Fgures 7, 10 nd 11. VAC / c (ED/E/FD/D/-)(RPC/PIC/mxRPC): usng Fgures 5 nd 12. VRPC / c (ED/E/FD/D/-)(PIC/mxRPC): usng Fgures 6 nd 12. VPIC / c (ED/E/FD/D/-)mxRPC: usng Fgures 7 nd 12. j l k AC DAC FDAC EAC EDAC VAC RPC DRPC FDRPC ERPC EDRPC VRPC PIC DPIC FDPIC EPIC EDPIC VPIC mx Dmx FDmx Emx EDmx Vmx Fg. 5 A CFN tht stsfes ll rc consstences ut does not stsfy ny soft RPC (hence does not stsfy ny soft PIC, mxrpc). j < k < < l. The tle on the rght ndctes whch consstences re stsfed or not (strkethrough). mxrpc s refly wrtten s mx, nd the sme for other vrnts of mxrpcs. The prolem does not stsfy ny soft RPC ecuse of vrle j (the unque support (j, k ) of (j, ) n c jk s not smply extensle on nd the unque support (j, k ) of (j, ) s not smply extensle on l). k c j l c m RPC DRPC FDRPC ERPC EDRPC VRPC PIC DPIC FDPIC EPIC EDPIC VPIC mx Dmx FDmx Emx EDmx Vmx c c Fg. 6 A CFN tht stsfes ll RPC consstences ut does not stsfy ny PIC consstency. < j < k < l < m. Every vlue of stsfes RPC consstences ecuse t hs more thn 2 full (hence smple) rc supports n c k, c j, c l, c m. The prolem does not stsfy ny PIC consstency ecuse of vrle (vlue (, ) s not smply (hence not fully) extensle to trngle lm whle (, ) s not smply (hence not fully) extensle to trngle jk ).

15 Trngle-sed Consstences for Cost Functon Networks 15 j 3 j 6 c c RPC DRPC FDRPC ERPC EDRPC VRPC PIC DPIC FDPIC EPIC EDPIC VPIC mx Dmx FDmx Emx EDmx Vmx j 1 j 2 j 5 j 4 Fg. 7 A CFN tht stsfes ll PIC consstences ut does not stsfy ny mxrpc consstency. < j 1 < j 2 < j 3 < j 4 < j 5 < j 6. There re only zero unry costs n ths prolem, thus smple nd full supports (or wtnesses) re dentcl. The prolem s EDPIC snce oth (, ), (, ) cn e fully extended to ll 4 trngles. However, the prolem does not stsfy ny mxrpc consstency ecuse of vrle (no rc support of vlue (, ) n c j1 cn smultneously e extended on j1 j 2 nd j1 j 3, the sme for vlue (, ) n c j4 ). k 1 j AC DAC FDAC EDAC RPC DRPC FDRPC EDRPC PIC DPIC FDPIC EDPIC mxrpc DmxRPC FDmxRPC EDmxRPC Fg. 8 A CFN whch s non-drectonl consstent ut s drectonl nconsstent for order < j < k. The prolem s not DAC ecuse vlue (, ) hs no full rc support n c k. Therefore, t does not stsfy FDAC, EDAC, FDRPC, EDRPC, FDPIC, EDPIC, FDmxRPC, EDmxRPC. However, the prolem s mxrpc (hence PIC, RPC) ecuse t s AC nd every domn vlue s smply extensle to the trngle. k j AC DAC FDAC EDAC RPC DRPC FDRPC EDRPC PIC DPIC FDPIC EDPIC mxrpc DmxRPC FDmxRPC EDmxRPC Fg. 9 A CFN whch s drectonl consstent ( > j > k) ut s non-drectonl nconsstent. The prolem s not AC ecuse (, ) hs no rc support n c j. However, the prolem s DAC ecuse every vlue of j nd k hs full rc support n c j, c k. Moreover, the prolem s DmxRPC (hence DPIC, DRPC) ecuse every vlue of j nd k cn e fully extended on the trngle (n the trngle jk, only the smllest vrle k nd c k, c kj re concerned y trngle-sed drectonl consstences). 5 Algorthms In ths secton, we present lgorthms for enforcng soft PIC, DPIC, FD- PIC, EPIC, EDPIC, mxrpc, DmxRPC, FDmxRPC, EmxRPC, nd EDmxRPC. Soft RPCs hve not een mplemented ecuse they re weker thn ther PIC nd mxrpc counterprts nd ecuse t s costly to mntn the unqueness of rc supports per vlue n ech cost functon rc supports cn e tertvely creted nd roken when EPTs re ppled. For vlue (, ) tht does not stsfy gven TRIC (trngle consstency), the common de s to crete support for vlue (, ) on c j tht s

16 16 Hep Nguyen et l. 1 1 j k l AC DAC FDAC EAC EDAC RPC DRPC FDRPC ERPC EDRPC PIC DPIC FDPIC EPIC EDPIC mxrpc DmxRPC FDmxRPC EmxRPC EDmxRPC Fg. 10 A CFN whch s full drectonl consstent ut s exstentl nconsstent for l < j < k <. The prolem s not EAC (hence not ERPC, EPIC, EmxRPC) ecuse of vlue ( hs no full support n c j whle hs no full support n c l ). However, the prolem s FDmxRPC (hence FDPIC, FDRPC) ecuse t s FDAC nd every vlue of, k cn e smply extended to oth trngles nd every vlue of j, l cn e fully extended to jk nd lk respectvely. k j AC DAC FDAC EAC EDAC RPC DRPC FDRPC ERPC EDRPC PIC DPIC FDPIC EPIC EDPIC mxrpc DmxRPC FDmxRPC EmxRPC EDmxRPC Fg. 11 A CFN whch s exstentl consstent ut not full drectonl consstent for > j > k. The prolem s not AC (hence s not RPC, PIC, mxrpc) ecuse of vlue (, ) (no rc support n c j ) nd s not DAC (hence s not DRPC, DPIC, DmxRPC) ecuse of vlue (j, ) (no full rc support n c j ). However, the prolem s EmxRPC (hence EPIC, ERPC, EAC) where (, ), (j, ), (k, ) re respectvely EmxRPC supports of, j, k. 1 1 j k l m AC DAC FDAC EAC EDAC VAC RPC DRPC FDRPC ERPC EDRPC VRPC PIC DPIC FDPIC EPIC EDPIC VPIC mx Dmx FDmx Emx EDmx Vmx Fg. 12 A CFN whch s exstentl drectonl ut s not vrtul consstent l < < j < k < m. The prolem s not VAC (hence not VRPC, VPIC, VmxRPC) ecuse AC mkes Bool(P) wped-out t j or k. Conversely, the prolem s EDmxRPC where vrles j, m, l re FDmxRPC n jm nd, j, k, l, m re EmxRPC supports of vrles. lso extensle on vrles k y shftng costs n trngles jk (consstng of nry, ternry nd possly unry costs) to c. We denote y jk (,, c) = c j (, )+c jk (, c)+c k (, c)+c jk (,, c) the comned cost defned y the sum of nry nd ternry costs nvolved n tuple (, j, k c ), where c jk (,, c) = 0 f c jk does not exst. Algorthm 2 presents ll the sc opertons for shftng costs nsde trngles nd prunng vlues. Extend2To3(,, j,, c jk, α) extends cost of α from pr of vlues (, j ) to ternry cost functon c jk. Project3To2(c jk,,, j,, α) projects cost of α from c jk on (, j ). Project3To1(c jk,,, α) projects cost of α from c jk on vlue (, ). Extend1To2(,, c j, α) extends cost of α from vlue (, ) to c j. Project2To1(c j,,, α) projects cost of α from c j on vlue (, )

17 Trngle-sed Consstences for Cost Functon Networks 17 PruneVrs() removes ll nconsstent vlues hvng unry cost equl to m. The queues Q, P, S, T store vrles or cost functons whch hd some chnge n domn or n cost. They wll e used for the propgton of chnges n our lgorthm. Q stores vrles such tht some vlue of D hs een deleted (Procedure PruneVrs(), lne 24). P stores vrles such tht some vlue of D hs ncresed ts cost from 0 (Procedure Project3To1 t lne 13 nd Project2To1 t lne 17 S s n uxlry queue wth the sme contents s P (Procedure Project3To1 t lne 13 nd Procedure Project2To1 t lne 17). It s used to effcently uld the propgton queue R whch contns vrles tht need to e checked for the exstentl consstency. These re ll vrles of S (those tht hve vlues whch cost ncresed from 0) nd ther neghors ecuse: (1) for S, the vlue n D tht hs ncresed ts unry cost my e the exstentl support of nd (2) the exstentl support of neghor vrles j my e fully supported y ths vlue. T contns nry cost functons c j tht hve een modfed (ecuse of unry cost extenson n Procedure Extend1To2, lne 4) for whch, j nd ther common neghors my hve lost smple support/wtness nd need to e revsed. 5.1 Enforcng PICs Enforcng PIC supports Smple PIC supports re enforced y Procedure fndpicsupport n Algorthm 3. To crete smple PIC support for vlue on jk, nry nd ternry costs nvolved n jk re moved to n such wy tht there s tuple (, j, k c ) whose ternry nd nry costs decrese to 0. The order for movng costs s presented n Fgure 13. Frst, nry costs c j, c k, c jk re extended on ternry cost functon c jk y Procedure Extend2To3 (lnes 10 12). Then, ternry costs c jk re projected on y Procedure Project3To1 (lne 13). The mxmum cost tht cn e projected on ech vlue D s stored n P []. It s computed sed on the vlle nry nd ternry costs (lne 3). Bnry cost extensons E j, E k, E jk re then computed sed on P [] nd the ternry nd nry costs (on the two other sdes of the trngle, see lnes 4 9). The extensons should e suffcently lrge so tht lter projectons of P [] wll not crete negtve costs nd suffcently smll so tht zero trngle cost remns fter projecton: there should exst vlues k c, j nd such tht the fnl resultng ternry cost c jk (,, c)+e j (, )+E k (, c)+e jk (, c) P [] = 0. Ech computed prwse extended cost E (, ) s suffcent to stsfy the mxmum cost requrements on the thrd vrle. Snce these extensons re supposed to e done sequentlly, lne 7 sutrcts E j (, ), whch wll e ncluded n the ternry cost, nd does not requre c j (, ). The sme resonng pples for lne 9, for oth prevous extensons.

18 18 Hep Nguyen et l. Algorthm 2: Elementry opertons 1 Procedure Extend1To2(,, c j, α) 2 // precondton: c () α > 0 3 Shft((, ), c j, α); 4 T T {c j }; 5 Procedure Extend2To3(,, j,, c jk, α) // precondton: c j (, ) α > 0 6 Shft((, j ), c jk, α); 7 Procedure Project3To2(c jk,,, j,, α) 8 // precondton: c D k, c jk (,, c) α 9 Shft((, j ), c jk, α); 10 Procedure Project3To1(c jk,,, α) 11 // precondton: D j, c D k, c jk (,, c) α 12 f c () = 0 α > 0 then 13 P P {}; S S {}; 14 Shft(, c jk ); 15 Procedure Project2To1(c j,,, α) // precondton: D j, c j (, ) α 16 f c () = 0 α > 0 then 17 P P {}; S S {}; 18 Shft(, c j ); 19 Procedure PruneVrs() 20 forech X do 21 forech D do 22 f c () + c m then 23 D D {}; 24 Q Q {}; 25 Procedure ssmllest(, jk ) 26 return (( < j) ( < k)); In the end, nry cost extensons on ternry functons do not led to the loss of ternry AC supports. Moreover, nry cost extensons do not led to the loss of PIC supports ecuse PIC supports nvolve only zero nry costs whch cnnot e used for extenson. Full PIC supports re smlrly enforced y Procedure fndfullpicsupport n Algorthm 3. The dfference s tht unry costs on j, k re extended on nry functons c j nd c k y Procedure Extend1To2, n order to crete full PIC supports wth zero unry costs (lnes 23, 24 respectvely). Then nry nd ternry costs re moved to s for smple PIC supports (lne 25). The order n whch costs re moved to enforce full PIC supports s lso vsle n Fgure 13. The unry costs of j, k re tken nto ccount for the computton of P [] s well s for the computton of unry cost extensons E j, E k (lnes 18,20,22). As for nry extensons, unry cost extensons should e suffcently lrge to vod the creton of negtve costs y lter projectons of P [] nd

19 Trngle-sed Consstences for Cost Functon Networks 19 Fg. 13 The order of cost movements for enforcng smple or full PIC supports on vrle, where unry cost extensons re not ncluded n the enforcement of smple PIC supports. The rcs ndcte the drecton of cost movements nd the numers under the rcs ndcte the order n whch the correspondng cost movements re performed. smll enough so tht the the fnl nry costs c j (, ) + E j () E j (, ) nd c k (, c) + E k (c) E k (, c) re equl to 0. Therefore, unry cost extensons on nry functons cnnot led to the loss of nry AC supports. However, unry cost extensons on nry functons cn led to the loss of smple PIC supports, thus modfed nry functons re stored n the lst T n order to lter enforce PIC supports for relted vlues. Exmple 2 Consder the CFN() n Fgure 14. It hs 4 vrles < j < k < l nd 5 nry cost functons c j, c k, c l, c jk, c jl. Bnry costs re represented y edges (contnuous lne) nd ternry costs re represented y hyper-edges (dshed lnes for c jk nd dotted lnes for c jl ). The sence of (hyper)edges ndctes zero cost. The ntl prolem s FDAC ut not FDPIC ecuse vlue (, ) s not fully extensle on jk. Now, consder enforcng full PIC supports for the vlues of. Procedure fndfullpicsupport(, j, k) computes the mounts of cost for projectons/extensons: P [] = E j [] = 1. Other shfted costs re zero. After extendng cost of 1 from (j, ) on c j, t wll cll Procedure fndpicsupport(, j, k), compute the mounts of shfted cost s follows: P [] = E j [, ] = E k [, ] = E jk [, ] = 1. nd perform the cost shfts. The resultng prolem, presented n Su-fgure 14(d) s stll not FDPIC ecuse vlue (, ) cnnot e fully extended on trngle jl. Then Procedure fndfullpicsupport(, j, l) computes nd performs the followng cost shftng: P [] = E j [, ] = E l [, ] = E jl [, ] = 1. The fnl prolem, presented n Su-fgure 14(g) s FDPIC. Contrrly to hrd PIC, enforcng smple nd full PIC supports cn crete new ternry functons, e.g., c jk, c jl. Whenever nry cost need to e extended to ternry cost functon tht does not exst, the ternry cost functon needs to e creted nd ntlzed wth n empty cost for every tuple Soft PIC lgorthms Enforcng EDPIC requres enforcng PIC, DPIC, nd EPIC smultneously. We thus only present n lgorthm for EDPIC. PIC, DPIC, FDPIC, nd EPIC lgorthms cn e derved y removng locks of code.

20 20 Hep Nguyen et l. Algorthm 3: Algorthms enforcng PIC supports 1 Procedure fndpicsupport(, jk ) 2 forech D do 3 P [] mn Dj,c D k jk (,, c); 4 forech D, D j do 5 E j [, ] mx c Dk {P [] c jk (,, c) c k (, c) c jk (, c)}; 6 forech D, c D k do 7 E k [, c] mx Dj {P [] c jk (,, c) c jk (, c) E j (, )}; 8 forech D j, c D k do 9 E jk [, c] mx D {P [] c jk (,, c) E j (, ) E k (, c)}; 10 forech D, D j do Extend2To3(,, j,, c jk, E j [, ]); 11 forech D, c D k do Extend2To3(,, k, c, c jk, E k [, c]); 12 forech D j, c D k do Extend2To3(j,, k, c, c jk, E jk [, c]); 13 forech D do Project3To1(c jk,,, P []); 14 α mn D {c ()}; 15 UnryProject(, α); 16 Procedure fndfullpicsupport(, jk ) 17 forech D do 18 P [] mn Dj,c D k jk (,, c) + c j () + c k (c); 19 forech D j do 20 E j [] mx D,c D k {P [] jk (,, c) c k (c); 21 forech c D k do 22 E k [c] mx D, D j {P [] c jk (,, c) E j []; 23 forech D j do Extend1To2(j,, c j, E j []); 24 forech c D k do Extend1To2(k, c, c k, E k [c]); 25 fndpicsupport(, jk ); 26 Procedure fndepicsupport() 27 α mn D {c () + jk,>j or >k mn Dj,c D k { jk (,, c) + c j () + c k (c)}}; 28 f α > 0 then 29 forech jk do 30 f ssmllest(, jk ) then fndfullpicsupport(, jk ); 31 R R jk {j, k}; 32 UnryProject(, α); EDPIC s enforced y Procedure enforceedpic n Algorthm 4. Ths procedure conssts of four nner-whle loops tht respectvely enforce EPIC, DPIC nd PIC. It lso enforces NC y cllng PruneVrs t lne 24. The frst whle-loop (lnes 5-7) enforces EPIC. It frst puts n R ll vrles tht need to e checked for EPIC sed on the uxlry queue S (lne 4). EPIC supports of vrles R re enforced y Procedure fndepicsupport (lne 7). When enforcng the exstentl support for, EPIC s only responsle for trngles on whch s not the smllest vrle ecuse DPIC wll tke cre of the remnng ones (Algorthm 3, lne 27). If hs no fully supported vlue (.e., α > 0) such vlue cn e creted y enforcng full PIC supports for every vlue of on every trngle n whch s not the smllest vrle

21 Trngle-sed Consstences for Cost Functon Networks 21 Fg. 14 Cost evoluton n CFN durng the enforcement of full PIC supports () orgnl prolem wth 5 nry cost functons c j, c k, c l, c jk, c jl, < j < k < l. It s FDAC ut not FDPIC ecuse of vrle where (, ) nd (, ) cnnot e fully extended on jk nd jl respectvely. () extendng cost of 1 from j on c j wth E j [] = 1. (c) extendng cost of 1 from (, j ), (, k ) nd (j, k ) on c jk wth E j [, ] = E k [, ] = E jk [, ] = 1. (d) projectng cost of 1 from c jk on wth P [] = 1. (e) extendng cost of 1 from (, j ), (, l ) nd (j, l ) on c jk wth E j [, ] = E l [, ] = E jl [, ] = 1. (f) projectng cost of 1 from c jk on wth P [] = 1 nd then enforcng NC y projectng cost of 1 from c on c. The resultng prolem s FDPIC. (Algorthm 3, lne 30). The EPIC supports of neghor vrles of cn lso e destroyed (due to new vlues of non-zero cost mde y the enforcement of full PIC supports on ) nd thus re pushed ck to R to e lter checked for EPIC (Algorthm 3, lne 31). DPIC s enforced y the second whle-loop t lne 8. For vrle j P, only vrles tht re lnked to j y trngle (lne 10) nd re the smllest vrle of the trngle (lnes 11, 12) re consdered for checkng for DPIC. PIC s enforced y two whle-loops t lnes 13 nd 18. For vrle j Q, every neghor vrle of s checked for PIC. For ech c j T,, j nd ll vrles connected to oth nd j re checked for PIC. Smple PIC supports re enforced n the reverse drecton of the DAC order,.e. n trngles n whch the consdered vrles re not the smllest (lnes 16-17, 21-23). From Algorthm 4, lgorthms for enforcng other levels of PICs cn e otned y pproprtely keepng the rght nner whle-loops: the frst loop (lnes 4-7) for EPIC, the second one t lne 8 for DPIC, the thrd one t lne 13 for PIC, nd three loops t lnes 8, 13, 18 for FDPIC.

22 22 Hep Nguyen et l. Algorthm 4: Algorthm enforcng EDPIC 1 Procedure enforceedpic() 2 S = P = Q = X; T ; 3 whle Q or P or S or T do 4 R S S, jk {j, k}; 5 whle R do 6 R.pop(); 7 fndepicsupport(); 8 whle P do 9 j P.pop(); 10 forech jk do 11 f ssmllest(, jk )) then fndfullpicsupport(, jk ); 12 f ssmllest(k, jk )) then fndfullpicsupport(k, jk ); 13 whle Q do 14 j Q.pop(); 15 forech jk do 16 f ssmllest(, jk ) then fndpicsupport(, jk ); 17 f ssmllest(k, jk ) then fndpicsupport(k, jk ); 18 whle T do 19 c j T.pop(); 20 forech jk do 21 f ssmllest(, jk ) then fndpicsupport(, jk ); 22 f ssmllest(j, jk ) then fndpicsupport(j, jk ); 23 f ssmllest(k, jk ) then fndpicsupport(k, jk ); 24 PruneVrs() 5.2 Enforcng mxrpcs In contrst to PICs tht re enforced on trngles shrng vrle, mxrpcs re enforced on trngles shrng two vrles of nry cost functon. The extensle rc support of vlue (, ) n nry cost functon c j s stored n mxrpcsupport[,, j] nd the wtness for ths support on vrle k s stored n mxrpcwtness[,, j, k]. In our lgorthms for enforcng soft mxrpcs, we wll use prmeter nmed fulllevel, where fulllevel = flse ndctes tht sem-fully extensle rc supports re used (FDmxRPC) nd fulllevel = true ndctes tht fully extensle supports re used (EmxRPC). We wll use the followng functons: jk (,, c) = c k (, c) + c jk (, c) + c jk (,, c): denotes the ncompletely comned cost of tuple (,, c) (excludng c j (, ) from jk (,, c)). k j(, ) =mn c Dk jk (,, c) denotes the mnmum ncompletely comned cost of tuples nvolvng two vlues (, j ). Ths s the mxmum cost tht cn e projected on the pr of vlues (, j ) from two sdes c k, c jk of the trngle jk wthout cretng negtve costs.

23 Trngle-sed Consstences for Cost Functon Networks 23 rgmn k j(, ) s used to denote vlue c D k for whch ths mnmum s reched. It s smple wtness for the pr (, ) on the vrle k. mn{ jk (,, c) + c k (c)} (fulllevel = true) ( < k) k j(,, fulllevel) = c D k mn{ jk (,, c)} (fulllevel = flse) c D k s smlr to k j(, ) ut t tkes nto ccount the unry cost c k of wtnesses n the cse of (1) fully extensle (fulllevel=true) or (2) sem-fully extensle rc supports on trngles w.r.t DAC order ( < k). rgmn k j(, ) s used to denote the vlue c D k for whch ths mnmum s reched. It s (full) wtness for the pr (, ) on the vrle k. j (, ) = k { k j(, )} s the mxmum sum of costs tht cn e projected on the pr of vlues (, j ) from ll trngles jk shrng, j. j (,, fulllevel) = k { k j(,, fulllevel)} s smlr to j (, ) ut tkes nto ccount the unry costs of wtnesses c k ccordng to fulllevel nd the order etween nd k s n the defnton of k j Enforcng mxrpc supports nd wtnesses Smple mxrpc support for vlue (, ) on c j s enforced y Procedure fndmxrpcsupport n Algorthm 5. The mn de s to move costs from two sdes c k, c jk of ll trngles jk to c j v c jk (lnes 18-20) nd fnlly project costs from c j to (, ) (lne 21) n such wy tht, for ech trngle jk, there exsts vlue D j nd vlue c D k such tht the nry nd ternry costs nvolved n the tuple (, j, k c ) decrese to 0. The mxmum cost P tht cn e projected to (, ) wthout cretng negtve costs s the mnmum over ll D j of the nry cost of (, j ) tht cn e otned y comnng the orgnl cost c j (, ) nd the cost tht cn e shfted to t from ll trngles (computed y functon j, lne 8).From ths, t ecomes possle to compute the ctul cost P j [, ] tht ech trngle jk provdes to (, j ) for ths mount of projecton to (, ). It s the mnmum of wht s needed for ths pr of vlues (P c j (, )) nd of wht cn e provded for t y jk (lne 13). Ths condton gurntees tht c j hs enough costs to mke unry cost projecton P on (, ) wthout cretng negtve costs. Moreover, f more cost s projected on c j, ths cnnot led to unry cost projecton greter thn P. In order to project cost of P j [, ] from c jk to (, j ) (lne 20), ech sde (, k c ) nd (j, k c ) hs to extend n mount of cost E k [, c] nd E jk [, c] to c jk (lnes 19 nd 18). These nry cost extensons E k [, c], E jk [, c] re lso the mnmum of the vlle cost c k (, c), c jk (, c) tht (, k c ), (j, k c ) hve nd the cost tht they need to provde to c jk (lnes 15, 17). Full mxrpc supports (coverng oth fully extensle supports for EmxRPC nd sem-fully extensle for FDmxRPC) re enforced y fndfullmxrpcsupport n Algorthm 5. The de for enforcng full mxrpc support for vlue (, ) on c j s to extend unry costs from j to c j (lne 28) nd from thrd vrles k to c k (lne 32). Then, costs re moved n the sme wy s for smple

24 24 Hep Nguyen et l. mxrpc support n Procedure fndmxrpcsupport (lne 33). The mxmum cost P tht cn e projected on (, ) s recomputed y tkng nto ccount the unry cost c j of supportng vlues nd the unry costs c k of wtnesses v (lne 25). In order to cheve ths unry projecton, ech vlue (j, ), (k, c) needs to extend respectvely on c j nd c k n mount of cost E j, E k (lnes 27 nd 31). The order n whch costs re moved when enforcng full mxrpc supports s descred n Fgure 15. An EmxRPC support for vrle s enforced thnks to Procedure fndemxrpcsupport() n Algorthm 5. It frst checks the EmxRPC property t lne 36. If there does not exst ny EmxRPC support (lne 37), the procedure wll serch for full mxrpc support for ny vlue of n ny cost functon c j y cllng fndfullmxrpcsupport wth the opton fulllevel=true. It only hs to tke cre of the trngles jk n whch s the smllest vrle, ecuse DmxRPC tkes cre of the remnng cses (the condton t lne 29 of Procedure fndfullmxrpcsupport). Fg. 15 The order of cost movements for enforcng smple full mxrpc supports where unry cost extensons re not ncluded n the enforcement of smple PIC supports. Exmple 3 Consder the CFN() n Fgure 16. It s FDPIC ut not FDmxRPC ecuse hs no full AC support n c j whch cn e cn e extended on oth jk nd jl : (, j ) cn e extended on jl ut not on jk whle (, j c ) cn e extended on jk ut jl. The postve projecton/extenson costs computed y Procedure fndfullmxrpcsupport(,, j, flse) re: P = 2, E j [] = 1. The procedure extends cost of 1 from j on c j nd then clls f ndmxrp C(,, j) whch computes the followng postve projectons/extenson costs: P = E jk [, ] = P j [, ] = E jl [c, ] = E jl [c, ] = P j [, ] = 2. The fnl prolem presented n Su-fgure 16(g) s FDmxRPC. Let j e vrle tht hd chnge n the domn D j or n unry cost c j (ncresng from 0). The former cse cn rek the wtness for smple or sem-full supports of vrle neghor to j n some c j, whle the lst cse cn rek the wtness for sem-full nd full supports. The check nd serch for new wtnesses s performed y Algorthm 6. Procedure fndwtness remove (, k, j) hndles the cse of domn reducton n D j. For ny vlue (, ), t checks the vllty of ts current (smple or sem-full) support n c k (lne 5, lgorthm 6), s well s the vllty of

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Pyramid Algorithms for Barycentric Rational Interpolation

Pyramid Algorithms for Barycentric Rational Interpolation Pyrmd Algorthms for Brycentrc Rtonl Interpolton K Hormnn Scott Schefer Astrct We present new perspectve on the Floter Hormnn nterpolnt. Ths nterpolnt s rtonl of degree (n, d), reproduces polynomls of degree

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

An Ising model on 2-D image

An Ising model on 2-D image School o Coputer Scence Approte Inerence: Loopy Bele Propgton nd vrnts Prolstc Grphcl Models 0-708 Lecture 4, ov 7, 007 Receptor A Knse C Gene G Receptor B Knse D Knse E 3 4 5 TF F 6 Gene H 7 8 Hetunndn

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert Demnd Demnd nd Comrtve Sttcs ECON 370: Mcroeconomc Theory Summer 004 Rce Unversty Stnley Glbert Usng the tools we hve develoed u to ths ont, we cn now determne demnd for n ndvdul consumer We seek demnd

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Advanced Machine Learning. An Ising model on 2-D image

Advanced Machine Learning. An Ising model on 2-D image Advnced Mchne Lernng Vrtonl Inference Erc ng Lecture 12, August 12, 2009 Redng: Erc ng Erc ng @ CMU, 2006-2009 1 An Isng model on 2-D mge odes encode hdden nformton ptchdentty. They receve locl nformton

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

3/6/00. Reading Assignments. Outline. Hidden Markov Models: Explanation and Model Learning

3/6/00. Reading Assignments. Outline. Hidden Markov Models: Explanation and Model Learning 3/6/ Hdden Mrkov Models: Explnton nd Model Lernng Brn C. Wllms 6.4/6.43 Sesson 2 9/3/ courtesy of JPL copyrght Brn Wllms, 2 Brn C. Wllms, copyrght 2 Redng Assgnments AIMA (Russell nd Norvg) Ch 5.-.3, 2.3

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example.

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example. CIS587 - rtfcl Intellgence Uncertnty K for medcl dgnoss. Exmple. We wnt to uld K system for the dgnoss of pneumon. rolem descrpton: Dsese: pneumon tent symptoms fndngs, l tests: Fever, Cough, leness, WC

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that us. Introducton he us s the nverse of the us,.e., () Snce we now tht nd therefore then I V () V I () V I (4) So us reltes the nodl current njectons to the nodl voltges, s seen n (4). In developng the power

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potentl nd the Grnd Prtton Functon ome Mth Fcts (see ppendx E for detls) If F() s n nlytc functon of stte vrles nd such tht df d pd then t follows: F F p lso snce F p F we cn conclude: p In other

More information

Convert the NFA into DFA

Convert the NFA into DFA Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

A New Algorithm Linear Programming

A New Algorithm Linear Programming A New Algorthm ner Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tlk Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.com Astrct In ths pper we propose two types of new lgorthms for lner progrmmng. The frst

More information

Work and Energy (Work Done by a Varying Force)

Work and Energy (Work Done by a Varying Force) Lecture 1 Chpter 7 Physcs I 3.5.14 ork nd Energy (ork Done y Vryng Force) Course weste: http://fculty.uml.edu/andry_dnylov/techng/physcsi Lecture Cpture: http://echo36.uml.edu/dnylov13/physcs1fll.html

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions: Physcs 121 Smple Common Exm 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7 Nme (Prnt): 4 Dgt ID: Secton: Instructons: Answer ll 27 multple choce questons. You my need to do some clculton. Answer ech queston on the

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market CHAPTER - 7 Frefly Algorthm sed Strtegc Bddng to Mxmze Proft of IPPs n Compettve Electrcty Mrket 7. Introducton The renovton of electrc power systems plys mjor role on economc nd relle operton of power

More information

Investigation phase in case of Bragg coupling

Investigation phase in case of Bragg coupling Journl of Th-Qr Unversty No.3 Vol.4 December/008 Investgton phse n cse of Brgg couplng Hder K. Mouhmd Deprtment of Physcs, College of Scence, Th-Qr, Unv. Mouhmd H. Abdullh Deprtment of Physcs, College

More information

2.12 Pull Back, Push Forward and Lie Time Derivatives

2.12 Pull Back, Push Forward and Lie Time Derivatives Secton 2.2 2.2 Pull Bck Push Forwrd nd e me Dertes hs secton s n the mn concerned wth the follown ssue: n oserer ttched to fxed sy Crtesn coordnte system wll see mterl moe nd deform oer tme nd wll osere

More information

An Introduction to Support Vector Machines

An Introduction to Support Vector Machines An Introducton to Support Vector Mchnes Wht s good Decson Boundry? Consder two-clss, lnerly seprble clssfcton problem Clss How to fnd the lne (or hyperplne n n-dmensons, n>)? Any de? Clss Per Lug Mrtell

More information

Solution of Tutorial 5 Drive dynamics & control

Solution of Tutorial 5 Drive dynamics & control ELEC463 Unversty of New South Wles School of Electrcl Engneerng & elecommunctons ELEC463 Electrc Drve Systems Queston Motor Soluton of utorl 5 Drve dynmcs & control 500 rev/mn = 5.3 rd/s 750 rted 4.3 Nm

More information

ψ ij has the eigenvalue

ψ ij has the eigenvalue Moller Plesset Perturbton Theory In Moller-Plesset (MP) perturbton theory one tes the unperturbed Hmltonn for n tom or molecule s the sum of the one prtcle Foc opertors H F() where the egenfunctons of

More information

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract Stochstc domnnce on optml portfolo wth one rsk less nd two rsky ssets Jen Fernnd Nguem LAMETA UFR Scences Economques Montpeller Abstrct The pper provdes restrctons on the nvestor's utlty functon whch re

More information

Systematic Construction of examples for cycling in the simplex method

Systematic Construction of examples for cycling in the simplex method Systemtc Constructon of emples for cyclng n the smple method Prof. r. Peter Zörng Prof. Assocdo Unversdde de Brsíl UnB eprtmento de Esttístc e-ml: peter@un.r ) Lner progrmmng prolem cnoncl form: stndrd

More information

On a direct solver for linear least squares problems

On a direct solver for linear least squares problems ISSN 2066-6594 Ann. Acad. Rom. Sc. Ser. Math. Appl. Vol. 8, No. 2/2016 On a drect solver for lnear least squares problems Constantn Popa Abstract The Null Space (NS) algorthm s a drect solver for lnear

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service Dynmc Power Mngement n Moble Multmed System wth Gurnteed Qulty-of-Servce Qnru Qu, Qng Wu, nd Mssoud Pedrm Dept. of Electrcl Engneerng-Systems Unversty of Southern Clforn Los Angeles CA 90089 Outlne! Introducton

More information

The Study of Lawson Criterion in Fusion Systems for the

The Study of Lawson Criterion in Fusion Systems for the Interntonl Archve of Appled Scences nd Technology Int. Arch. App. Sc. Technol; Vol 6 [] Mrch : -6 Socety of ducton, Ind [ISO9: 8 ertfed Orgnzton] www.soeg.co/st.html OD: IAASA IAAST OLI ISS - 6 PRIT ISS

More information

PHYS 2421 Fields and Waves

PHYS 2421 Fields and Waves PHYS 242 Felds nd Wves Instucto: Joge A. López Offce: PSCI 29 A, Phone: 747-7528 Textook: Unvesty Physcs e, Young nd Feedmn 23. Electc potentl enegy 23.2 Electc potentl 23.3 Clcultng electc potentl 23.4

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

A Family of Multivariate Abel Series Distributions. of Order k

A Family of Multivariate Abel Series Distributions. of Order k Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind

More information

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1 mercn Interntonl Journl of Reserch n cence Technology Engneerng & Mthemtcs vlble onlne t http://wwwsrnet IN (Prnt: 38-349 IN (Onlne: 38-3580 IN (CD-ROM: 38-369 IJRTEM s refereed ndexed peer-revewed multdscplnry

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Lner nd Nonlner Optmzton Ynyu Ye Deprtment of Mngement Scence nd Engneerng Stnford Unversty Stnford, CA 9430, U.S.A. http://www.stnford.edu/~yyye http://www.stnford.edu/clss/msnde/ Ynyu Ye, Stnford, MS&E

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Computing a complete histogram of an image in Log(n) steps and minimum expected memory requirements using hypercubes

Computing a complete histogram of an image in Log(n) steps and minimum expected memory requirements using hypercubes Computng complete hstogrm of n mge n Log(n) steps nd mnmum expected memory requrements usng hypercubes TAREK M. SOBH School of Engneerng, Unversty of Brdgeport, Connectcut, USA. Abstrct Ths work frst revews

More information

A Tri-Valued Belief Network Model for Information Retrieval

A Tri-Valued Belief Network Model for Information Retrieval December 200 A Tr-Vlued Belef Networ Model for Informton Retrevl Fernndo Ds-Neves Computer Scence Dept. Vrgn Polytechnc Insttute nd Stte Unversty Blcsburg, VA 24060. IR models t Combnng Evdence Grphcl

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Smart Motorways HADECS 3 and what it means for your drivers

Smart Motorways HADECS 3 and what it means for your drivers Vehcle Rentl Smrt Motorwys HADECS 3 nd wht t mens for your drvers Vehcle Rentl Smrt Motorwys HADECS 3 nd wht t mens for your drvers You my hve seen some news rtcles bout the ntroducton of Hghwys Englnd

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

Linear Inequalities. Work Sheet 1

Linear Inequalities. Work Sheet 1 Work Sheet 1 Liner Inequlities Rent--Hep, cr rentl compny,chrges $ 15 per week plus $ 0.0 per mile to rent one of their crs. Suppose you re limited y how much money you cn spend for the week : You cn spend

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Scence Prolstc Grphcl Models Vrtonl Inference Erc ng Lecture 13, Ferury 24, 2014 Redng: See clss weste Erc ng @ CMU, 2005-2014 1 Inference Prolems Compute the lelhood of oserved dt Compute

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus 7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17 EECS 70 Discrete Mthemtics nd Proility Theory Spring 2013 Annt Shi Lecture 17 I.I.D. Rndom Vriles Estimting the is of coin Question: We wnt to estimte the proportion p of Democrts in the US popultion,

More information

Lecture 2: January 27

Lecture 2: January 27 CS 684: Algorithmic Gme Theory Spring 217 Lecturer: Év Trdos Lecture 2: Jnury 27 Scrie: Alert Julius Liu 2.1 Logistics Scrie notes must e sumitted within 24 hours of the corresponding lecture for full

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Phscs for Scentsts nd Engneers I PHY 48, Secton 4 Dr. Betr Roldán Cuen Unverst of Centrl Flord, Phscs Deprtment, Orlndo, FL Chpter - Introducton I. Generl II. Interntonl Sstem of Unts III. Converson of

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Haddow s Experiment:

Haddow s Experiment: schemtc drwng of Hddow's expermentl set-up movng pston non-contctng moton sensor bems of sprng steel poston vres to djust frequences blocks of sold steel shker Hddow s Experment: terr frm Theoretcl nd

More information

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get rgsdle (zdr8) HW6 dtmre (58335) Ths prnt-out should hve 5 questons Multple-choce questons my contnue on the next column or pge fnd ll choces efore nswerng 00 (prt of ) 00 ponts The currents re flowng n

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

Sequences of Intuitionistic Fuzzy Soft G-Modules

Sequences of Intuitionistic Fuzzy Soft G-Modules Interntonl Mthemtcl Forum, Vol 13, 2018, no 12, 537-546 HIKARI Ltd, wwwm-hkrcom https://doorg/1012988/mf201881058 Sequences of Intutonstc Fuzzy Soft G-Modules Velyev Kemle nd Huseynov Afq Bku Stte Unversty,

More information

ICS 252 Introduction to Computer Design

ICS 252 Introduction to Computer Design ICS 252 Introducton to Computer Desgn Prttonng El Bozorgzdeh Computer Scence Deprtment-UCI Prttonng Decomposton of complex system nto smller susystems Done herrchclly Prttonng done untl ech susystem hs

More information