Abstract tensor systems and diagrammatic representations

Size: px
Start display at page:

Download "Abstract tensor systems and diagrammatic representations"

Transcription

1 Astrt tensor systes n grt representtons Jāns Lzovss Septeer 28, 2012 Astrt The grt tensor lulus use y Roger Penrose ost notly n [7]) s ntroue wthout sol thetl grounng. We wll ttept to erve the tools of suh syste, ut n roer settng. We show tht Penrose s wor oes fro the grston of the syetr lger. Le lger representtons n ther extensons to not theory re lso susse. Contents 1 Astrt tensors n erve strutures Astrt tensor notton Soe s opertons Tensor grs A grse strt tensor syste Generton Tensor onepts Representtons of lgers The syetr lger Le lgers The tensor lger Tg) The syetr Le lger Sg) The unversl envelopng lger Ug) The etrze Le lger Dgrston wth lner for Dgrston wth syetr lner for Dgrston wth syetr lner for n n orthonorl ss Dgrston uner -nvrne The unversl envelopng lger Ug) for etrze Le lger g Ensung onnetons 32 A Appenx 35 Note: Ths wor reles hevly upon the text of Chpter 12 of rft of An Introuton to Quntu n Vsslev Invrnts of Knots, y Dv M.R. Json n In Mofftt, yet-unpulshe oo t the te of wrtng. 1

2 1 Astrt tensors n erve strutures Our pproh s to egn wth the oon tensor struture, generlze to strt tensors where ssoton wth unque vetor spe s relxe), n fnlly to nterpret the strt tensors s rete grphs of spef sort - we shll ll these tensor grs. Let us egn wth soe nottonl rers. 1.1 Astrt tensor notton Let V e n n-ensonl vetor spe wth ss {v 1,..., v n }, n V ts ul vetor spe, wth ul ss {v 1,..., v n }. We use the onventon of representng vetor spe V tensore wth tself tes y V ) V V. }{{} tes Defnton Astrt tensor. An strt tensor s n eleent w W V r1 V s1 V r V s, whh s tensor prout of the spes V, V n soe fxe onton n orer. The rrngeent of the nees s prt of strt nex notton, n entfes the orer of the tensore vetor spes. The followng presentton of suh generl tensor shoul e seen s eng on sngle lne. w α 1,...,r f 1 1,...,f r 1,..., r1 : g 1,...,g s 1,..., s1 g 1,...,g s v 1 v r1 v 1 v s 1 vf1 v fr v g1 v gs 1.1) suh tht r 1,..., r, s 1,..., s N {0}. Low-ensonl tensors re qute oon n thets, n they hve een gven oon nes: A tensor wth no upper nor lower nees s tere slr A tensor wth one nex upper or lower) s tere vetor A tensor wth two nees upper or lower or ny onton of the two) s tere trx Conventons. Beuse of ths lengthy presentton, even for sple tensors, we use the nexe oeffent n the sun of w equvlently s w, notng tht one s esly reoverle fro the other. Tht s, w α 1,...,r 1 f 1,...,f r 1,..., s1 g 1,...,g s v 1 v gs α 1,...,r 1 f 1,...,f r 1,..., s1 g 1,...,g s Here we norporte Ensten s shorthn of elntng the suton syol. For longer lultons esrous of ore thorough ount, we wll rng the suton syol. It s unerstoo tht the suton tes ple over ll repete nees. Reovng the ss tensors whh potentlly) repet nees, wll pose no prole, s we then su over ll nees pperng n the upper n lower postons of the strt tensor syol, tng re to note ultpltes. In 2.1 we prove tht ths uses no onfuson. We lso follow syol onventon. Tensors wll e represente y Gree letters α, β,... ) n tensor nees wll e gven y possly nexe) Ltn letters,,... ). An exepton s slrs, whh we wll soetes represent y λ, λ 1, λ 2,.... In generl, no one spef syol s ssote to one spef oet, ut gn we e n exepton for the Kroneer-elt syol n tensor) δ, n the Le ret tensor γ, eh of whh we use wth spef enng. Any slrs susse re ssue to e over oon fel, usully ut not neessrly) C. Any fel y e use. 2

3 1.2 Soe s opertons Let us onser soe strt tensor opertons. Together they e up wht s nown s tensor lulus, whh s essentlly the forlzton of nex npulton. All these opertons n e erve fro the proper exhustve efnton of n strt tensor n strt nex notton. Renexton. Tensor nees y e relelle s esre, s long s the lel s not lrey n use y nother nex of the tensor. For exple, α α v v α z v v z α z Slr ultplton. Tensors y e ultple y slrs over our fel, s well s groupe together y slrs. For exple, gven slr λ, λ α λ α v v ) Aton. Aton of tensors nee not our over oon spe, s ths s ust forl su. If tensors re of the se type, then t y e possle to one the, though we wll not o tht, s nforton s lost y ong so. Exples of generl ton n spel se re β e + χ gh β e v v v e + χ gh v g v h v α + α 2α v v Tensor prout. The tensor prout lso oes not neessrly our over oon spe, ut even f t oes, there s no spel splfton. The nees etween the tensors re requre to not one. For exple, β e α β e v v v v v e α Contrton. We y entfy one upper nex wth one lower nex y the ontrton operton, therey ssgnng the the se lel. We use the opertor syol κ, to enote entfton of the th n th nees of ρ. For exple, κ 2,4 α β ) e α β e α β e v v v v v e The generl e of opertons wthn tensor lulus s tht we o not hve uh leewy n splfton. By ovng to strt tensor systes, we ntroue outtvty of the prout, ong other reutons. Aopnyng strt tensors s nother syste tht grses strt tensors n n effetve wy. Ths entfton wll e etve y onstruton. We shll now esre ths syste. 1.3 Tensor grs Defnton Prtve tensor gr. A prtve tensor gr s rete grph wth n 1 vertes n 1 onnete oponent suh tht n 1 vertes hve egree 1 every ege s orente n one of two retons every ege s gven unque lel there s preefne lowse orerng of the eges The vertex wth the lrgest egree s the stngushe vertex of the grph. If n 1, the stngushe vertex s the sole vertex; for n 2 eson s e; n for n 3 t s the only vertex wth egree 2. 3

4 The prtve tensor gr elow hs 4 vertes, wth eges rrnge,,, n s entfe y to the strt tensor α. α 1.2) The stngushe vertex s enote y syol grphlly lrger thn the other noes. To fx the orerng of the eges, we ple the nhor syol n the spe tht ves the frst fro the lst orere ege. The frst ege n the orerng s then retly n front of, wth respet to the lowse reton, the nhor. Prtve tensor grs re llowe to hve loops, n whh se we reove the lel of the ege. y x β xz y z 1.3) Defnton Copoun tensor gr. A opoun tensor gr s grph wth 1 onnete oponent resultng fro entfyng eges of fferent prtve tensor grs wth opposte orentton. Eges tht re entfe etween stngushe vertes lso hve ther lels entfe, n thus reove n the gr. For exple, α g h βh χ l l g 1.4) Defnton Tensor gr. A tensor gr s rete grph suh tht every onnete oponent s ether prtve tensor gr or opoun tensor gr An exple of tensor gr wth 2 onnete oponents s f α β e γf g h χ l l 1.5) g h e 4

5 Note tht the hoe of prout orer of the strt tensor on the rght-hn se s not portnt, s the prout s outtve see 2.1). The grphl shpe of eh stngushe vertex only ntes tht ll tensors n gven gr re not the se. We nee not eep wth, sy, enotng α y rle, n nee we shll not. Exeptons re e for tensors tht wll e entrl to our nlyss, s prevously entone. The grphl rrngeent of the eges n vertes s not portnt, s long s the orer n whh the eges onnet to the stngushe vertex s respete. Therefore, we y ple stngushe vertes n lelle eges wherever we wsh n gr. In other wors, pplyng sooth ps to the gr oes not hnge the tensors t grses. For exple, e 1.6) e We prefer to eep ege lels rrnge n two rows, ross the top n otto of the gr, though the rrngeent s rtrry. Ths herene to ertn spet of presentton s ept throughout for ese of reng. Rer Wth regrs to notton, s lrey use, we eploy the followng syols: entfton etween n strt tensor n tensor gr equvlene of strt tensors n vetor spes uner soorphs equlty of slrs, strt tensors, vetor spes, or tensor grs For the syol, we l tht there s 1-1 orresponene etween strt tensors n tensor grs. Ths s ler fro the followng retves. Go roun the ounry of every stngushe vertex, strtng fro the nhor, n lowse reton, rng eges wth unque lels, notng whether eges re rete towr or wy fro t. The lels of the eges rete towr the stngushe vertex eoe susrpts, n the ones rete wy eoe supersrpts. Eges tht hve oth ens nent wth stngushe vertex hve ther lels entfe wth eh other. The orerng of the strt tensors oes not tter, s strt tensor systes re outtve. Astrt tensor systes re outtve n the sense tht there exst soorphss etween V V n V V, s well s etween V V V n V V V, n so on, s there s no hnge n enson. Thus for ss {v 1,..., v 6 } of V n ul ss {v 1,..., v 6 } of the ul spe V wth λ 1, λ 2 C, we wrte λ 1 v 1 v 3 λ 1 v 3 v 1 n λ 2 v 4 v 6 v 1 λ 2 v 4 v 1 v 6 It s portnt to note tht ths use of soorphss s llowle only f V s fnte-ensonl, whh t wll lwys e for our susson. We wll oupy ourselves n lrge prt wth the forulton of slr soorphss nto equltes etween tensor grs. 5

6 Proposton Twst soorphs. Let us efne for lter use, the splest soorphs. Let U e n n-ensonl vetor spe wth ss {u 1,..., u n }, n V e n -ensonl vetor spe wth ss {v 1,..., v }, n λ C. Then there exsts p T suh tht T : U V V U λ u v T λ) v u for ll 1 n n 1. Ths p s generte y entfyng the ss {u 1 v 1,..., u n v } of U V to {v 1 u 1,..., v u n }, whh s the ss of V U. Sne T s etve orphs, we n fn ts nverse p T 1 : V U U V. 2 A grse strt tensor syste An strt tensor syste s set of strt tensors long wth opertons tng on the strt tensors. 2.1 Generton If the eleents n grt tensor syste re presely the eleents whh rse through the opertons elow tng on gven set of S of grs, then we sy tht S genertes the grt tensor syste. Renexton. By ressgnng fferent syols s nees, we re not hngng the vlue of the tensor, only ts presentton. Renexton s slly renng wth new syol tht oes not lrey pper s n nex, thus ny new lels ssgne re rtrry. α α v v v v α g f v f v v g v α g f f 2.1) α α g f g Slr ultplton. Slr ultplton of the strt tensor s slr ultplton of the forl tensor. In the followng tensor gr, the slr λ C s ple to the rght of the stngushe vertex t ffets. Ths n lwys e one n nner tht oes not ntroue onfuson, s eges y e ove roun n the gr. λ α λα v v v v 2.2) λ α λ 6

7 Aton. As forl operton, ton oes not requre eleents of the se type. g α + β ef α v v v v + β g ef v e v f v g α + β g ef + e 2.3) g f Every tensor gr tht represents ter n the su shoul e seprte fro the the other tensor grs. If the types of the two tensors re the se, then we y one the. Ths loses the entty ssote wth the strt tensor tht we egn wth, ut oes splfy presentton. For exple, e f γ + β γ v v f v + β v v e v f e γ v v v + β v v v 2.4) γ + β ) v v v χ v v v 2.5) χ + 2.6) f e By nex renng we get 2.4), n y ton 2.5). Here we hve tht the su of two tensors n gven spe s nother unnown) tensor n tht se spe, whh s wht 2.6) grses - note the hnge fnl shpe. Thus ton wth slr ultplton fors vetor spe of strt tensors. Tensor prout. The operton : V V V V nvolves onng two tensors nto sngle tensor. For lrty, we requre tht the two seprte tensors o not hve ny oon nees, esly ensure y renexton. Any slrs tht the tensors ght hve re ultple together. α βef α g β g ef β g ef α e f e f e f 2.7) g g g 7

8 We nnot stngush extly whh vetor spe the ove eleent s n, so nste we vew t s eng n oth V ) 2 V V ) 3 V n V ) 2 V V ) 2 V V onurrently. The prout operton s strutve over ton. We wll further ot the syol, when tensor ultplton s unerstoo. ) θ h α + β g ef θ h α + θ h β g ef Contrton. We efne n operton tht sets equl the lels of n upper-lower pr of nees. For tensor ρ, the ontrton κ, ρ) wll set the th n th nees equl to eh other. Extly one of the nees to e ontrte ust e lower nex, n extly one ust e n upper nex. After entfton, we y ove to lower-ensonl vetor spe, rellng tht ths ove wll lose us nforton. κ 1,3) α ) κ 1,3) α v v v v ) α v v v v β v v 2.8) β f α then κ 1,3 α ) 2.9) When pplyng the ontrton p to tensor tht s the prout of other tensors, re ust e ten, s the nees nte n the susrpt of κ refer to the orer of nees n the rguent. Thus ) ) κ 4,7) α β g ef α β ef κ 4,7) β g ef α β g ef α Through ths operton we y reue the rn of the tensor y two. Ientl upper-lower nees re tere uy nees. Thus we y onser the tensor n lower ensonl spe. β β v v v v v β 1 1 v 1 v v v 1 v + + β n n v n v v v n v 2.10) β 1 1 v 1 v 1 v v v + + β n n v n v n v v v 2.11) γ v v v + + χ v v v φ v v v φ The orgnl tensor s n eleent n V V ) 3 V. By expnng n 2.10) over, the repete nex n eh ter oes not ontrute to the type of tht ter. In 2.11) we use s we re pplyng the T soorphs fro Ths lso llows us to fn pproprte tensors γ,..., χ V ) 3 V to put n ple of the prevous ones. Ths lulton s grse y 8

9 2.12) The entfton of the entl eges s nturl, though we y leve the tensor s s wth loope ege, s suh loops re worth onserng when nlyzng nots wth the of these grs. So we see tht we y nsert n reove n upper-lower pr of entl nees n ny esre postons of n strt tensor. Dgrston of strt tensors. The grt tensor syste s generte y equvlenes of strt tensors n tensor opertons wth tensor grs. Eleents of ths syste re tere T V )-grs. 2.2 Tensor onepts Here we suss soe notons unque to tensor grs. The Kroneer elt tensor. Generlly t s efne s funton on two vrles. { 1 δ 0 We wll vew t s tensor. Penrose n [7] uses ths syol wthout tng nto ount the orer of the nees. Sne ther orer n ths exposton s t tes prount, we wll e no suh splfton. We wll hve δ δ v v δ δ v v δ δ 2.13) When the nees te on onrete vlues, we llow the syol to e evlute s slr vlue. For exple, δ1 2 δ3 1 δ n δ1 1 δ2 2 δ Ths proves forl wy of relellng nees. If we wsh to relel the lower nex n gven tensor 9

10 α to nother nex, sy e, we pply the tensor prout to α n δ e. For exple, α δ e α δ e e α δ e + e α δ e 2.14) α δ e 2.15) e α1 δ α2 δ αn δ n n α1 + α2 + + αn αe As Kroneer s elt tensor y e evlute s slr, rerrngent of the su n 2.14) shows tht ost of the ters reue to zero n 2.15), resultng n the se tensor tht we egn wth, now relelle. In grt presentton, e 2.16) e The ove ntes tht we y ept the Kroneer elt tensor s lne,.e. grph wth sngle ege ut no stngushe vertex. Dgrtlly, δ δ 2.17) Ths nterpretton s useful n npultng grs. It shoul lso e note tht elt-tensor y e splt up nto ore elt tensors, nto s ny s esre: δ δ δ δ δ l δ l δ δ δ l δ l... Here we hve only susse the Kroneer elt syol wth n upper-lower pr, so t ght e teptng to onser the syol wth ust n upper pr or lower pr, δ n δ. We put off ths teptton to when the nee for suh syol wll neesstte ts use n 3.6). Equlty. The equlty relton es stteent tht two tensors re entl. When elrng equlty, l s e out he slrs lso. For exple, Ths s equvlently stte s α β 2.18) α v v β v v 10

11 Fully expne, we hve α α v v,, β, β v v Then 2.18) sserts tht, one n re fxe, the followng equton hols for the slrs. α β Suonfgurtons. Ths ter pples to grs generte y our syste. Gven tensor ρ, soltng suset of the stngushe vertes n ll ther ssote legs, we get suonfgurton of the orgnl tensor. For exple, s suonfgurton of g 3 Representtons of lgers The phrse the lger s generte y wll en tht the tensor opertons, esre n the prevous seton, wth the nlue lst of tensors, onstrne y ny nlue restrtons, rng forth every tensor n the lger uner susson. Rell frst soe s fts out the nture n onstruton of lgers. Defnton Alger. Let V e vetor spe over fel F. Defne p p : V V V to e prout on V. Note tht p s lner n eh of ts rguents. Then the pr A V, p) s tere n lger of the vetor spe V enowe wth p. Defnton Tensor lger. Gven vetor spe V over fel F, the tensor lger TV ) over V s efne to e the lger of the vetor spe T V ) n 0 V n F V V V ) V V V ) enowe wth n pproprte prout. Every eleent of ths lger s strtly wthn soe V n for n N {0}, so the prout p s gven y p : V p V q V p+q). We y lso hve tensor lger TA) over n lger A, n whh se the se onstruton, wth A nste of V, hols. The prout on the tensor lger n ths se woul e the ultlner equvlent of the lger prout of A. Proposton Vetor spe soorphs. Let U e n n-ensonl vetor spe wth ss {u 1,..., u n }, n the ul spe U wth ul ss {u 1,..., u n }. Let V e n -ensonl vetor spe wth ss {v 1,..., v }, n the ul spe V wth ul ss {v 1,..., v }. Then there exsts n soorphs esre y T U,V : HoU, V ) U V f f u v The oet f s p, n f represents the slr oeffent of the tensor n the ge. The ton of the p f s gven y: f : U V u f v It s portnt to note tht the oeffents n the ges of f n T U,V re entl. Ths gves us wy to nterpret ps etween vetor spes s eleents n tensor prout of vetor spes. 11

12 3.1 The syetr lger Defnton Syetr lger. The syetr group, or perutton group of orer n s enote y S n. The syetr lger s efne, over vetor spe V over fel F, to e the spe SV ) 0 S ) V ) 0 T ) V ) S where T ) V ) s the tensor lger of the -ensonl vetor spe T V ) enowe wth the tensor prout. The quotent of ths spe y the syetr group llows us to reue the struture of the lger n the followng nner. Proposton Every strt tensor, n equvlently, every tensor gr, esres unque eleent of SV ). Conser n strt tensor. If t hs prtve gr, the entfton s ler. Suppose we hve opoun gr. As note prevously, tensor tht s the prout of two tensors nnot e entfe wth ertnty s elongng to sngle spe, thus to sngle eleent of T V ) euse of outtvty of the prout). In SV ) tensor ppers n ll possle peruttons of ts prtve prts, therefore uulo ths group, they ll esre the se eleent n SV ). Tht eng s, n ths lger the orer of spes n the onstruton of gven tensor s not portnt. For exple, onser the strt tensor β β v v v T 3) V ) In the syetr group we fn s peruttons ll of the yles Therefore we hve s strng of equltes n s tensor grs, β ) ) ) ) ) ) β β β β β 3.1) Rell tht the lels hve no sgnfne pst eng pleholers. So n 3.1) we hve tensor wth equlty ong ll the peruttons of ts eges. Ths les to the onluson tht the nhor n the pose orer of vetor spes n e sregre. Therefore we y reove nhors of tensors n lels of eges n the grston of the syetr lger, eepng only the reton n whh eh ege ponts, even sregrng the ege lels. Therefore n SV ), Ths llows us to grse ths lger. V V V V V V V V V 12

13 Dgrston of the syetr lger SV ). The syetr lger s generte y unlelle T V )- grs wth no nhors. The grt tensor lulus tht Roger Penrose uses n [6],[7],[8]) s n exellent teplte for suh grston, s hs syste es no use of nhors, ut fully opts the other tensor opertons presente n the prevous seton. In hs tensor grs, rete eges re stngushe y where they re lote on the gr, n those tht on two stngushe vertes hve no efnng fetures. 3.2 Le lgers The grston of Le lgers proves soe otvton for Vsslev nvrnts n not theory see [4]), s we shll prtly sover. A Le lger g, [, ]) s n lger g ssote wth lner p [, ]. We wll enote ths pr, n soetes the vetor spe, sply y g. Ths wll hopefully not use ny onfuson s t wll e e ler wht oet we re referrng to t eh nstne. Defnton Le ret. The lner p [, ] Hog g, g) of Le lger g, tere the Le ret, s efne y [, ] : g g g x y [x, y] stsfyng the followng reltons, for ll x, y, z g. [x, y] [y, x] [x, [y, z]] + [z, [x, y]] + [y, [z, x]] 0 R1) R2) The relton R1) s nown s the nt-syetr relton, n R2) s the Jo relton. In ths seton we wll suss the n-ensonl vetor spe V s g wth ss {v 1,..., v n } n ts ul spe V s the ul Le lger g wth ul ss {v 1,..., v n }. An eleent n the vetor spe g y e represente y α v s tensor. Then we ssote the strt tensor α wth α v, n grse ths eleent y α 3.2) Anlogously, ny eleent n the vetor spe g y e represente n the for α v for soe slrs α 1,..., α n. Then we ssote the tensor α wth α v, n grse ths eleent y α 3.3) As [, ] Hog g, g), for soe slrs β we hve [v, v ] β v 3.4) [v, [v, v ]] [v, l β l v l ] l β l [v, v l ] l, β l κ v 3.5) 13

14 It sees tht the onstnts β shoul soehow epen on v n v, otherwse they woul e the se no tter wht tensors we put n, ounter-ntutve result. Rell the vetor spe soorphs We wsh to pply t to 3.4) n 3.5), so onserng ther ent spes, we see tht T g g,g [v, v ] ) g g) g g g g. Applyng T g g,g to 3.4), T g g,g [v, v ]),, γ v v v Now the slr shows the ontruton of the nees n. Slrly we hve T g g g,g [v, v, v ] ) g g g) g g g g g, n pple to 3.5), T g g g,g [v, [v, v ]]),,, γl γ l v v v v Now we now enough to grse the Le ret. Ths s one s [, ] γ 3.6) Fro now on we wll represent the Le ret s the strt tensor γ n wth rulr gr n ts tensor grston. We n now restte the reltons R1) n R2) n ters of strt tensors n grs, rther thn ps. γl γ l + γ l γ + γ 0 + γ 0 γ l l γ l restteent of R1) restteent of R2) The grston of these tensors follows etely. The nt-syetr relton R1) eoes ) An the Jo relton R2) eoes ) So fr we hve only nspete how the Le ret opertes on prtve tensors, so now we generlze for rtrry tensors ρ, κ to onser [ρ, κ]. But how o we get to n rtrry tensor? Let us onser the splest of eleents n ths lger. These re presente n 3.6) n 3.2). Thus we onser only 14

15 tensor grs retly rsng fro these strt tensors. Whle t s possle to proue other very sple tensors through the prout operton n wth nforton loss), we woul then no longer e le to grse the wth the genertor tensor. In orer of nresng oplexty, they woul e,,,,,, et. 3.9) These grs orrespon to the strt tensors v, [v, v ], [v, [v, v ]], [[v, v ], v ], [[v, v ], [v, v ]], [[v, [v, v ]], v ] So, gven n opes of g,.e. g n, there s ertn nuer of wys tht the Le ret y e opose wth tself to yel prtulr tensor fro ths spe. In generl, gven two spef nestng orers of Le rets ρ [ ] : g p g n κ [ ] : g q g, we wll hve tht [ρ, κ] [[ ], [ ]] : g p+q) g For exple, suh onton oul e gven y: l l [ρ, κ] 3.10) h h The pttern hs now eoe ler. It s portnt to note tht n the grston of the Le lger g y the genertor 3.2) n the Le ret 3.6), every prtve tensor hs only sngle lelle ege rete wy fro the tensor. Wth tht n n, we y now hrterze ths grston. Dgrston of the Le lger g. The eleents of g re generte y Every gr hs extly one lelle ege rete wy fro stngushe vertex. The syste s suet to 15

16 the nt-syetr relton R1) n the Jo relton R2) The Le ret s useful for reung vlene of tensor gr, s t s the only tensor gr wth eges of oth types. For exple, onser the strt tensor α β e To ssote t grtlly wth Le ret, we pply the ontrton operton. )) κ 4,7 κ 1,6 α β e γ α β e γ We strt wth the tensor gr 3.11) e Ientfyng lels, ontrtng the, n rerrngng the whole gr yels the followng result, showng tht the Le ret hs n effet turne n upper nex nto lower nex. e 3.12) e 3.3 The tensor lger Tg) Fro we hve tht every eleent n T ) V ) s lner onton of eleents n V. Any prtulr eleent of V s then gven y the strt tensor α 1...p α 1...p v 1 v p for ll p N. Ths s grse y 16

17 ) p The lels n orresponng eges 3,..., p 1 hve een otte n reple y otte lne. Beuse of the ent spe, ll eges re rete wy fro the stngushe vertex. Note tht for p 1, ths s equvlent to the Le lger genertor 3.2). By 3.1.1, the tensor lger s to e opne y prout, n n ths se we hve ultplton. In the generl settng, Multplton of two fferent tensors s ther sont unon n gr the ts of onnetng the s unerten y the ontrton operton). Sne we hve lrey nlyze Le lger g, y tng the tensor lger of g the struture s unhge, n only new funentl tensors re ntroue. In ontrst wth the Le lger g, t s not true tht there s extly one lele ege rete outwr n eh prtve tensor gr, ue to the ntrouton of these tensors. Dgrston of the tensor lger Tg). The eleents of Tg) re generte y 1 2 p N p The syste s suet to the nt-syetr relton R1) n the Jo relton R2) Eleents of ths syste re tere TV )-grs. 3.4 The syetr Le lger Sg) As note n 3.1), use of the syetr lger s the quotent n quotent spe reoves the lels n nhors ut preserves ege orentton. Therefore we e the ret nlogy to the spler syetr lger n the prevous seton, whle eepng es fro the Le lger. 17

18 Dgrston of the syetr lger Sg). The eleents of Sg) re generte y The syste s suet to the nt-syetr relton R1) n the Jo relton R2) The unversl envelopng lger Ug) Ths lger gves n nterpretton of the Le ret. Ths llows for splfton, whle stll retnng the s struture of g. Gven Le lger g wth ret opertor [, ] : g g g n prout : g g g g, the unversl envelopng lger of g s efne s Tg) Ug) [x, y] x y y x g /[x, y] 0 Our next ts s to fn proper wy to grse x y y x. Bse on our nlyss so fr, t s nturl to hoose the tensor prout s the prout. Rell tht n 2.1 outtve prout ws onstrute, suh tht for tensors ρ, κ we hve ρ κ κ ρ. Although then [ρ, κ] ρ κ κ ρ ρ κ ρ κ 0 Suh stteent woul rener useless the potentl lger struture. However, the Le ret opertes not on n rtrry pr of tensors, ut on pr of tensors n the vetor spe g 1. Dgrtlly speng, ths s equvlent to pr of lele eges rete wy fro ther respetve stngushe vertes. So for ρ, κ Tg). the expresson [ρ, κ] s etter nterprete s [x, y], where x s n outwr ege of the gr of ρ n y s n outwr ege of the gr of κ, n z s the outwr rete ege of the Le ret gr. In vew of ths, t s nturl to nterpret the ntroue efnton of [x, y] s [x, y] xy yx z 3.14) x y x y We hve solte seton of the gr [ρ, κ] on the left-hn se, oservng only the outwr eges x, y n how they onnet to γxy z. Everythng else outse ths rle stys the se n oth ters on the rght-hn se, whh s lner onton of two tensors. Essentlly, eoposton of the Le ret proues two opes of the orgnl gr, one wth nterhnge lels. 18

19 If nste of tensors, we onser ust the Le ret opertor n ts gr, we get the equlty 3.15) Ths llows for renterpretton of grs, s we y reue or nrese the nuer of trvlent vertes n gven grph. Now we y grse ths lger. Dgrston of the unversl envelopng lger Ug). The eleents of Ug) re generte y 1 2 p N p The syste s suet to the nt-syetr relton R1) n the Jo relton R2) s well s n nterpretton of the Le ret gr 3.15) The Le ret eoposton y e represente n nother slr nner, y orerng the lels long lne, or fxng the long rle. Lels re then reove fro the grs, s ther orer hs een fxe. 3.16) 19

20 For tensors hvng the Le ret s suonfgurton, the se eoposton pples. Representng the on suh rles s lso nlogous, ut re ust e ten to / reove noes n eges n n entl nner for ll grs n n equlty - no e eges y en n the shortest seton etween eges on the gr ove. If, for exple, we wsh to eopose the Jo relton, we y esre the ters n fxe rulr grs n expn y 3.16). For eh ter seprtely, ) ) ) Conng the three equtons results n oplete reuton to zero on the rght-hn se, showng the Jo relton s true stteent. 3.6 The etrze Le lger Ths lger hs rh struture, wth roo for ore extensons thn expne upon here Dgrston wth lner for Here we shll ntroue n strt etr through type of stne funton. The etrze Le lger g, [, ],, ) s Le lger g opne y non-egenerte lner for,. See [3] for ore extensve esrpton of lner fors n wht y e oplshe wth the. If g s over fel F, then forlly, : g g F v, v ) f We woul le the ge f of the nput tensors v n v to epen upon n. Conserng the lner p y tself n rellng the vetor spe soorphs we prevously h n 3.0.3, Thus we hve for soe slrs h, Hog g, F) g g) g g, h v v 3.20) 20

21 Fro ths we y grze the lner p. We ssgn to t unque tensor gr shpe., h 3.21) To proure n nlogous tensor wth nwr rther thn outwr rete eges, we note tht y the se vetor spe soorphs, we hve, g g Hog, g ), gvng the p, for the se slrs h s ove, : g g v h v 3.22) Sne we hve non-egenerte lner for,, t s nvertle. Therefore there exsts p, 1 Hog, g) g g As suh we y hrterze t, usng the letter h for ontnuty, y, 1 h v v Fro ths we y grze the nverte lner p., 1 h 3.23) We shll ll these the h-tensors. Sne, 1 s hooorphs fro g to g, we hve nother esrpton wth the se slrs h of ths p, 1 : g g v h v 3.24) These two ps re relte through the Kroneer elt syol, whh we enountere erler n 2.2. Conser v v ), 1, v ), 1 h v ) h, 1 v ) h h v Coprng oeffents, t s ete tht s slrs, h h δ. Ipleentng the struture fro 2.2 wth ths tensor, we now hve tht 21

22 3.25) Slrly perforng n nlogous seres of oves on v, we fn tht h h δ, n grse, 3.26) Whle 3.25) n 3.26) see slr, t shoul e note tht the pleent of the nhor ffers. To one the grstons, t shoul e tht the pleent of the sepont e rrelevnt. No suh splfton n e e yet. We proee wth the grston of ths lger. Dgrston of the etrze Le lger. The eleents of g, [, ],, ) re generte y 1 2 p N p The syste s suet to the nt-syetr relton R1) n the Jo relton R2) s well s two reltons on the h-tensors, 3.25) n 3.26) 22

23 3.6.2 Dgrston wth syetr lner for If the lner for s syetr,.e.,, for ny pproprte rguents,, then the nhor on h y e reove, s,, 3.27) Therefore h h n nlogously h h. Ths llows us to reove one of the h-tensor reltons fro the grston of ths lger. Dgrston of the etrze Le lger wth syetr lner for. The eleents of g, [, ],, ) re generte y 1 2 p N p The syste s suet to the nt-syetr relton R1) n the Jo relton R2) s well the h-tensor relton To vew the Le ret tensor lso wthout n nhor, t s neessry to ssue tht we hve n orthonorl ss, t lest y our pproh Dgrston wth syetr lner for n n orthonorl ss Conser n orthonorl ss {e 1,..., e n }. Ths wll llow us to eonstrte tht the grston of the Le ret s nvrnt uner oveent of the nhor - tht γ γ γ. Begn y splfyng 23

24 ,,l soe tensor expressons. γ h l γ,,,l,,l,,l,,,,l h l γ h l e e e e e l γ 1 h 1l e e e 1 e 1 e l + + γ n h nl e e e n e n e l) γ 1 h 1l e e e l + + γ n h nl e e e l) 3.28) γ 1 h 11 e e e γ n h nn e e e n) 3.29) γ 1 e e e γ n e e e n) γ l e e e l,,l γ l e e e l 3.30) γ l 3.31) In 3.28) we use the ft tht the lner for s syetr, n n 3.29) we expne over l to show tht ny ters reue to zero. For 3.30) we e the swth of upper nex l to lower nex l to oote the ft tht the tensor s n g ) 3 now. The equlty n 3.30) lso ens tht, s slrs, γ γ l for l, whh we use n 3.32) elow. We ontnue n the se nner s ove. γ l h γ l h h γ l h γ l h γ l e e e e e l,,,l,,l h 1 γ 1l e e 1 e 1 e e l + + h n γ nl e e n e n e e l) 3.32) h 1 γ 1l e e e l + + h n γ nl e e e l) h 11 γ 1l e 1 e e l + + h nn γ nl e n e e l) 3.33),l,l γ1l e 1 e e l + + γ nl e n e e l),,l γ l e e e l 3.34),,l γ l e e e l 3.35) γ l γ l 3.36) 24

25 Equton 3.32) uses the ft tht γ γ l s slrs for l, n the nt-syetr relton. The se hnge s e n 3.34) s ove, to oote for the hnge of spe, eepng n n tht slrs hve not hnge. Tht s, s slrs γ l γ l γ l for, whh llows us to reorer the nees n 3.36), ontnung fro the propertes of the relelle Le ret ove. In 3.33) the se hnge s e s n 3.29). Now we one the ove results, n pply the Kroneer elt, s tensor. γ γ γ γ δ δ δ δ δ δ l l δ l δ l γ γ γ l δ l γ δ l δ δ l δ l δ l h l h δ l γ l h δ l 3.37) γ l h δ l γ l δ l 3.38) In 3.37) we use the onluson fro 3.31), n n 3.38) we use 3.36). The rest oes fro npulton wth the Kroneer elt lel ressgnent) n the h-tensor ege reretonng). A slr rguent, gven n full n Appenx A, shows tht γ γ, leng to the onluson tht γ Ths y e grtlly expresse s γ γ 3.39) 3.40) Ths gves us ustfton for reovng the nhor opletely fro the gr of the Le ret, s grse further elow. Now we onser other enefts of hvng n orthonorl ss. It woul see nturl for the h-tensors swth the reton of eges, s they re relte to the Kroneer-elt tensor. Ths ntuton turns out to e orret. Frst note tht e, e e, e δ, where δ the Kroneer-elt syol. Fro 3.20) we hve the entfton, h e e 3.41) In the se the for hs n orthonorl ss, t follows tht h δ, where δ s now the Kroneerelt tensor. Tht s, renterpretng 3.22) n pplyng the prevous efnton, we hve, : g g e δ e e 3.42) 25

26 Ths yels p tht hnges reton of tensor oponent. Inee, gven n rtrry tensor n n rtrry nex fro t, onng t wth the pproprte h-tensor: α 1,...,r 1 f 1,...,f r 1,..., s1 g 1,...,g s h α 1,...,r 1 f 1,...,f r 1,..., s1 g 1,...,g s 3.43) Inste of provng ths n the generl se, we wll show the ehns n n exple. Frst rell tht fro 1.3.5, we lrey hve n soorphs T : U V V U for fnte-ensonl vetor spes U, V. Let U g n V g, gvng ps T : g g g g λ e e T λ) e e T 1 : g g g g λ e e T 1 λ) e e 3.44) By ng the orresponene n ss vetors etween g n the ul ss of g, the nverse p y lso e vewe s T 1 : g ) g ) g ) g ) λ e e T 1 λ) e e 3.45) So then T s n nvoluton,.e. T 1 T n so T 2. Now onser the tensor α h g, whh s equvlent to α. To prove ths we use the long notton of tensor. g α h g e e e e e e g T α h g e e e e e e g T α h g e e e e e e g α g e e e e g T α g e e e g e T αg e e g e e The one oposton of the ps pple ove reues to the entty p. Copose the frst two ps: T ) T ) T ) T ) Apply the next p to the enson-reue p: T ) T ) T )) T ) T ) T ) T )) Apply the lst p: T 2 ) T )) ) T )) T )) T ) T )) T ) T )) T 2 )) ) 4 Ths npulton nvolves, n n rtrry tensor, ovng the nex to e hnge postons forwr resultng n ppltons of T ), reung egree, then ovng postons wr ore ppltons of T ). In totl, T s pple 2 tes, n sne the orer n whh t s pple s reverse gong, every 26

27 pr of ps reues to the entty p, gvng the esre result. Therefore the h-tensors t to sply hnge the reton of n ege. Wth grs n the orresponng strt tensors, 3.46) β f h f β g h g β β h In generl, through the grt reltons 3.47) The otte lnes n the nte n rtrry ege n the esre reton of n rtrry tensor, eepng the se tensor n eh respetve equlty. We y now grse ths lger. Dgrston of the etrze Le lger n n orthonorl ss wth syetr lner for. The eleents of g, [, ],, ) re generte y 1 2 p N p The syste s suet to the nt-syetr relton R1) n the Jo relton R2) s well s the ege-reversng ton 3.47) of the h-tensors 27

28 3.6.4 Dgrston uner -nvrne Defnton Aont p. For x g, efne the ont p x y x : g g y [x, y] Defnton A-nvrne. The lner for, s tere -nvrnt f, for x, y, z g, the followng equlty hols: Or, equvlently, As suh, we y vew [, ], n, [, ] s ps, n the sense tht x y), z y, x z) 3.48) [x, y], z y, [x, z] 3.49) [, ], : g g g F e, e, e ) [e, e ], e γ l e l, e γ l e l, e γ l h l, [, ] : g g g F e, e, e ) e, [e, e ] e, γ e γ e, e γ γ We hoose not to reue ths to elt tensor, ut rther eep the h-tensors s they re. Ths nterpretton llows us to grze 3.49). In eepng wth the progresson of results, we ontnue to ot nhors for the grs of the Le n h-tensors. h h 3.50) Agn, t y see nturl to pply 3.47) to elnte the h-tensors. We hoose not to, s ths oul potentlly use onfuson s to how the Le ret gr opertes. Now we grse ths lger. 28

29 Dgrston of the etrze Le lger n n orthonorl ss wth n -nvrnt syetr lner for. The eleents of g, [, ],, ) re generte y 1 2 p N p The syste s suet to the nt-syetr relton R1) n the Jo relton R2) s well s the ege-reversng ton 3.47) of the h-tensors n the -nvrnt relton 3.50) In the next seton, y onng 3.50) wth 3.16), we re le to proue well nown relton. Ths s the 4-ter relton use n oputton of not nvrnts. 3.7 The unversl envelopng lger Ug) for etrze Le lger g The struture onng the unversl envelopng lger n etrze Le lger wth n orthonorl ss n n -nvrnt syetr lner for wll e enowe wth the Le ret eoposton n the -nvrne relton, whh wll, eploye together, le nely nto stuy of hor grs. In not theory, the 4-ter relton s ost often gven s n equlty of hor grs, ) 29

30 More hors y e e, to eh gr n n entl nner, ut none y en n the shortest gps etween hor ens on the ounry rle. Note tht there re no rete eges, s the lnes n these grs o not nte reton, sne reton s ounter-lowse long the rle. The lnes nte whh ponts re to e entfe together - they re the sngulrtes of the not gr. Now te the relton 3.50) n ssgn fxe postons to the free ens of eges, eeng eh ter n rulr gr. Then 3.16) yels ) As ove, ore tensor grs y e e entlly to the equton, ut none y en n the shortest gps etween ege ens, s tht oul hnge ny grs lyng outse the restrte rle. The hoe of orerng the eges strtng fro the top of the rle s rtrry, n the 4-ter relton s n the ove expnson. So unfor hnge of ntl pont of oservton wll only result n vsul hnge, wth no nfortonl hnge. So f we loo t the nner prt of the ove equton n rotte t 120 egrees ounter-lowse, we get ) An rerrnge, ) Ths now n e seen s the orgnl 4-ter relton n 3.51). The h-tensors n the grs wor to elnte noton of reton, whh s onsstent wth the ft tht hors n hor grs nte only sngulrtes, s entone. We y now grse ths lger. Dgrston of the unversl envelopng lger Ug) for etrze Le lger g. The eleents of Ug) re generte y 1 2 p N p 30

31 The syste s suet to the nt-syetr relton R1) n the Jo relton R2) s well s the ege-reversng ton 3.47) of the h-tensors n the -nvrnt relton 3.50) n n nterpretton of the Le ret gr 3.15) 4 Ensung onnetons Here g wll enote etrze Le lger wth n orthonorl ss n n -nvrnt syetr lner for. In the prevous seton we sw the lger Ug) wth n nhor-less Le tensor n n nterestng nterpretton of the Le ret. Conser the spe U Ug) of tensors generte y unvlent tensors, the h-tensors representng the etr, ), n the Le ret. Then ll grs n U hve vertes of egree 1 or 3, tere untrvlent grs. By the relton n 3.15), trvlent vertes y e elnte fro the gr ltogether. It woul see nturl to onser ths spe s spe of hor grs, whh wll le to the stuy of Vsslev nvrnts. Ths spe y e onsely grse. 31

32 Dgrston of the set U Ug). The eleents of U re generte y The syste s suet to the nt-syetr relton R1) n the Jo relton R2) s well s the ege-reversng ton 3.47) of the h-tensors n the -nvrnt relton 3.50) n n nterpretton of the Le ret gr 3.15) For exple, onser the followng tensor gr 32

33 We now nterpret t n rulr gr orng to 3.7, n e soe splftons to express suh gr wth hor grs. The elow nterpretton s not unque, s the unvlent vertes y e proete n ny esre orer on the rulr seleton. Bvlent vertes the h-tensors) hve sppere, s hor wth vlent vertex hs the se struture s the se hor wthout vlent vertex. Drete eges hve lost reton, s hors n hor grs hve no preeterne reton. By pplyng 3.16, the gr on the rght y e eopose further. A repete pplton ontnues eoposton. + A fnl pplton gves oplete expresson of the tensor gr n ters of hor grs The -nvrnt relton n rulr grs fro 3.51 gves the 4-ter relton of hor grs, gn hghlghtng the slrtes. Therefore ler ssoton y e e etween eleents of U n hor grs, n ssoton tht wll not e pursue further here. 33

34 ,,l A Appenx In we showe tht γ γ h l γ,,,l,,l,,l,,,,l h l γ γ, n here we wll show tht γ γ. We proee ntlly s efore. h l e e e e e l γ 1 h 1l e e e 1 e 1 e l + + γ n h nl e e e n e n e l) γ 1 h 1l e e e l + + γ n h nl e e e l) A.1) γ 1 h 11 e e e γ n h nn e e e n) A.2) γ 1 e e e γ n e e e n) γ l e e e l,,l γ l e e e l A.3) γ l A.4) As prevously, A.1) follows s the lner for s syetr. In A.2) we expn over l to reue zero ters, n A.3) es the swth of upper to lower nex l to oote the hnge of spe. As slrs, γ l for l fro A.3). γ γ l h h γ l h γ l e e e e e,,,l,,l h 1 γ 1l e e 1 e 1 e e l + + h n γ nl e e n e n e e l) A.5) h 1 γ 1l e e e l + + h n γ nl e e e l) h 11 γ 1l e 1 e e l + + h nn γ nl e n e e l),l γ1l e 1 e e l + + γ nl e n e e l),l γ l e e e l,,l γ l e e e l,,l γ l A.6) In A.5) we use the propertes of the h-tensor, n the rest s s efore. Now one the ove results, 34

35 n pply the Kroneer elt tensor. γ γ γ γ γ δ l l δ l δ l δ l δ δ l h l h δ γ l h δ γ l h δ γ l δ γ l δ l γ δ l δ l δ l δ l A.7) A.8) In A.7) we use A.4), n n A.8) we use A.6). The rest oes fro npulton wth the Kroneer elt n the h-tensor. Ths opletes the rguent to prove tht γ γ γ A.9) 35

36 Referenes [1] Ry M. Bowen n C.C. Wng. Introuton to vetors n tensors. Multlner lger Volue 1). Plenu Press, [2] Prerg Cvtnov. Group Theory: rtrs, Le s, n exeptonl groups. Prneton Unversty Press, [3] John Mlnor n Dle Huseoller. Syetr Blner fors. Sprnger-Verlg, [4] Toot Ohtsu. Quntu Invrnts: A stuy of nots, 3-nfols, n ther sets. Worl Sentf, [5] Roger Penrose. Tensor ethos n lger geoetry. PhD thess, Unversty of Crge, [6] Roger Penrose. Struture of spe-te. In Btelle Reontres, pges W.A. Benn, In., [7] Roger Penrose. Appltons of negtve ensonl tensors. In Appltons of Contorl Mthets, pges Ae Press, [8] Roger Penrose. The Ro to Relty: A oplete gue to the lws of the unverse. Jonthn Cpe, Deprtent of Contors n Optzton, Fulty of Mthets, Unversty of Wterloo, Wterloo, Ontro, Cn E-l ress: ns.lzovss@uwterloo. 36

MCA-205: Mathematics II (Discrete Mathematical Structures)

MCA-205: Mathematics II (Discrete Mathematical Structures) MCA-05: Mthemts II (Dsrete Mthemtl Strutures) Lesson No: I Wrtten y Pnkj Kumr Lesson: Group theory - I Vette y Prof. Kulp Sngh STRUCTURE.0 OBJECTIVE. INTRODUCTION. SOME DEFINITIONS. GROUP.4 PERMUTATION

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points.

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points. Prole 3: Crnot Cyle of n Idel Gs In this prole, the strting pressure P nd volue of n idel gs in stte, re given he rtio R = / > of the volues of the sttes nd is given Finlly onstnt γ = 5/3 is given You

More information

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +. Ler Trsfortos d Group Represettos Hoework #3 (06-07, Aswers Q-Q re further exerses oer dots, self-dot trsfortos, d utry trsfortos Q3-6 volve roup represettos Of these, Q3 d Q4 should e quk Q5 s espelly

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M NLELE ŞTIINŢIICE LE UNIERSITĂŢII L.I.CUZ IŞI Toul XLII, s.i, Mtetă, 2001, f.2. STRENGTH IELDS ND LGRNGINS ON GOs 2 M BY DRIN SNDOICI strt. In ths pper we stud the strength felds of the seond order on the

More information

Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences

Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences 548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 Lner Coplexty Over nd Tre Representton of Lepel Cohn Estn Sequenes Tor Helleseth, Fellow, IEEE, Sng-Hyo K, Student Meer, IEEE, nd Jong-Seon

More information

Representing Curves. Representing Curves. 3D Objects Representation. Objects Representation. General Techniques. Curves Representation

Representing Curves. Representing Curves. 3D Objects Representation. Objects Representation. General Techniques. Curves Representation Reresentng Crves Fole & n Dm, Chter Reresentng Crves otvtons ehnqes for Ojet Reresentton Crves Reresentton Free Form Reresentton Aromton n Interolton Prmetr Polnomls Prmetr n eometr Contnt Polnoml Slnes

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

Greedy Algorithms. Greedy Algorithms. Piyush Kumar

Greedy Algorithms. Greedy Algorithms. Piyush Kumar Gree s goo. Gree s rght. Gree works. Gree lrfes, uts through, n ptures the essene of the evolutonry sprt. - Goron Geko (Mhel Dougls) Anlyss of Algorthms Pyush Kumr (Leture 4: Greey Algorthms) Welome to

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations Dynm o Lnke Herrhe Contrne ynm The Fethertone equton Contrne ynm pply ore to one omponent, other omponent repotone, rom ner to r, to ty tne ontrnt F Contrne Boy Dynm Chpter 4 n: Mrth mpule-be Dynm Smulton

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

I 3 2 = I I 4 = 2A

I 3 2 = I I 4 = 2A ECE 210 Eletril Ciruit Anlysis University of llinois t Chigo 2.13 We re ske to use KCL to fin urrents 1 4. The key point in pplying KCL in this prolem is to strt with noe where only one of the urrents

More information

Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum

Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum Recall that there was ore to oton than just spee A ore coplete escrpton of oton s the concept of lnear oentu: p v (8.) Beng a prouct of a scalar () an a vector (v), oentu s a vector: p v p y v y p z v

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

A Study on Root Properties of Super Hyperbolic GKM algebra

A Study on Root Properties of Super Hyperbolic GKM algebra Stuy on Root Popetes o Supe Hypebol GKM lgeb G.Uth n M.Pyn Deptment o Mthemts Phypp s College Chenn Tmlnu In. bstt: In ths ppe the Supe hypebol genelze K-Mooy lgebs o nente type s ene n the mly s lso elte.

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

An Ising model on 2-D image

An Ising model on 2-D image School o Coputer Scence Approte Inerence: Loopy Bele Propgton nd vrnts Prolstc Grphcl Models 0-708 Lecture 4, ov 7, 007 Receptor A Knse C Gene G Receptor B Knse D Knse E 3 4 5 TF F 6 Gene H 7 8 Hetunndn

More information

This conversion box can help you convert units of length. b 3 cm = e 11 cm = b 20 mm = cm. e 156 mm = b 500 cm = e cm = b mm = d 500 mm =

This conversion box can help you convert units of length. b 3 cm = e 11 cm = b 20 mm = cm. e 156 mm = b 500 cm = e cm = b mm = d 500 mm = Units of length,, To onvert fro to, ultiply y 10. This onversion ox n help you onvert units of length. To onvert fro to, divide y 10. 100 100 1 000 10 10 1 000 Convert these lengths to illietres: 0 1 2

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY THEORETICAL PHYSICS REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY V. CHIRIÞOIU 1, G. ZET 1 Poltehn Unversty Tmºor, Tehnl Physs Deprtment, Romn E-ml: vorel.hrtou@et.upt.ro

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information

Trigonometry. Trigonometry. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Currulum Rey ACMMG: 223, 22, 2 www.mthlets.om Trgonometry TRIGONOMETRY Bslly, mny stutons n the rel worl n e relte to rght ngle trngle. Trgonometry souns ffult, ut t s relly just

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

2.4 Theoretical Foundations

2.4 Theoretical Foundations 2 Progrmming Lnguge Syntx 2.4 Theoretil Fountions As note in the min text, snners n prsers re se on the finite utomt n pushown utomt tht form the ottom two levels of the Chomsky lnguge hierrhy. At eh level

More information

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005 RLETON UNIVERSIT eprtment of Eletronis ELE 2607 Swithing iruits erury 28, 05; 0 pm.0 Prolems n Most Solutions, Set, 2005 Jn. 2, #8 n #0; Simplify, Prove Prolem. #8 Simplify + + + Reue to four letters (literls).

More information

Outline. Review Quadrilateral Equation. Review Linear φ i Quadrilateral. Review x and y Derivatives. Review φ Derivatives

Outline. Review Quadrilateral Equation. Review Linear φ i Quadrilateral. Review x and y Derivatives. Review φ Derivatives E 5 Engneerng nlss ore on Fnte Eleents n ore on Fnte Eleents n Two Densons Two Densons Lrr Cretto echncl Engneerng 5 Senr n Engneerng nlss prl 7-9 9 Otlne Revew lst lectre Qrtc ss nctons n two ensons orer

More information

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION Advnes n Fuzzy ets nd ystems 05 Pushp Pulshng House Allhd nd Pulshed Onlne: Novemer 05 http://dx.do.org/0.7654/afde05_097_3 Volume 0 Numer 05 Pges 97-3 N: 0973-4X REGUAR CUBC ANGUAGE AND REGUAR CUBC EXPREON

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

 = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction Eletromgnet Induton nd Frdy s w Eletromgnet Induton Mhel Frdy (1791-1867) dsoered tht hngng mgnet feld ould produe n eletr urrent n ondutor pled n the mgnet feld. uh urrent s lled n ndued urrent. The phenomenon

More information

Encoding of Pointers for Hardware Synthesis

Encoding of Pointers for Hardware Synthesis Enong of Ponters for Hrwre Synthess Lu Sémér Govnn De Mhel lus@zur.stnfor.eu nnn@glleo.stnfor.eu Computer System Lortory, Stnfor Unversty Stnfor, CA 9405 ABSTRACT In the reent pst, susets of C n C++ hve

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS ournl o Mthetl enes: dvnes nd ppltons Volue Nuer Pes 65-77 REGULR TURM-LIOUVILLE OPERTOR WITH TRNMIION CONDITION T INITE INTERIOR DICONTINUOU POINT XIOLING HO nd IONG UN hool o Mthetl enes Inner Monol

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

Lecture 2: Cayley Graphs

Lecture 2: Cayley Graphs Mth 137B Professor: Pri Brtlett Leture 2: Cyley Grphs Week 3 UCSB 2014 (Relevnt soure mteril: Setion VIII.1 of Bollos s Moern Grph Theory; 3.7 of Gosil n Royle s Algeri Grph Theory; vrious ppers I ve re

More information

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B]

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B] Conept of Atvty Equlbrum onstnt s thermodynm property of n equlbrum system. For heml reton t equlbrum; Conept of Atvty Thermodynm Equlbrum Constnts A + bb = C + dd d [C] [D] [A] [B] b Conentrton equlbrum

More information

Proving the Pythagorean Theorem

Proving the Pythagorean Theorem Proving the Pythgoren Theorem W. Bline Dowler June 30, 2010 Astrt Most people re fmilir with the formul 2 + 2 = 2. However, in most ses, this ws presented in lssroom s n solute with no ttempt t proof or

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 ) Neessry n suient onitions for some two vrile orthogonl esigns in orer 44 C. Koukouvinos, M. Mitrouli y, n Jennifer Seerry z Deite to Professor Anne Penfol Street Astrt We give new lgorithm whih llows us

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods Engneerng Prt I 009-0, Pper 4, Mthemtl Methods, Fst Course, J.B.Young CMBRIDGE UNIVERSITY ENGINEERING DEPRTMENT PRT I (Frst Yer) 009-00 Pper 4 : Mthemtl Methods Leture ourse : Fst Mths Course, Letures

More information

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL:

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL: PYTHAGORAS THEOREM 1 WHAT S IN CHAPTER 1? 1 01 Squres, squre roots nd surds 1 02 Pythgors theorem 1 03 Finding the hypotenuse 1 04 Finding shorter side 1 05 Mixed prolems 1 06 Testing for right-ngled tringles

More information

mywbut.com Lesson 13 Representation of Sinusoidal Signal by a Phasor and Solution of Current in R-L-C Series Circuits

mywbut.com Lesson 13 Representation of Sinusoidal Signal by a Phasor and Solution of Current in R-L-C Series Circuits wut.co Lesson 3 Representtion of Sinusoil Signl Phsor n Solution of Current in R-L-C Series Circuits wut.co In the lst lesson, two points were escrie:. How sinusoil voltge wvefor (c) is generte?. How the

More information

New Algorithms: Linear, Nonlinear, and Integer Programming

New Algorithms: Linear, Nonlinear, and Integer Programming New Algorthms: ner, Nonlner, nd Integer Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tl Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.om Astrt In ths pper we propose new lgorthm for lner progrmmng. Ths

More information

Name Class Date. Line AB is parallel to line CD. skew. ABDC } plane EFHG. In Exercises 4 7, use the diagram to name each of the following.

Name Class Date. Line AB is parallel to line CD. skew. ABDC } plane EFHG. In Exercises 4 7, use the diagram to name each of the following. Reteching Lines nd Angles Not ll lines nd plnes intersect. prllel plnes. prllel. } shows tht lines or plnes re prllel: < > < > A } ens Line A is prllel to line. skew. A } plne EFHG A plne FH } plne AEG

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

Exponents and Powers

Exponents and Powers EXPONENTS AND POWERS 9 Exponents nd Powers CHAPTER. Introduction Do you know? Mss of erth is 5,970,000,000,000, 000, 000, 000, 000 kg. We hve lredy lernt in erlier clss how to write such lrge nubers ore

More information

List all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1.

List all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1. Mth Anlysis CP WS 4.X- Section 4.-4.4 Review Complete ech question without the use of grphing clcultor.. Compre the mening of the words: roots, zeros nd fctors.. Determine whether - is root of 0. Show

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

Dual-Matrix Approach for Solving the Transportation Problem

Dual-Matrix Approach for Solving the Transportation Problem Itertol Jourl of Mthets Tres Tehology- Volue Nuer Jue 05 ul-mtr Aroh for Solvg the Trsortto Prole Vy Shr r Chr Bhus Shr ertet of Mthets, BBM College r, Jeh, (MU), INIA E-Prl, SS College Jeh, (MU), INIA

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Numbers Related to Bernoulli-Goss Numbers

Numbers Related to Bernoulli-Goss Numbers ursh Journl of Anlyss n Nuber heory, 4, Vol., No., -8 Avlble onlne t htt://ubs.sceub.co/tnt///4 Scence n Eucton Publshng OI:.69/tnt---4 Nubers Relte to Bernoull-Goss Nubers Mohe Oul ouh Benough * érteent

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

Section 2.1 Special Right Triangles

Section 2.1 Special Right Triangles Se..1 Speil Rigt Tringles 49 Te --90 Tringle Setion.1 Speil Rigt Tringles Te --90 tringle (or just 0-60-90) is so nme euse of its ngle mesures. Te lengts of te sies, toug, ve very speifi pttern to tem

More information

SIMPLE NONLINEAR GRAPHS

SIMPLE NONLINEAR GRAPHS S i m p l e N o n l i n e r G r p h s SIMPLE NONLINEAR GRAPHS www.mthletis.om.u Simple SIMPLE Nonliner NONLINEAR Grphs GRAPHS Liner equtions hve the form = m+ where the power of (n ) is lws. The re lle

More information

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof ME6 Dnms, Spng HW Slutn Ke - Pve, gemetll.e. usng wngs sethes n nltll.e. usng equtns n nequltes, tht V then V. Nte: qunttes n l tpee e vets n n egul tpee e sls. Slutn: Let, Then V V V We wnt t pve tht:

More information

v v at 1 2 d vit at v v 2a d

v v at 1 2 d vit at v v 2a d SPH3UW Unt. Accelerton n One Denon Pge o 9 Note Phyc Inventory Accelerton the rte o chnge o velocty. Averge ccelerton, ve the chnge n velocty dvded by the te ntervl, v v v ve. t t v dv Intntneou ccelerton

More information

The DOACROSS statement

The DOACROSS statement The DOACROSS sttement Is prllel loop similr to DOALL, ut it llows prouer-onsumer type of synhroniztion. Synhroniztion is llowe from lower to higher itertions sine it is ssume tht lower itertions re selete

More information

The Legacy of Pythagoras Theorem

The Legacy of Pythagoras Theorem Prol Volue 39, Issue 1(2003) The Legy of Pythgors Theore Peter G.rown 1 When sked wht thetil result they reeer fro High Shool, the verge person would proly reply with Pythgors Theore. In ny right tringle,

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Lecture 11 Binary Decision Diagrams (BDDs)

Lecture 11 Binary Decision Diagrams (BDDs) C 474A/57A Computer-Aie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, K-mp, iruit, et

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

Part I: Study the theorem statement.

Part I: Study the theorem statement. Nme 1 Nme 2 Nme 3 A STUDY OF PYTHAGORAS THEOREM Instrutions: Together in groups of 2 or 3, fill out the following worksheet. You my lift nswers from the reding, or nswer on your own. Turn in one pket for

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

CHAPTER 5 Vectors and Vector Space

CHAPTER 5 Vectors and Vector Space HAPTE 5 Vetors d Vetor Spe 5. Alger d eometry of Vetors. Vetor A ordered trple,,, where,, re rel umers. Symol:, B,, A mgtude d dreto.. Norm of vetor,, Norm =,, = = mgtude. Slr multplto Produt of slr d

More information

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version A Lower Bound for the Length of Prtil Trnsversl in Ltin Squre, Revised Version Pooy Htmi nd Peter W. Shor Deprtment of Mthemtil Sienes, Shrif University of Tehnology, P.O.Bo 11365-9415, Tehrn, Irn Deprtment

More information

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014 S 224 DIGITAL LOGI & STATE MAHINE DESIGN SPRING 214 DUE : Mrh 27, 214 HOMEWORK III READ : Relte portions of hpters VII n VIII ASSIGNMENT : There re three questions. Solve ll homework n exm prolems s shown

More information

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document Fttng Polynol to Het Cpcty s Functon of Teperture for Ag. thetcl Bckground Docuent by Theres Jul Zelnsk Deprtent of Chestry, edcl Technology, nd Physcs onouth Unversty West ong Brnch, J 7764-898 tzelns@onouth.edu

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233, Surs n Inies Surs n Inies Curriulum Rey ACMNA:, 6 www.mthletis.om Surs SURDS & & Inies INDICES Inies n surs re very losely relte. A numer uner (squre root sign) is lle sur if the squre root n t e simplifie.

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Now we must transform the original model so we can use the new parameters. = S max. Recruits MODEL FOR VARIABLE RECRUITMENT (ontinue) Alterntive Prmeteriztions of the pwner-reruit Moels We n write ny moel in numerous ifferent ut equivlent forms. Uner ertin irumstnes it is onvenient to work with

More information

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS Dvid Miller West Virgini University P.O. BOX 6310 30 Armstrong Hll Morgntown, WV 6506 millerd@mth.wvu.edu

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

1 Definition of Rademacher Complexity

1 Definition of Rademacher Complexity COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #9 Scrbe: Josh Chen March 5, 2013 We ve spent the past few classes provng bounds on the generalzaton error of PAClearnng algorths for the

More information

5: The Definite Integral

5: The Definite Integral 5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

8. Two Ion Interactions

8. Two Ion Interactions 8. Two on ntetons The moels of mgnet oe hve een se on mltonns of the fom on J J zw. Wht s the physl ogn of ths two on ntetons 8. Dpol nteton The ogn of lge moleul fels nnot e the wek mgnet pol nteton CD

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES Mthemtics SKE: STRN J STRN J: TRNSFORMTIONS, VETORS nd MTRIES J3 Vectors Text ontents Section J3.1 Vectors nd Sclrs * J3. Vectors nd Geometry Mthemtics SKE: STRN J J3 Vectors J3.1 Vectors nd Sclrs Vectors

More information

Bridging the gap: GCSE AS Level

Bridging the gap: GCSE AS Level Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions

More information

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths Intermedite Mth Cirles Wednesdy 17 Otoer 01 Geometry II: Side Lengths Lst week we disussed vrious ngle properties. As we progressed through the evening, we proved mny results. This week, we will look t

More information