Unsaturated Flow (brief lecture)

Size: px
Start display at page:

Download "Unsaturated Flow (brief lecture)"

Transcription

1 Physical Hydrogeology Unsaturated Flow (brief lecture) Why study the unsaturated zone? Evapotranspiration Infiltration Toxic Waste Leak Irrigation UNSATURATAED ZONE Aquifer Important to: Agriculture (most research) Toxic waste Runoff generation Interface w/atmosphere (GCM) Points regarding Unsaturated or Vadose Zone or Zone of Aeration: occurs above the water table pores are only partially filled with water; the moisture is content less than the porosity; zone consists of air, water, and rock fluid pressure, p, is less than atmospheric pressure, and fluid pressure head,, is less than zero; under tension hydraulic head is measured with aid of a tensiometer hydraulic conductivity, K, and moisture content,, are functions of the pressure head [or, K( ), ( )] I. Definitions: 1

2 = volumetric moisture content (decimal fraction) = volume of water / bulk volume of soil (L3/L3) = pressure head, p / g, where pressure, p, is the gauge pressure (that above atmospheric); is the fluid density and g is the gravitational constant. At water table = 0, and because we always have h = + z, the head at the water table is equal to z, or h = z. Our quantities in (L) units are: h = hydraulic head (energy per unit weight) z = elevation head = pressure head pressure above water table --- < 0 pressure below the water table --- >0 When < 0, this is called the tension head or suction head. Some call it pressure head, but its value is negative. Unsaturated Zone when a = ( ) K = K( ) Saturated Zone when > a = n K = Ksat when a there is a capillary fringe; saturated under tension. 2

3 Vol. moisture content unsaturated zone capillary fringe h=z Z=0 saturated zone Saturation moisture content equals porosity II. How to measure Because pressure head is negative in the unsaturated zone, we can't use piezometer to measure head; no standing water in the well above water table. Tensiometer: Directly measures vacuum gage A porous cup is attached to an airtight water-filled tube. Porous cup inserted into soil at a known depth where it comes into contact with the soil and reaches hydraulic equilibrium. The vacuum (negative pressure) created at the top of the tube is measured as 3

4 III. Hydraulic Conductivity in the Unsaturated Zone Ultimately hydraulic conductivity, K, depends on moisture content,, and pressure head, ---- K=K( ) & K=K( ) What would you expect intuitively for K in unsaturated case? Water Solid Air Compared to saturated media, when air exists K will be lower. The more air, the smaller the cross-sectional area for flow of water. Large pores are empty and only the smaller pores remain filled. What will happen to K for declining water content (more air)? K is lower for smaller because: 1) cross-sectional area remaining reflects only water-filled smaller pores. What do you know about K in media w/ large pores vs. small pores? Large connected pores high K; small pores low K here is greater capillary tension because for a lower there is a more negative fluid pressure head,. Water is held tighter, and K is therefore lower, because tension is greater (adsorption becomes more dominant). Note that for saturation, there is no tension. water solid 4

5 K (saturated conditions) K (unsaturated conditions) positive negative The K( ) relationship differs for coarse vs. fine media. This is important when considering unsat. flow through layered media. S a n d l o g K C l a y c m c m L o g o f p r e s s u r e h e a d o f w a t e r IV. Calculating Flow in the Unsaturated Zone Complexity with unsaturated flow: Darcy's law is now nonlinear because K is a function of the pressure head. h q x K x called the Darcy- Buckingham eqn. Equilibrium Flow Analysis 5

6 Simple use of Darcy's Law for local flow ground surface z (cm) A B Datum Total head is driving force, h = + z so Location Measured Elevation Total Pressure Head Head Head A B What is the direction of flow? pressure head decreases upward, so flow appears to be upward, BUT, gravitational (position) gradient is added to pressure gradient to get total gradient and flow is downward when considering total head. (defined as value < 0, opposite to sign of gradient) dh dz = H A - H B Z A - Z B = = 0.9 Compute unsaturated conductivity, use exponential model -- semilog plot of ln K( ) vs. is a straight line with slope c and intercept K s K( ) = K s exp (c ) 6

7 Saturated value of K, K s = 1.0 cm/d for a silty sand, c = cm 1, and the average pressure head A + B 2 K( ) = 1.0 x exp (-0.02 x 95) = 0.15 q z = -K dh dz = -95 cm = (0.15)(0.9) = cm/d Negative (downward) q corresponds to a positive gradient dh/dz. V. WATER STORAGE in the Unsaturated Zone How does capillarity affect water storage? Consider drainage and rewetting to see how moisture content is a function of, or Capillary Rise and Water Retention: Storage depends on arrangement of pore sizes and whether soil is draining or wetting. During drainage - (on right) small-diameter pore throats do not fully dewater until tension increases (pressure decreases, e.g., due to water table decline). some underlying large pores remain full to compute pressure necessary to drain these pores use capillary rise 7

8 formula Upon wetting of a dry soil - (on left) large pores remain empty and small pores fill under capillary (negative) pressure filling large pore requires threshold pressure associated with larger diameter at a given pressure, water content (storage) is greater during drainage (large pores full) than during wetting (large pores empty) VI. Richards Equation for unsaturated flo (1931) x K( ) x + y K( ) y + z K( ) + 1 = C( ) z t Solution (x, y, z, t) requires relationships K( ), and C( ) C( ) is the soil moisture capacity or the specific soil-water capacity (the unsaturated storage property of a medium) --(units of 1/L) how much water one gets for unit drop in pressure head; like our specific storage in saturated flow Two Characteristic Curves : K( ) vs. and C( ) vs. relationships used to describe storage and transmissive properties of unsaturated media as a function of pressure relationships show hysteresis (non-unique parameter values as a function of wetting history) 8

9 9

10 10

11 Appendix A: Capillary Rise (idealized capillary fringe tension saturated zone) P air 2r P water capillary rise, h c contact angle, h c 2 cos / gr given that contact angle near zero gives cos 1 h c 2 / gr and at 18 o C this reduces to surface Surface tension of between liquid gas and liquid (M/T 2 ) h c = (2 x 73 g/s 2 )/ (0.999 g/cm 3 x 980 cm/s 2 x r cm) = 0.15/r cm So a 2 mm capillary (a fine sand) will show a rise of h c = 0.15/0.1 = 1.5 cm, and a silt will give perhaps 15 cm. 11

12 Appendix B: Darcy's law in 3D (for isotropic conditions) h h q x K( ) q y K( ) x y Recall that p = g or h = p g + z or and h = p g h q z K( ) z = + z so for the vertical flow component, q z = -K( ) ( p g + z) z or q z = -K( ) ( + z) z q z = -K( ) z + 1 At a constant elevation along the x, y plane we have horizontal flow and h x ψ x and h y ψ y h z = ( +z) z = z + z z (second term appears only for vertical flow component) 12

1. Water in Soils: Infiltration and Redistribution

1. Water in Soils: Infiltration and Redistribution Contents 1 Water in Soils: Infiltration and Redistribution 1 1a Material Properties of Soil..................... 2 1b Soil Water Flow........................... 4 i Incorporating K - θ and ψ - θ Relations

More information

Darcy s Law, Richards Equation, and Green-Ampt Equation

Darcy s Law, Richards Equation, and Green-Ampt Equation Darcy s Law, Richards Equation, and Green-Ampt Equation 1. Darcy s Law Fluid potential: in classic hydraulics, the fluid potential M is stated in terms of Bernoulli Equation (1.1) P, pressure, [F L!2 ]

More information

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay.

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay. Contents 1 Infiltration 1 1a Hydrologic soil horizons...................... 1 1b Infiltration Process......................... 2 1c Measurement............................ 2 1d Richard s Equation.........................

More information

CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT

CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT SSC107 Fall 2000 Chapter 2, Page - 1 - CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT Contents: Transport mechanisms Water properties Definition of soil-water potential Measurement of soil-water

More information

Outline. In Situ Stresses. Soil Mechanics. Stresses in Saturated Soil. Seepage Force Capillary Force. Without seepage Upward seepage Downward seepage

Outline. In Situ Stresses. Soil Mechanics. Stresses in Saturated Soil. Seepage Force Capillary Force. Without seepage Upward seepage Downward seepage Soil Mechanics In Situ Stresses Chih-Ping Lin National Chiao Tung Univ. cplin@mail.nctu.edu.tw Outline Without seepage Upward seepage Downward seepage Seepage Force The total stress at the elevation of

More information

5. Which surface soil type has the slowest permeability rate and is most likely to produce flooding? A) pebbles B) sand C) silt D) clay A) B) C) D)

5. Which surface soil type has the slowest permeability rate and is most likely to produce flooding? A) pebbles B) sand C) silt D) clay A) B) C) D) 1. During a heavy rainstorm, soil samples A and B both became saturated with water. However, 10 minutes after the storm ended, the soils appeared as shown below. Which statement best explains the observed

More information

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6 Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture 6 Good morning and welcome to the next lecture of this video course on Advanced Hydrology.

More information

C) D) 3. Which graph best represents the relationship between soil particle size and the rate at which water infiltrates permeable soil?

C) D) 3. Which graph best represents the relationship between soil particle size and the rate at which water infiltrates permeable soil? 1. Which earth material covering the surface of a landfill would permit the least amount of rainwater to infiltrate the surface? A) silt B) clay C) sand D) pebbles 2. Which graph best represents the relationship

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

GG655/CEE623 Groundwater Modeling. Aly I. El-Kadi

GG655/CEE623 Groundwater Modeling. Aly I. El-Kadi GG655/CEE63 Groundwater Modeling Model Theory Water Flow Aly I. El-Kadi Hydrogeology 1 Saline water in oceans = 97.% Ice caps and glaciers =.14% Groundwater = 0.61% Surface water = 0.009% Soil moisture

More information

Civil Engineering Department College of Engineering

Civil Engineering Department College of Engineering Civil Engineering Department College of Engineering Course: Soil Mechanics (CE 359) Lecturer: Dr. Frederick Owusu-Nimo FREQUENCY CE 260 Results (2013) 30 25 23 25 26 27 21 20 18 15 14 15 Civil Geological

More information

Agry 465 Exam October 18, 2006 (100 points) (9 pages)

Agry 465 Exam October 18, 2006 (100 points) (9 pages) Agry 465 Exam October 18, 2006 (100 points) (9 pages) Name (4) 1. In each of the following pairs of soils, indicate which one would have the greatest volumetric heat capacity, and which would have the

More information

Water in Soil Sections in Craig

Water in Soil Sections in Craig Water in Soil Sections 2.1-2.6 in Craig Outlines Introduction Darcy s Law Volume of water flowing per unit time Measuring K in laboratory Seepage Theory Flow Net Introduction All soils are permeable materials,

More information

12 SWAT USER S MANUAL, VERSION 98.1

12 SWAT USER S MANUAL, VERSION 98.1 12 SWAT USER S MANUAL, VERSION 98.1 CANOPY STORAGE. Canopy storage is the water intercepted by vegetative surfaces (the canopy) where it is held and made available for evaporation. When using the curve

More information

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow Homogenization and numerical Upscaling Unsaturated flow and two-phase flow Insa Neuweiler Institute of Hydromechanics, University of Stuttgart Outline Block 1: Introduction and Repetition Homogenization

More information

Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis

Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis E3S Web of Conferences 9, 194 (16) DOI: 1.11/ e3sconf/169194 E-UNSAT 16 Distribution of pore water in an earthen dam considering unsaturated-saturated seepage analysis 1a Kumar Venkatesh, Siva Ram Karumanchi

More information

3. The map below shows an eastern portion of North America. Points A and B represent locations on the eastern shoreline.

3. The map below shows an eastern portion of North America. Points A and B represent locations on the eastern shoreline. 1. Most tornadoes in the Northern Hemisphere are best described as violently rotating columns of air surrounded by A) clockwise surface winds moving toward the columns B) clockwise surface winds moving

More information

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

*** ***!   ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14.  > /' ;-,=. / ١ ١ ******!" #$ % & '!( ) % * ") +,-./ % 01. 3 ( 4 56 7/4 ) 8%9 % : 7 ;14 < 8%9 % : *7./ = ;-, >/'." Soil Permeability & Seepage ٢ Soil Permeability- Definition ٣ What is Permeability? Permeability is the

More information

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Reinder A.Feddes Jos van Dam Joop Kroes Angel Utset, Main processes Rain fall / irrigation Transpiration Soil evaporation

More information

(Refer Slide Time: 02:10)

(Refer Slide Time: 02:10) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 24 Flow of water through soils-v Welcome to lecture five of flow of water through

More information

Predicting the soil-water characteristics of mine soils

Predicting the soil-water characteristics of mine soils Predicting the soil-water characteristics of mine soils D.A. Swanson, G. Savci & G. Danziger Savci Environmental Technologies, Golden, Colorado, USA R.N. Mohr & T. Weiskopf Phelps Dodge Mining Company,

More information

In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head.

In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head. Groundwater Seepage 1 Groundwater Seepage Simplified Steady State Fluid Flow The finite element method can be used to model both steady state and transient groundwater flow, and it has been used to incorporate

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 13 Permeability and Seepage -2 Conditions favourable for the formation quick sand Quick sand is not a type of sand but a flow condition occurring within a cohesion-less soil when its effective stress is

More information

dynamics of f luids in porous media

dynamics of f luids in porous media dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction

More information

Permeability in Soils

Permeability in Soils Permeability in Soils Contents: Darcy s law- assumption and validity, coefficient of permeability and its determination (laboratory and field), factors affecting permeability, permeability of stratified

More information

Stochastic geometry and porous media

Stochastic geometry and porous media Stochastic geometry and transport in porous media Hans R. Künsch Seminar für Statistik, ETH Zürich February 15, 2007, Reisensburg Coauthors Thanks to the coauthors of this paper: P. Lehmann, A. Kaestner,

More information

THEORY. Water flow. Air flow

THEORY. Water flow. Air flow THEORY Water flow Air flow Does Suction Gradient Cause Flow? Coarse stone Fine ceramic Suction gradient to the right No suction gradient but still flow Does water content gradient cause Flow? Suction gradient

More information

Name: KEY OBJECTIVES HYDROLOGY:

Name: KEY OBJECTIVES HYDROLOGY: Name: KEY OBJECTIVES Correctly define: abrasion, capillarity, deposition, discharge, erosion, evapotranspiration, hydrology, impermeable, infiltration, meander, permeable, porosity, water table, weathering,

More information

6. Circle the correct answer: SINK A drains faster or SINK B drains faster Why?

6. Circle the correct answer: SINK A drains faster or SINK B drains faster Why? NAME date ROY G BIV Water Cycle and Water Movement in the Ground Test 5. 6. Circle the correct answer: SINK A drains faster or SINK B drains faster Why? 7. Circle the correct answer: SINK A retains more

More information

In situ estimation of soil hydraulic functions using a multistep soil-water extraction technique

In situ estimation of soil hydraulic functions using a multistep soil-water extraction technique WATER RESOURCES RESEARCH, VOL. 34, NO. 5, PAGES 1035 1050, MAY 1998 In situ estimation of soil hydraulic functions using a multistep soil-water extraction technique M. Inoue Arid Land Research Center,

More information

Teaching Unsaturated Soil Mechanics as Part of the Undergraduate Civil Engineering Curriculum

Teaching Unsaturated Soil Mechanics as Part of the Undergraduate Civil Engineering Curriculum Teaching Unsaturated Soil Mechanics as Part of the Undergraduate Civil Engineering Curriculum Delwyn G. Fredlund, Visiting Professor Kobe University, Kobe, Japan Sapporo, Hokkaido, Japan February 15, 2005

More information

Chapter Seven. For ideal gases, the ideal gas law provides a precise relationship between density and pressure:

Chapter Seven. For ideal gases, the ideal gas law provides a precise relationship between density and pressure: Chapter Seven Horizontal, steady-state flow of an ideal gas This case is presented for compressible gases, and their properties, especially density, vary appreciably with pressure. The conditions of the

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 4

More information

2. Modeling of shrinkage during first drying period

2. Modeling of shrinkage during first drying period 2. Modeling of shrinkage during first drying period In this chapter we propose and develop a mathematical model of to describe nonuniform shrinkage of porous medium during drying starting with several

More information

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes T. Nishimura

More information

Modelling of pumping from heterogeneous unsaturated-saturated porous media M. Mavroulidou & R.I. Woods

Modelling of pumping from heterogeneous unsaturated-saturated porous media M. Mavroulidou & R.I. Woods Modelling of pumping from heterogeneous unsaturated-saturated porous media M. Mavroulidou & R.I. Woods Email: M.Mavroulidou@surrey.ac.uk; R. Woods@surrey.ac.uk Abstract Practising civil engineers often

More information

Chapter 3 Permeability

Chapter 3 Permeability 3.2 Darcy s Law In 1856, Darcy investigated the flow of water through sand filters for water purification. His experimental apparatus is shown in Figure 3.11. By empirical observation Figure 3.11 Schematic

More information

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University Soils, Hydrogeology, and Aquifer Properties Philip B. Bedient 2006 Rice University Charbeneau, 2000. Basin Hydrologic Cycle Global Water Supply Distribution 3% of earth s water is fresh - 97% oceans 1%

More information

1 Water Beneath the Surface

1 Water Beneath the Surface CHAPTER 16 1 Water Beneath the Surface SECTION Groundwater KEY IDEAS As you read this section, keep these questions in mind: What are two properties of aquifers? How is the water table related to the land

More information

Chapter 7 Permeability and Seepage

Chapter 7 Permeability and Seepage Permeability and Seepage - N. Sivakugan (2005) 1 7.1 INTRODUCTION Chapter 7 Permeability and Seepage Permeability, as the name implies (ability to permeate), is a measure of how easily a fluid can flow

More information

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1 Geology and Soil Mechanics 55401 /1A (2002-2003) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet. Geology and Soil Mechanics 55401 /1A (2003-2004) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

GROUNDWATER MEGA PACKET

GROUNDWATER MEGA PACKET NAME GROUNDWATER MEGA PACKET 1. The diagram below shows columns A, B, C, and D that contain different sediments. Equal volumes of water were poured through each column. Which column of sediment retained

More information

GEOL 474/674 Practice Exam #1 Fall This exam counts 20% of your grade for this course; your instructions are as follows:

GEOL 474/674 Practice Exam #1 Fall This exam counts 20% of your grade for this course; your instructions are as follows: Write your name here: This exam counts 20% of your grade for this course; your instructions are as follows: 1) You have 75 minutes to finish this exam. 2) No books, notes, or discussion is allowed. If

More information

Site Investigation and Landfill Construction I

Site Investigation and Landfill Construction I Site Investigation and Landfill Construction I Gernot Döberl Vienna University of Technology Institute for Water Quality, Resources and Waste Management Contents Site Investigation Base Liners Base Drainage

More information

Quantifying shallow subsurface flow and salt transport in the Canadian Prairies

Quantifying shallow subsurface flow and salt transport in the Canadian Prairies Quantifying shallow subsurface flow and salt transport in the Canadian Prairies Andrew Ireson GIWS, University of Saskatchewan www.usask.ca/water Uri Nachshon Garth van der Kamp GIWS, University of Saskatchewan

More information

FLOOD1 report: Appendix 3

FLOOD1 report: Appendix 3 FLOOD1 report: Appendix 3 Summary of Laboratory Testing Programme Part of the investigation into the behaviour of groundwater in the unsaturated zone of the Chalk required testing samples to determine

More information

Tikrit University. College of Engineering Civil engineering Department CONSOILDATION. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016

Tikrit University. College of Engineering Civil engineering Department CONSOILDATION. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016 Tikrit University CONSOILDATION College of Engineering Civil engineering Department Soil Mechanics 3 rd Class Lecture notes Up Copyrights 2016 Stresses at a point in a soil mass are divided into two main

More information

Shear Strength of Soil. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Shear Strength of Soil. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Shear Strength of Soil Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Principal stress space a b c Rendulic Plot a r r r Rendulic Plot Axial Stress a ' Radial Stress r a We can

More information

P. Broadbridge. Snippets from Infiltration: where Approximate Integral Analysis is Exact.

P. Broadbridge. Snippets from Infiltration: where Approximate Integral Analysis is Exact. P. Broadbridge Snippets from Infiltration: where Approximate Integral Analysis is Exact. Hydrology of 1D Unsaturated Flow in Darcy-Buckingham-Richards approach. Nonlinear diffusion-convection equations

More information

INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES

INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES S. K. Vanapalli and D.G. Fredlund Department of Civil Engineering University of Saskatchewan, Saskatoon

More information

Groundwater. (x 1000 km 3 /y) Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle

Groundwater. (x 1000 km 3 /y) Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle Chapter 17 Oceans Cover >70% of Surface Groundwater and the Hydrologic Cycle Vasey s Paradise, GCNP Oceans are only 0.025% of Mass Groundwater Groundwater is liquid water that lies in the subsurface in

More information

Analysis of Multiphase Flow under the Ground Water

Analysis of Multiphase Flow under the Ground Water Analysis of Multiphase Flow under the Ground Water Pramod Kumar Pant Department of Mathematics, Bhagwant University, Ajmer, Rajasthan, India Abstract The single-phase fluid flow through a porous medium

More information

Lab 5 - Aquifer Elasticity and Specific Storage. Due October 12 14, 2010

Lab 5 - Aquifer Elasticity and Specific Storage. Due October 12 14, 2010 Lab 5 - Aquifer Elasticity and Specific Storage Due October 12 14, 2010 The goal of this experiment is to measure the specific storage S s of a balloon, which simulates aquifer elasticity. The experiment

More information

b) EFFECTIVE STRESS (c) SEEPAGE

b) EFFECTIVE STRESS (c) SEEPAGE b) EFFECTIVE STRESS B1. A fine sand layer of 5 m thickness lies on a 5 m clay deposit. The water table is at the ground surface. Below the clay is a rock formation. Piezometers installed in the rock show

More information

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials 1.3 Scope of This Book 1.4 Historical Development of Geotechnical

More information

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground Soil Mechanics I 3 Water in Soils 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground 1 Influence of Water - Basics WATER IN SOIL - affects soil

More information

HEAP LEACHING AERATION: SCIENCE OR ART?

HEAP LEACHING AERATION: SCIENCE OR ART? HEAP LEACHING AERATION: SCIENCE OR ART? J. Menacho and W. Cifuentes, De Re Metallica Ingeniería Ltda., HydroProcess 2013, Sheraton Hotel, Santiago, Chile, July 2013. CONTENTS MOTIVATION FUNDAMENTALS REVIEW

More information

Darcy's Law. Laboratory 2 HWR 531/431

Darcy's Law. Laboratory 2 HWR 531/431 Darcy's Law Laboratory HWR 531/431-1 Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed in an attempt to quantify

More information

Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils

Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils Ruowen Liu, Bruno Welfert and Sandra Houston School of Mathematical & Statistical Sciences,

More information

The role of capillary pressure curves in reservoir simulation studies.

The role of capillary pressure curves in reservoir simulation studies. The role of capillary pressure curves in reservoir simulation studies. M. salarieh, A. Doroudi, G.A. Sobhi and G.R. Bashiri Research Inistitute of petroleum Industry. Key words: Capillary pressure curve,

More information

' International Institute for Land Reclamation and Improvement. 2 Groundwater Investigations. N.A. de Ridder'? 2.1 Introduction. 2.

' International Institute for Land Reclamation and Improvement. 2 Groundwater Investigations. N.A. de Ridder'? 2.1 Introduction. 2. 2 Groundwater Investigations N.A. de Ridder'? 2.1 Introduction Successful drainage depends largely on a proper diagnosis of the causes of the excess water. For this diagnosis, one must consider: climate,

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

Hydraulic properties of porous media

Hydraulic properties of porous media PART 5 Hydraulic properties of porous media Porosity Definition: Void space: n V void /V total total porosity e V void /V solid Primary porosity - between grains Secondary porosity - fracture or solution

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Flood and Flood Hazards Dr. Patrick Asamoah Sakyi Department of Earth Science, UG, Legon College of Education School of Continuing and Distance Education

More information

Quick Guide KSAT. At a glance how it works

Quick Guide KSAT. At a glance how it works 2012 UMS GmbH, Munich, Germany Print #: KSAT12.12e Subject to modifications and amendments without notice. KSAT and KSAT VIEW are registered trademarks of UMS GmbH, Munich Printed on paper from chlorine-free

More information

Prof. Stephen A. Nelson EENS 111. Groundwater

Prof. Stephen A. Nelson EENS 111. Groundwater Page 1 of 8 Prof. Stephen A. Nelson EENS 111 Tulane University Physical Geology This page last updated on 20-Oct-2003 is water that exists in the pore spaces and fractures in rock and sediment beneath

More information

Groundwater Hydrology

Groundwater Hydrology EXERCISE 12 Groundwater Hydrology INTRODUCTION Groundwater is an important component of the hydrologic cycle. It feeds lakes, rivers, wetlands, and reservoirs; it supplies water for domestic, municipal,

More information

Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices

Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices Dharitri Rath 1, Sathishkumar N 1, Bhushan J. Toley 1* 1 Department of Chemical Engineering

More information

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often?

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often? 2. Irrigation Key words: right amount at right time What if it s too little too late? 2-1 Too much too often? To determine the timing and amount of irrigation, we need to calculate soil water balance.

More information

5. TWO-DIMENSIONAL FLOW OF WATER THROUGH SOILS 5.1 INTRODUCTION

5. TWO-DIMENSIONAL FLOW OF WATER THROUGH SOILS 5.1 INTRODUCTION 5. TWO-DIMENSIONAL FLOW OF WATER TROUG SOILS 5.1 INTRODUCTION In many instances the flo of ater through soils is neither one-dimensional nor uniform over the area perpendicular to flo. It is often necessary

More information

2nd International Conference Mechanics of Unsaturated Soils 7 th 9 th March 2007

2nd International Conference Mechanics of Unsaturated Soils 7 th 9 th March 2007 2nd International Conference Determination of the Soil Water Retention Curve and the Unsaturated Hydraulic Conductivity from the Particle Size Distribution Alexander Scheuermann & Andreas Bieberstein Motivation

More information

APPENDIX Tidally induced groundwater circulation in an unconfined coastal aquifer modeled with a Hele-Shaw cell

APPENDIX Tidally induced groundwater circulation in an unconfined coastal aquifer modeled with a Hele-Shaw cell APPENDIX Tidally induced groundwater circulation in an unconfined coastal aquifer modeled with a Hele-Shaw cell AaronJ.Mango* Mark W. Schmeeckle* David Jon Furbish* Department of Geological Sciences, Florida

More information

Procedure for Determining Near-Surface Pollution Sensitivity

Procedure for Determining Near-Surface Pollution Sensitivity Procedure for Determining Near-Surface Pollution Sensitivity Minnesota Department of Natural Resources Division of Ecological and Water Resources County Geologic Atlas Program March 2014 Version 2.1 I.

More information

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle WATER ON AND UNDER GROUND Objectives Define and describe the hydrologic cycle. Identify the basic characteristics of streams. Define drainage basin. Describe how floods occur and what factors may make

More information

The matric flux potential: history and root water uptake

The matric flux potential: history and root water uptake The matric flux potential: history and root water uptake Marius Heinen, Peter de Willigen (Alterra, Wageningen-UR) Jos van Dam, Klaas Metselaar (Soil Physics, Ecohydrology and Groundwater Management Group,

More information

Chapter 2 Water Movement and Solute Transport in Unsaturated Porous Media

Chapter 2 Water Movement and Solute Transport in Unsaturated Porous Media Chapter 2 Water Movement and Solute Transport in Unsaturated Porous Media The unsaturated zone, also termed the vadose zone, is the portion of the subsurface above the groundwater table. It contains air

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

Seepage. c ZACE Services Ltd. August 2011

Seepage. c ZACE Services Ltd. August 2011 Seepage c ZACE Services Ltd August 2011 1 / 50 2 / 50 Seepage analysis for fully/partially saturated media 1 Steady state v F k,k = 0 2 Transient v F k,k c p = 0 Darcy velocity v F i = k ij k r (S) ( p

More information

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay Groundwater in Unconsolidated Deposits Alluvial (fluvial) deposits - consist of gravel, sand, silt and clay - laid down by physical processes in rivers and flood plains - major sources for water supplies

More information

University of Pretoria. Matthys Dippenaar and Louis van Rooy Engineering Geology and Hydrogeology, Geology Department July 2017, Livingstone, Zambia

University of Pretoria. Matthys Dippenaar and Louis van Rooy Engineering Geology and Hydrogeology, Geology Department July 2017, Livingstone, Zambia University of Pretoria Contributions to the Characterisation of the Vadose Zone f or Hydrogeological and Geotechnical Applications Matthys Dippenaar and Louis van Rooy Engineering Geology and Hydrogeology,

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Groundwater Chapter 10 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois Co Jennifer Cole Northeastern University

More information

Flow in unsaturated random porous media, nonlinear numerical analysis and comparison to analytical stochastic models

Flow in unsaturated random porous media, nonlinear numerical analysis and comparison to analytical stochastic models Advances in Water Resources Vol. 22, No. 3, pp. 257 272, 1998 1998 Elsevier Science Ltd Printed in Great Britain. All rights reserved PII:S0309-1708(98)00010-4 0309-1708/98/$ - see front matter Flow in

More information

Supporting Information

Supporting Information Supporting Information Retention and Release of Graphene Oxide in Structured Heterogeneous Porous Media under Saturated and Unsaturated Conditions Shunan Dong 1, Xiaoqing Shi 1, Bin Gao 3, Jianfeng Wu

More information

Chapter 13. Groundwater

Chapter 13. Groundwater Chapter 13 Groundwater Introduction Groundwater is all subsurface water that completely fills the pores and other open spaces in rocks, sediments, and soil. Groundwater is responsible for forming beautiful

More information

Hillslope Hydrology Q 1 Q Understand hillslope runoff processes. 2. Understand the contribution of groundwater to storm runoff.

Hillslope Hydrology Q 1 Q Understand hillslope runoff processes. 2. Understand the contribution of groundwater to storm runoff. Objectives Hillslope Hydrology Streams are the conduits of the surface and subsurface runoff generated in watersheds. SW-GW interaction needs to be understood from the watershed perspective. During a storm

More information

Chapter 1 - Soil Mechanics Review Part A

Chapter 1 - Soil Mechanics Review Part A Chapter 1 - Soil Mechanics Review Part A 1.1 Introduction Geotechnical Engineer is concerned with predicting / controlling Failure/Stability Deformations Influence of water (Seepage etc.) Soil behavour

More information

Investigation of transient effects on the soil-water characteristic curve of different granular soils

Investigation of transient effects on the soil-water characteristic curve of different granular soils Investigation of transient effects on the soil-water characteristic curve of different granular soils M. Milatz, T. Törzs & J. Grabe Institute of Geotechnical Engineering and Construction Management, Hamburg

More information

Geotechnical Properties of Soil

Geotechnical Properties of Soil Geotechnical Properties of Soil 1 Soil Texture Particle size, shape and size distribution Coarse-textured (Gravel, Sand) Fine-textured (Silt, Clay) Visibility by the naked eye (0.05 mm is the approximate

More information

QUESTION BANK DEPARTMENT: CIVIL SUBJECT CODE / Name: CE 2251 / SOIL MECHANICS SEMESTER: IV UNIT 1- INTRODUCTION PART - A (2 marks) 1. Distinguish between Residual and Transported soil. (AUC May/June 2012)

More information

Atmospheric Sciences 321. Science of Climate. Lecture 14: Surface Energy Balance Chapter 4

Atmospheric Sciences 321. Science of Climate. Lecture 14: Surface Energy Balance Chapter 4 Atmospheric Sciences 321 Science of Climate Lecture 14: Surface Energy Balance Chapter 4 Community Business Check the assignments HW #4 due Today, HW#5 is posted Quiz Today on Chapter 3, too. Mid Term

More information

Science of Lagging Behind- Hysteresis in Soil Moisture Characteristic Curve - A Review

Science of Lagging Behind- Hysteresis in Soil Moisture Characteristic Curve - A Review International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 10 (2017) pp. 151-156 Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2017.610.019

More information

C. Lanni(1), E. Cordano(1), R. Rigon(1), A. Tarantino(2)

C. Lanni(1), E. Cordano(1), R. Rigon(1), A. Tarantino(2) Landslide Processes: from geomorphologic mapping to dynamic modelling (6-7 February, 2009 - Strasbourg, France) A tribute to Prof. Dr. Theo van Asch C. Lanni(1), E. Cordano(1), R. Rigon(1), A. Tarantino(2)

More information

Analytical approach predicting water bidirectional transfers: application to micro and furrow irrigation

Analytical approach predicting water bidirectional transfers: application to micro and furrow irrigation Advances in Fluid Mechanics VI 633 Analytical approach predicting water bidirectional transfers: application to micro and furrow irrigation D. Crevoisier Irrigation Research Unit, Cemagref Montpellier,

More information

CHAPTER III BEHAVIOR OF HYDROCARBONS IN THE SUBSURFACE

CHAPTER III BEHAVIOR OF HYDROCARBONS IN THE SUBSURFACE CHAPTER III BEHAVIOR OF HYDROCARBONS IN THE SUBSURFACE CHAPTER III BEHAVIOR OF HYDROCARBONS IN THE SUBSURFACE The purpose of this chapter is to supplement your knowledge of hydrocarbon behavior in the

More information

EXAMPLE PROBLEMS. 1. Example 1 - Column Infiltration

EXAMPLE PROBLEMS. 1. Example 1 - Column Infiltration EXAMPLE PROBLEMS The module UNSATCHEM is developed from the variably saturated solute transport model HYDRUS-1D [Šimůnek et al., 1997], and thus the water flow and solute transport parts of the model have

More information

Chemistry of Tiling and Crusting

Chemistry of Tiling and Crusting Chemistry of Tiling and Crusting Tom DeSutter Assistant Professor of Soil Science NDSU Soil and Soil/Water Training 25 January 2012 What is Dispersion? Soil particles are repelled away from each other

More information

Capillary effect on watertable fluctuations in unconfined aquifers

Capillary effect on watertable fluctuations in unconfined aquifers Capillary effect on watertable fluctuations in unconfined aquifers Jun Kong 1, Cheng-Ji Shen, Pei Xin, Zhiyao Song 3, Ling Li,1,#, D.A. Barry 4, D.-S. Jeng 5, F. Stagnitti 6, D.A. Lockington and J.-Y.

More information

Desiccation Cracking of Soils

Desiccation Cracking of Soils Desiccation Cracking of Soils Lyesse Laloui Hervé Péron, Tomasz Hueckel, Liangbo Hu Ecole Polytechnique Fédérale de Lausanne Switzerland Duke University, NC USA The consequences of desiccation cracking

More information