Instructor : Dr. Jehad Hamad. Chapter (7)

Size: px
Start display at page:

Download "Instructor : Dr. Jehad Hamad. Chapter (7)"

Transcription

1 Instructor : Dr. Jehad Hamad Chapter (7)

2 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity Atterberg s Limits Soil Compaction Permeability

3 Permeability is the measure of the soil s ability to permit water to flow through its pores or voids

4 Applications Rate of settlement under load Dams Stability of slopes Filters

5 Permeability and seepage Soils are assemblages of solid particles with interconnected voids through which water can flow. The study of the flow of water through porous soil media is important in soil mechanics. 5 1/29/2017

6 Permeability and seepage For example: Pumping of water for underground constructions Stability analysis of earth dams Earth retaining structures subjected to 6 seepage forces. 1/29/2017

7 What is permeability? A measure of how easily a fluid (e.g., water) can pass through a porous medium (e.g., soils) water Loose soil - easy to flow 7 - high permeability Dense soil - difficult to flow - low permeability

8 Hydraulic gradient(i) Total head loss per unit length between A and B i TH A l AB TH B water length AB, along the stream line A B

9 Hydraulic Gradient i h L

10 Bernoulli s Equation The energy of a fluid particle is made of: 1. Kinetic energy fluid particle - due to velocity 2. Strain energy z - due to pressure 3. Potential energy datum - due to elevation (z) with respect to a datum 10

11 Bernoulli s Equation If the equation is applied to the flow of water through porous soil medium, the term containing the velocity head can be neglected since the seepage velocity is small. Velocity head + 0 fluid particle Total head = Pressure head + z Elevation head datum Total head = Pressure head + Elevation head 11 1/29/2017

12 Bernoulli s equation u H γ v 2 2g z Total Head Pressure Head Dynamic Head Elevation Head H: total head P: water pressure γ: unit weight of water v: velocity of water g: gravity acceleration Z: elevation head

13 Bernoulli s equation The seepage flow velocity in soil is very small. Therefore, the dynamic head (velocity head) can be neglected. So that the total head at any points is: u H z γ

14

15

16 Darcy s Law v i v - k i Negative sign refers to the hydraulic gradient that is negative. (i.e. total head decreases in the direction of flow) Hydraulic Conductivity

17 Darcy s Law Darcy (1856) found an equation for the discharge velocity of water through saturated soils: v = k i Permeability or hydraulic conductivity unit of velocity (cm/s) 17 1/29/2017

18 Permeability Values (cm/s) clays silts sands gravels Fines Coarse For coarse grain soils, k = f (e or D 10 ) 18 1/29/2017

19 Flow Rate Darcy s Velocity L Flow Rate v - k i q - k i A A q

20 Hydraulic Conductivity Typical Values for Hydraulic Conductivity Soil cm/s

21 Seepage Velocity (True Velocity) Seepage Velocity v s v n

22 Hydraulic Conductivity Hydraulic conductivity of soils depends on several factors: Fluid viscosity Pore size distribution Grain size distribution Void ratio Degree of soil saturation

23 Hydraulic Conductivity k γ w η γ w η K = Unit weight of water = Viscosity of water K = Absolute permeability (L 2 )

24 Hydraulic Conductivity with Temp.

25 Determination of Coefficient of Permeability There are 2 standard types of laboratory tests for determining the coefficient of permeability of soils: Constant head test Falling head test 25 1/29/2017

26 Determination of Coefficient of Permeability There are 2 standard types of laboratory tests for determining the coefficient of permeability of soils: Constant head test Falling head test 1/29/

27 Determination of Hydraulic Conductivity in the Lab Constant Head Test Falling Head Test

28 Constant Head Permeameter Most suitable for coarse grained soils, that have high k : 28 1/29/2017

29 Constant Head Test V V q t v A t V - k i A t h V - k A t L k V L A t h

30 Constant Head Permeameter The total volume of water collected is: Q Avt A( ki) t Where, Q: volume of water collected A: area of cross section of the soil sample t: duration of collection of water H h h QL i Q A( k ) t k l l l Aht 30 1/29/2017

31 Falling Head Permeameter Suitable for fine-grained soils with low k : 31 1/29/2017

32 Falling Head Test

33 Falling Head Permeameter h dh q kia k A a L dt Where; q: rate of flow a: cross sectional area of the standpipe A: cross sectional area of the soil sample k al ln h al log h 1 33 At h 2 At h 2 1/29/2017

34

35

36

37

38

39

40

41 41

42 42

43 43

44 Equivalent Hydraulic Conductivity Case I: Horizontal Flow v 1 v2 v3 v vn

45 Equivalent Hydraulic Conductivity Case I: Horizontal Flow

46 Equivalent Hydraulic Conductivity Case II: Vertical Flow v

47 Equivalent Hydraulic Case II: Vertical Flow Conductivity

48

49

50

51 51

52 52

53

54 Pumped well in confined aquifer Elevation Aquifer heads pumped well Observation well H D Plan Radial flow Impermeable stratum aquifer

55 Pumped well in confined aquifer Elevation Aquifer heads pumped well Observation well H D Plan Radial flow Impermeable stratum aquifer

56

57

58 Permeability & Seepage 58 1/29/2017

59 Seepage Terminology concrete dam h L datum TH = h L TH = 0 soil 59 impervious strata 1/29/2017

60 Seepage Terminology Equipotential line is simply a contour of constant total head. h L concrete dam datum TH = h L TH = 0 TH=0.8 h L soil 60 impervious strata 1/29/2017

61 Stresses due to Flow Static Situation (No flow) h w L z X At X, v = w h w + sat z soil u = w (h w + z) v ' = ' z 61 1/29/2017

62 S t r e s s e s due to F l o w D o w n w a r d F l o w At X, v = w h w + sat z 62 as for static case u = w h w + w (L-h L )(z/l) = w h w + w (z-iz) = w (h w + z ) - w iz Reduction due to flow v ' = ' z + w iz Increase due to flow h h w u = L w h w z L X soil f l o w u = w (h w +L-h L ) 1/29/2017

63 Upward Flow At X, Stresses due to Flow flow v = w h w + sat z as for static case h L u = w h w + w (L+h L )(z/l) = w h w + w (z+iz) = w (h w +z) + w iz Increase due to flow v ' = ' z - w iz h w L z X soil u = w h w u = w (h w +L+h L ) 63 Reduction due to flow 1/29/2017

64 Flow nets Flow nets are useful in the study of seepage through porous media. A flow net consists of 2 sets of lines which for an isotropic (having equal properties in all directions) material are mutually perpendicular. 64 1/29/2017

65 Flow nets Lines drawn in the direction of flow are called flow lines (Ѱ-lines) Those perpendicular to the flow lines are called equipotential lines (Φ-lines) 65 1/29/2017

66 Seepage Terminology Stream line is simply the path of a water molecule. From upstream to downstream, total head steadily decreases along the stream line. h L TH = h L concrete dam datum TH = 0 soil 66 impervious strata 1/29/2017

67 Seepage Terminology Equipotential line is simply a contour of constant total head. h L concrete dam datum TH = h L TH = 0 TH=0.8 h L soil 67 impervious strata 1/29/2017

68 Flow net A network of selected stream lines and equipotential lines. concrete dam curvilinear square 90º soil 68 impervious strata 1/29/2017

69 Sketching of Flow Nets For practical purposes, flow nets can be obtained by sketching. The boundary conditions must be satisfied. An impermeable surface represents a flow line The interface between water and a porous medium is an equipotential line. 69 1/29/2017

70 Sketching of Flow Nets The procedure is: Draw geometry of the problem to a CHOSEN SCALE Prepare a first sketch of flow net trying to form equal sided figures and satisfying the boundary conditions Prepare an improved new sketch of flow net Correct the second sketch locally!!!example!!! 70 1/29/2017

71 Calculation of Seepage Loss through or beneath dams Let : Nd : Total number of equal drops in head Nf : Total number of flow channels Dl : side of a typical square of the flownet k : coefficient of permeability h : total drop in head between first and last lines 71 1/29/2017

72 Quantity of Seepage (Q) Q kh N f L Nd # of flow channels.per unit length normal to the plane # of equipotential drops h L concrete dam head loss from upstream to downstream 72 impervious strata 1/29/2017

73 Heads at a Point X Total head = h L - # of drops from upstream x h Elevation head = -z Pressure head = Total head Elevation head h N L d datum TH = h L TH = 0 concrete dam z h L h X 73 impervious strata 1/29/2017

74 Piping in Granular Soils At the downstream, near the dam, the exit hydraulic gradient i exit h l h L concrete dam l datum h = total head drop soil 74 impervious strata 1/29/2017

75 Piping in Granular Soils If i exit exceeds the critical hydraulic gradient (i c ), firstly the soil grains at exit get washed away. This phenomenon progresses towards the upstream, forming a free passage of water ( pipe ). h L concrete dam datum no soil; all water 75 impervious strata soil 1/29/2017

76 Piping in Granular Soils Piping is a very serious problem. It leads to downstream flooding which can result in loss of lives. Therefore, provide adequate safety factor against piping. F piping i i c exit concrete dam typically impervious strata soil 1/29/2017

77 Piping Failures Baldwin Hills Dam after it failed by piping in The failure occurred when a concentrated leak developed along a crack in the embankment, eroding the embankment fill and forming this crevasse. An alarm was raised about four hours before the failure and thousands of people were evacuated from the area below the dam. The flood that resulted when the dam failed and the reservoir was released caused several millions of dollars in damage. 77 1/29/2017

78 Piping Failures 78 Fontenelle Dam, USA (1965) 1/29/2017

79 Quick condition When flow is in the upward direction an unstable quick condition or boiling occurs when the upward seepage force per unit volume reaches the submerged unit weight of the soil. This condition usually occurs in sands. Determination of submerged unit weight of soil is needed by using the mass-volume relationships. (Lecture 1) 79 1/29/2017

80 Quick Condition in Granular Soils During upward flow, at X: v ' = ' z - w iz w z ' w i Critical hydraulic gradient (i c ) If i > i c, the effective stresses is negative. i.e., no inter-granular contact & thus failure. - Quick condition flow h L h w z L X soil 80 1/29/2017

81 Trench supported by sheet piles 5m 6m 6m 6m Uniform sand Impermeable clay

82 Trench supported by sheet piles 5m 6m 6m 6m Uniform sand Impermeable clay

83 Trench supported by sheet piles 5m 6m h=6m Nh=10 Nf= m 6m Uniform sand Impermeable clay

84 Excavation supported by a sheet pile Steel sheet Water pumped away Uniform sand Shale

85 Excavation supported by a sheet pile Steel sheet Water pumped away Uniform sand Shale

86 Reduced sheet penetration; possible liquefaction v = 0 Steel sheet Uniform sand Shale

87 Reduced sheet penetration; possible liquefaction v = 0 Reservoir Tail water Uniform sand Shale

88 Concrete dam or weir Reservoir Tail water Uniform sand Shale

89 Concrete dam with cut-off; reduces uplift pressure Reservoir Uniform sand Shale

90 Concrete dam with cut-off; reduces uplift pressure Reservoir Uniform sand Shale

91 Pumped well in confined aquifer Elevation Aquifer heads pumped well Observation well H D Plan Radial flow Impermeable stratum aquifer

92 Pumped well in confined aquifer Elevation Aquifer heads pumped well Observation well H D Plan Radial flow Impermeable stratum aquifer

93 Clay dam, no air entry reservoir atmospheric line drain clay Shale

94 Clay dam, no air entry atmospheric line reservoir drain clay Shale

95 Clay dam, no air entry Observation well atmospheric line reservoir drain clay Shale

96 Clay dam, no air entry, reduced drain; seepage out of downstream face reservoir atmospheric line Not possible clay Shale

97 Clay dam, with air entry reservoir drain clay Shale

98 Clay dam, with air entry reservoir drain clay Shale

99 Clay dam, no capillary, reduced drain; seepage out of downstream face reservoir clay Shale

100 Clay dam, no capillary, reduced drain; seepage out of downstream face reservoir clay Shale

101 Flow of water in earth dams The drain in a rolled clay dam will be made of gravel, which has an effectively infinite hydraulic conductivity compared to that of the clay, so far a finite quantity of flow in the drain and a finite area of drain the hydraulic gradient is effectively zero, i.e. the drain is an equipotential

102 Flow of water in earth dams The phreatic surface connects points at which the pressure head is zero. Above the phreatic surface the soil is in suction, so we can see how much capillarity is needed for the material to be saturated. If there is insufficient capillarity, we might discard the solution and try again. Alternatively: assume there is zero capillarity, the top water boundary is now atmospheric so along it and the flow net has to be adjusted within an unknown top boundary as the phreatic surface is a flow line if there is no capillarity.

103 Flow of water in earth dams If h y then h y cons in the flow net, so once we have the phreatic surface we can put on the starting points of the equipotentials on the phreatic surface directly

104 Unsteady flow effects Consolidation of matrix Change in pressure head within the soil due to changes in the boundary water levels may cause soil to deform, especially in compressible clays. The soil may undergo consolidation, a process in which the voids ratio changes over time at a rate determined by the pressure variation and the hydraulic conductivity, which may in turn depend on the voids ratio.

105 Breakdown of rigid matrix Liquefaction (tensile failure) The total stress normal to a plane in the soil can be separated into two components, the pore pressure p and the effective inter-granular stress : By convention in soils compressive stresses are +ve. Tensile failure occurs when the effective stress is less than the fracture strength fracture, and by definition for soil fracture=0. When the effective stress falls to zero the soil particles are no longer in contact with each other and the soil acts like a heavy liquid. This phenomenon is called liquefaction, and is responsible to quick sands. p

106 Large upward hydraulic gradients: Uniform soil of unit weight Upward flow of water

107 standpipe Water table and datum Critical head Pressure hcrit Critical potential Head h h z crit crit z Plug of Base area A Uniform soil of unit weight Gap opening as plug rises Upward flow of water

108 At the base of the rising plug, if there is no side friction: v p. z h crit. w So if v =0 then v = p and :. z h. h z. crit w crit w i crit h crit z w w, icrit=0.8~1.0

109 where icrit is the critical hydraulic gradient for the quick sand Condition. As 18~20 kn/m 3 for many soils (especially sands and silts) and w 10 kn/m 3 : i crit h z crit

110 Frictional (shear failure) Sliding failure of a gravity concrete dam due to insufficient friction along the base:

111 Reservoir H 1 W Tail water H 2 U p. ds W Uniform sand

112 Stresses due to Flow Static Situation (No flow) h w L z X At X, v = w h w + sat z soil u = w (h w + z) v ' = ' z 112 1/29/2017

113 S t r e s s e s due to F l o w D o w n w a r d F l o w At X, v = w h w + sat z 11 3 as for static case u = w h w + w (L-h L )(z/l) = w h w + w (z- i z ) = w (h w + z ) - w iz Reduction due to flow v ' = ' z + w iz Increase due to flow h h w u = L w h w z L X soil f l o w u = w (h w +L-h L ) 1/29/2017

114 Upward Flow At X, Stresses due to Flow flow v = w h w + sat z as for static case h L u = w h w + w (L+h L )(z/l) = w h w + w (z+iz) = w (h w +z) + w iz Increase due to flow v ' = ' z - w iz h w L z X soil u = w h w u = w (h w +L+h L ) 114 Reduction due to flow 1/29/2017

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

*** ***!   ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14.  > /' ;-,=. / ١ ١ ******!" #$ % & '!( ) % * ") +,-./ % 01. 3 ( 4 56 7/4 ) 8%9 % : 7 ;14 < 8%9 % : *7./ = ;-, >/'." Soil Permeability & Seepage ٢ Soil Permeability- Definition ٣ What is Permeability? Permeability is the

More information

Civil Engineering Department College of Engineering

Civil Engineering Department College of Engineering Civil Engineering Department College of Engineering Course: Soil Mechanics (CE 359) Lecturer: Dr. Frederick Owusu-Nimo FREQUENCY CE 260 Results (2013) 30 25 23 25 26 27 21 20 18 15 14 15 Civil Geological

More information

Chapter 7 Permeability and Seepage

Chapter 7 Permeability and Seepage Permeability and Seepage - N. Sivakugan (2005) 1 7.1 INTRODUCTION Chapter 7 Permeability and Seepage Permeability, as the name implies (ability to permeate), is a measure of how easily a fluid can flow

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 13 Permeability and Seepage -2 Conditions favourable for the formation quick sand Quick sand is not a type of sand but a flow condition occurring within a cohesion-less soil when its effective stress is

More information

Water in Soil Sections in Craig

Water in Soil Sections in Craig Water in Soil Sections 2.1-2.6 in Craig Outlines Introduction Darcy s Law Volume of water flowing per unit time Measuring K in laboratory Seepage Theory Flow Net Introduction All soils are permeable materials,

More information

Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski. 26 February 2017

Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski. 26 February 2017 Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski 26 February 2017 Permeability, consolidation and seepage Department of Civil Engineering Advanced Soil Mechanics W. Sołowski 2 To learn 1. What is

More information

(Refer Slide Time: 02:10)

(Refer Slide Time: 02:10) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 24 Flow of water through soils-v Welcome to lecture five of flow of water through

More information

b) EFFECTIVE STRESS (c) SEEPAGE

b) EFFECTIVE STRESS (c) SEEPAGE b) EFFECTIVE STRESS B1. A fine sand layer of 5 m thickness lies on a 5 m clay deposit. The water table is at the ground surface. Below the clay is a rock formation. Piezometers installed in the rock show

More information

GEOTECHNICAL ENGINEERING II (Subject Code: 06CV64) UNIT 4: FLOW NETS 4.1 Introduction

GEOTECHNICAL ENGINEERING II (Subject Code: 06CV64) UNIT 4: FLOW NETS 4.1 Introduction GEOTECHNICAL ENGINEERING II (Subject Code: 06CV64) UNIT 4: FLOW NETS 4.1 Introduction In this chapter the topics that are covered include principles of seepage analysis, graphical solutions for seepage

More information

GEOTECHNICAL LABORATORY

GEOTECHNICAL LABORATORY 14.333 GEOTECHNICAL LABORATORY BERNOULLI S EQUATION h u w v 2 2g Z h = Total Head u = Pressure v = Velocity g = Acceleration due to Gravity w = Unit Weight of Water Slide 1 of 14 h 14.333 GEOTECHNICAL

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF CIVIL ENGINEERING SUBJECT CODE : CE6405 YEAR : II SUBJECT NAME : SOIL MECHANICS SEM : IV QUESTION BANK (As per Anna University 2013 regulation) UNIT 1- SOIL

More information

ADVANCED SOIL MECHANICS

ADVANCED SOIL MECHANICS BERNOULLI S EQUATION h Where: u w g Z h = Total Head u = Pressure = Velocity g = Acceleration due to Graity w = Unit Weight of Water h 14.531 ADVANCED SOIL MECHANICS BERNOULLI S EQUATION IN SOIL u w g

More information

5. TWO-DIMENSIONAL FLOW OF WATER THROUGH SOILS 5.1 INTRODUCTION

5. TWO-DIMENSIONAL FLOW OF WATER THROUGH SOILS 5.1 INTRODUCTION 5. TWO-DIMENSIONAL FLOW OF WATER TROUG SOILS 5.1 INTRODUCTION In many instances the flo of ater through soils is neither one-dimensional nor uniform over the area perpendicular to flo. It is often necessary

More information

QUESTION BANK DEPARTMENT: CIVIL SUBJECT CODE / Name: CE 2251 / SOIL MECHANICS SEMESTER: IV UNIT 1- INTRODUCTION PART - A (2 marks) 1. Distinguish between Residual and Transported soil. (AUC May/June 2012)

More information

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials 1.3 Scope of This Book 1.4 Historical Development of Geotechnical

More information

Module 2 Lecture 9 Permeability and Seepage -5 Topics

Module 2 Lecture 9 Permeability and Seepage -5 Topics Module 2 Lecture 9 Permeability and Seepage -5 Topics 1.2.7 Numerical Analysis of Seepage 1.2.8 Seepage Force per Unit Volume of Soil Mass 1.2.9 Safety of Hydraulic Structures against Piping 1.2.10 Calculation

More information

Permeability in Soils

Permeability in Soils Permeability in Soils Contents: Darcy s law- assumption and validity, coefficient of permeability and its determination (laboratory and field), factors affecting permeability, permeability of stratified

More information

Introduction to Soil Mechanics

Introduction to Soil Mechanics Introduction to Soil Mechanics Sela Sode and Colin Jones WILEY Blackwell Contents Preface Dedication and Acknowledgments List of Symbols Soil Structure 1.1 Volume relationships 1.1.1 Voids ratio (e) 1.1.2

More information

All soils in natural are permeable materials, water being free to flow through the interconnected pores between the solid particles.

All soils in natural are permeable materials, water being free to flow through the interconnected pores between the solid particles. 8.1 Introduction Among construction materials, soil is very unique. Because of a relatively large space of void in its constituent, water can flow through soil. The water flow (seepage) characteristics

More information

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground Soil Mechanics I 3 Water in Soils 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground 1 Influence of Water - Basics WATER IN SOIL - affects soil

More information

ADVANCED SOIL MECHANICS FINAL EXAM (TAKE HOME):DUE THURSDAY, DECEMBER 19, 6PM.

ADVANCED SOIL MECHANICS FINAL EXAM (TAKE HOME):DUE THURSDAY, DECEMBER 19, 6PM. 14.531 ADVANCED SOIL MECHANICS FINAL EXAM (TAKE HOME):DUE THURSDAY, DECEMBER 19, 2013 @ 6PM. Problem #1. Field load tests on strip footings yielded the test data provided below in Figure 1 and Table 1

More information

Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis

Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis E3S Web of Conferences 9, 194 (16) DOI: 1.11/ e3sconf/169194 E-UNSAT 16 Distribution of pore water in an earthen dam considering unsaturated-saturated seepage analysis 1a Kumar Venkatesh, Siva Ram Karumanchi

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

Chapter (12) Instructor : Dr. Jehad Hamad

Chapter (12) Instructor : Dr. Jehad Hamad Chapter (12) Instructor : Dr. Jehad Hamad 2017-2016 Chapter Outlines Shear strength in soils Direct shear test Unconfined Compression Test Tri-axial Test Shear Strength The strength of a material is the

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

Course Scheme -UCE501: SOIL MECHANICS L T P Cr

Course Scheme -UCE501: SOIL MECHANICS L T P Cr Course Scheme -UCE501: SOIL MECHANICS L T P Cr 3 1 2 4.5 Course Objective: To expose the students about the various index and engineering properties of soil. Introduction: Soil formation, various soil

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

Geotechnical Properties of Soil

Geotechnical Properties of Soil Geotechnical Properties of Soil 1 Soil Texture Particle size, shape and size distribution Coarse-textured (Gravel, Sand) Fine-textured (Silt, Clay) Visibility by the naked eye (0.05 mm is the approximate

More information

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1 Geology and Soil Mechanics 55401 /1A (2002-2003) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet. Geology and Soil Mechanics 55401 /1A (2003-2004) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 19 Module 5: Lecture -1 on Stability of Slopes Contents Stability analysis of a slope and finding critical slip surface; Sudden Draw down condition, effective stress and total stress analysis; Seismic

More information

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business SOIL MECHANICS FUNDAMENTALS Isao Ishibashi Hemanta Hazarika >C\ CRC Press J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an Informa business

More information

PRINCIPLES OF GEOTECHNICAL ENGINEERING

PRINCIPLES OF GEOTECHNICAL ENGINEERING PRINCIPLES OF GEOTECHNICAL ENGINEERING Fourth Edition BRAJA M. DAS California State University, Sacramento I(T)P Boston Albany Bonn Cincinnati London Madrid Melbourne Mexico City New York Paris San Francisco

More information

Seismic Stability of Tailings Dams, an Overview

Seismic Stability of Tailings Dams, an Overview Seismic Stability of Tailings Dams, an Overview BY Gonzalo Castro, Ph.D., P.E. Principal International Workshop on Seismic Stability of Tailings Dams Case Western Reserve University, November 2003 Small

More information

SOIL MECHANICS

SOIL MECHANICS 4.330 SOIL MECHANICS BERNOULLI S EQUATION Were: u w g Z = Total Head u = Pressure = Velocity g = Acceleration due to Graity w = Unit Weigt of Water Slide of 37 4.330 SOIL MECHANICS BERNOULLI S EQUATION

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens)

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens) Spring 2008 CIVE 462 HOMEWORK #1 1. Print out the syllabus. Read it. Write the grade percentages in the first page of your notes. 2. Go back to your 301 notes, internet, etc. and find the engineering definition

More information

Darcy's Law. Laboratory 2 HWR 531/431

Darcy's Law. Laboratory 2 HWR 531/431 Darcy's Law Laboratory HWR 531/431-1 Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed in an attempt to quantify

More information

The process of consolidation and settlement

The process of consolidation and settlement Consolidation Based on part of the GeotechniCAL reference package by Prof. John Atkinson, City University, London The process of consolidation and settlement One-dimensional consolidation theory The oedometer

More information

PROBLEMS AND SOLUTIONS THAT MAY EMERGE IN THE FOUNDATION AND BODY OF A HOMOGENEOUS FILL DAM ON A WEAK CLAYEY-SILTY-SANDY FORMATION ÇIKRIKÇI DAM

PROBLEMS AND SOLUTIONS THAT MAY EMERGE IN THE FOUNDATION AND BODY OF A HOMOGENEOUS FILL DAM ON A WEAK CLAYEY-SILTY-SANDY FORMATION ÇIKRIKÇI DAM PROBLEMS AND SOLUTIONS THAT MAY EMERGE IN THE FOUNDATION AND BODY OF A HOMOGENEOUS FILL DAM ON A WEAK CLAYEY-SILTY-SANDY FORMATION ÇIKRIKÇI DAM Esen Yalım KARADUMAN BAR-SU Eng. & Conc. Inc. Ankara Turkey

More information

Soil Mechanics Permeability of Soils and Seepage page 1 CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1

Soil Mechanics Permeability of Soils and Seepage page 1 CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1 Soil Mechanics Permeability of Soils and Seepage page 1 Contents of this chapter : CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1 9.1 INTRODUCTION...1 9.2 DARCY S LAW...1 9.2.1 DEFINITION OF HEAD...1

More information

(Refer Slide Time: 01:15)

(Refer Slide Time: 01:15) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 56 Stability analysis of slopes II Welcome to lecture two on stability analysis of

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

Unsaturated Flow (brief lecture)

Unsaturated Flow (brief lecture) Physical Hydrogeology Unsaturated Flow (brief lecture) Why study the unsaturated zone? Evapotranspiration Infiltration Toxic Waste Leak Irrigation UNSATURATAED ZONE Aquifer Important to: Agriculture (most

More information

Slope Stability. loader

Slope Stability. loader Slope Stability Slope Stability loader Lower San Fernando Dam Failure, 1971 Outlines Introduction Definition of key terms Some types of slope failure Some causes of slope failure Shear Strength of Soils

More information

Micro-scale modelling of internally

Micro-scale modelling of internally Micro-scale modelling of internally unstable soils Dr Tom Shire School of Engineering, University of Glasgow 1 st September 2017 Outline Internal instability Micro-scale modelling Hydromechanical criteria

More information

CE 4780 Hurricane Engineering II. Section on Flooding Protection: Earth Retaining Structures and Slope Stability. Table of Content

CE 4780 Hurricane Engineering II. Section on Flooding Protection: Earth Retaining Structures and Slope Stability. Table of Content CE 4780 Hurricane Engineering II Section on Flooding Protection: Earth Retaining Structures and Slope Stability Dante Fratta Fall 00 Table of Content Introduction Shear Strength of Soils Seepage nalysis

More information

5. Which surface soil type has the slowest permeability rate and is most likely to produce flooding? A) pebbles B) sand C) silt D) clay A) B) C) D)

5. Which surface soil type has the slowest permeability rate and is most likely to produce flooding? A) pebbles B) sand C) silt D) clay A) B) C) D) 1. During a heavy rainstorm, soil samples A and B both became saturated with water. However, 10 minutes after the storm ended, the soils appeared as shown below. Which statement best explains the observed

More information

Tikrit University. College of Engineering Civil engineering Department CONSOILDATION. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016

Tikrit University. College of Engineering Civil engineering Department CONSOILDATION. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016 Tikrit University CONSOILDATION College of Engineering Civil engineering Department Soil Mechanics 3 rd Class Lecture notes Up Copyrights 2016 Stresses at a point in a soil mass are divided into two main

More information

PERENNIAL PROBLEM OF EARTHEN BUND OF WELLINGDON RESERVOIR. ANALYSIS OF CAUSES AND REMEDIAL MEASURES A CASE STUDY.

PERENNIAL PROBLEM OF EARTHEN BUND OF WELLINGDON RESERVOIR. ANALYSIS OF CAUSES AND REMEDIAL MEASURES A CASE STUDY. PERENNIAL PROBLEM OF EARTHEN BUND OF WELLINGDON RESERVOIR. ANALYSIS OF CAUSES AND REMEDIAL MEASURES A CASE STUDY. By Er. S. Muthu Parvatha Vardhini, Asst. Executive Engineer, (Designs) Water Resources

More information

Chapter 1 - Soil Mechanics Review Part A

Chapter 1 - Soil Mechanics Review Part A Chapter 1 - Soil Mechanics Review Part A 1.1 Introduction Geotechnical Engineer is concerned with predicting / controlling Failure/Stability Deformations Influence of water (Seepage etc.) Soil behavour

More information

Liquefaction is the sudden loss of shear strength of a saturated sediment due to earthquake shaking. Nisqually earthquake 02/28/2001: Olympia, WA

Liquefaction is the sudden loss of shear strength of a saturated sediment due to earthquake shaking. Nisqually earthquake 02/28/2001: Olympia, WA Liquefaction is the sudden loss of shear strength of a saturated sediment due to earthquake shaking Nisqually earthquake 02/28/2001: Olympia, WA The shear strength is controlled by the degree of grain-to-grain

More information

Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method. S. Soleymani 1, A. Akhtarpur 2

Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method. S. Soleymani 1, A. Akhtarpur 2 Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method S. Soleymani 1, A. Akhtarpur 2 1 Group of Dam Construction, Toossab Company, P.O. Box 917751569, Mashhad City, Iran, PH (+98) 511-7684091;

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 30 Simulations of Seepage Flows in Dam Subjected to Varying Phretic Levels *Oladipupo S.OLADEJO and Umaru A.NDATSU

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 56 Module 4: Lecture 7 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-Coulomb failure

More information

1.5 Permeability Tests

1.5 Permeability Tests 1-17 1.5 Permeability Tests 1.5.1 General - To determine the coefficient of permeability(or coefficient of hydraulic conductivity) k - General method for determining k directly. 1) Constant-head method

More information

Soils. Technical English - I 10 th week

Soils. Technical English - I 10 th week Technical English - I 10 th week Soils Soil Mechanics is defined as the branch of engineering science which enables an engineer to know theoretically or experimentally the behavior of soil under the action

More information

Principles of Foundation Engineering 8th Edition Das SOLUTIONS MANUAL

Principles of Foundation Engineering 8th Edition Das SOLUTIONS MANUAL Principles of Foundation Engineering 8th Edition SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-foundation-engineering- 8th-edition-das-solutions-manual/

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF CIVIL ENGINEERING CE6405 SOIL MECHANICS UNIT I : SOIL CLASSIFICATION AND COMPACTION

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF CIVIL ENGINEERING CE6405 SOIL MECHANICS UNIT I : SOIL CLASSIFICATION AND COMPACTION DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF CIVIL ENGINEERING CE6405 SOIL MECHANICS UNIT I : SOIL CLASSIFICATION AND COMPACTION PART A (2 marks) 1. Define Void ratio, Porosity and Degree

More information

SEM-2016(01HI CIVIL ENGINEERING. Paper Answer all questions. Question No. 1 does not have internal choice,

SEM-2016(01HI CIVIL ENGINEERING. Paper Answer all questions. Question No. 1 does not have internal choice, Roll No. Candidate should write his/her Roll No. here. Total No. of Questions : 5 No. of Printed Pages : 8 SEM-2016(01HI CIVIL ENGINEERING Paper - 11 Time : 3 Hours ] [ Total Marks : 300 Instructions to

More information

Laboratory Testing Total & Effective Stress Analysis

Laboratory Testing Total & Effective Stress Analysis SKAA 1713 SOIL MECHANICS Laboratory Testing Total & Effective Stress Analysis Prepared by: Dr. Hetty Mohr Coulomb failure criterion with Mohr circle of stress 2 ' 2 ' ' ' 3 ' 1 ' 3 ' 1 Cot Sin c ' ' 2

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL SHEAR STRENGTH OF SOIL Necessity of studying Shear Strength of soils : Soil failure usually occurs in the form of shearing along internal surface within the soil. Shear Strength: Thus, structural strength

More information

SOIL MECHANICS: palgrave. Principles and Practice. Graham Barnes. macmiiian THIRD EDITION

SOIL MECHANICS: palgrave. Principles and Practice. Graham Barnes. macmiiian THIRD EDITION SOIL MECHANICS: Principles and Practice THIRD EDITION Graham Barnes palgrave macmiiian 'running Contents Preface xii Fine soil 19 List of symbols xiv Mass structure 21 Note on units xix Degree of weathering

More information

UNIT I FLUID PROPERTIES AND STATICS

UNIT I FLUID PROPERTIES AND STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

More information

dynamics of f luids in porous media

dynamics of f luids in porous media dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 4

More information

Introduction to Geotechnical Engineering. ground

Introduction to Geotechnical Engineering. ground Introduction to Geotechnical Engineering ground 1 Typical Geotechnical Project Geo-Laboratory ~ for testing soil properties Design Office ~ for design & analysis construction site 2 Shallow Foundations

More information

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida SOIL SHEAR STRENGTH Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida What is shear strength Shear strength of a soil is the maximum internal resistance to applied shearing forces Why it is

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

COMPARISION OF HYDRAULIC GRADIENT AND UPLIFT PRESSURE IN THREE TYPES OF DAMS: HOMOGENEOUS, HETEROGENEOUS EARTHFILL DAMS AND CONCRETE GRAVITY DAM

COMPARISION OF HYDRAULIC GRADIENT AND UPLIFT PRESSURE IN THREE TYPES OF DAMS: HOMOGENEOUS, HETEROGENEOUS EARTHFILL DAMS AND CONCRETE GRAVITY DAM SAJCCE 1:1 (2015) 91-103 October 2015 ISSN: 2394-2258 Available at http://scientificadvances.co.in DOI: http://dx.doi.org/10.18642/sajcce_7100121544 COMPARISION OF HYDRAULIC GRADIENT AND UPLIFT PRESSURE

More information

(Refer Slide Time: 02:18)

(Refer Slide Time: 02:18) Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture 40 Shear Strength of Soil - C Keywords: Shear strength of soil, direct shear test,

More information

Stability Analysis of Landslide Dam under Rainfall

Stability Analysis of Landslide Dam under Rainfall Stability Analysis of Landslide Dam under Rainfall Pei-Hsun Tsai, Zheng-Yi Feng 2, Fan-Chieh Yu 3 and Jian-Han Lin 4 Associate Professor, Department of Construction Engineering, Chaoyang University of

More information

Principal Symbols. f. Skin friction G Shear modulus. Cu Coefficient of uniformity Cc Coefficient of curvature

Principal Symbols. f. Skin friction G Shear modulus. Cu Coefficient of uniformity Cc Coefficient of curvature Principal Symbols A, a Area A Air content A, A Pore pre.ssure coefficients a' Modified shear strength parameter (effective stress) a Dial gauge reading in oedometer test B Width of footing B, B Pore pressure

More information

Earth dam steady state seepage analysis

Earth dam steady state seepage analysis Engineering manual No. 32 Updated 3/2018 Earth dam steady state seepage analysis Program: FEM Water Flow File: Demo_manual_32.gmk Introduction This example illustrates an application of the GEO5 FEM module

More information

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February ISSN

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February ISSN P P International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 1053 Effect of Impervious Core on Seepage through Zoned Earth Dam (Case Study: Khassa Chai Dam) Abstract

More information

Soil Properties - I. Amit Prashant. Indian Institute of Technology Gandhinagar. Short Course on. Geotechnical Aspects of Earthquake Engineering

Soil Properties - I. Amit Prashant. Indian Institute of Technology Gandhinagar. Short Course on. Geotechnical Aspects of Earthquake Engineering Soil Properties - I Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Geotechnical Aspects of Earthquake Engineering 04 08 March, 2013 Regional Soil Deposits of India Alluvial deposits

More information

Design of RC Retaining Walls

Design of RC Retaining Walls Lecture - 09 Design of RC Retaining Walls By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Topics Retaining Walls Terms Related to Retaining Walls Types of Retaining

More information

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes T. Nishimura

More information

Intro to Soil Mechanics: the what, why & how. José E. Andrade, Caltech

Intro to Soil Mechanics: the what, why & how. José E. Andrade, Caltech Intro to Soil Mechanics: the what, why & how José E. Andrade, Caltech The What? What is Soil Mechanics? erdbaumechanik The application of the laws of mechanics (physics) to soils as engineering materials

More information

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room 2017 Soil Mechanics II and Exercises Final Exam 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room Attention: The exam consists of five questions for which you are provided with five answer sheets. Write

More information

Cubzac-les-Ponts Experimental Embankments on Soft Clay

Cubzac-les-Ponts Experimental Embankments on Soft Clay Cubzac-les-Ponts Experimental Embankments on Soft Clay 1 Introduction In the 197 s, a series of test embankments were constructed on soft clay at Cubzac-les-Ponts in France. These full-scale field tests

More information

See discussions, stats, and author profiles for this publication at:

See discussions, stats, and author profiles for this publication at: See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/261179220 Analysis of Seepage Problem effects underneath Diyala Weir using 2-D model for the

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,500 108,000 1.7 M Open access books available International authors and editors Downloads Our

More information

Practical methodology for inclusion of uplift and pore pressures in analysis of concrete dams

Practical methodology for inclusion of uplift and pore pressures in analysis of concrete dams Practical methodology for inclusion of uplift and pore pressures in analysis of concrete dams Michael McKay 1 and Francisco Lopez 2 1 Dams Engineer, GHD Pty 2 Principal Dams/Structural Engineer, GHD Pty

More information

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6 Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture 6 Good morning and welcome to the next lecture of this video course on Advanced Hydrology.

More information

Chapter 5 Shear Strength of Soil

Chapter 5 Shear Strength of Soil Page 5 Chapter 5 Shear Strength of Soil. The internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it is called (a) strength (b) shear strength

More information

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6)

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6) CE 40 Soil Mechanics & Foundations Lecture 5. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. -6) Outline of this Lecture 1. Getting the in situ hydraulic conductivity 1.1 pumping

More information

Chapter 2. 53% v. 2.2 a. From Eqs. (2.11) and (2.12), it can be seen that, 2.67

Chapter 2. 53% v. 2.2 a. From Eqs. (2.11) and (2.12), it can be seen that, 2.67 Chapter 2 2.1 d. (87.5)(9.81) (1000)(0.05) 3 17.17 kn/m c. d 1 w 17.17 1 0.15 3 14.93 kn/m G a. Eq. (2.12): s w (2.68)(9.81). 14.93 ; e 0.76 1 e 1 e e 0.76 b. Eq. (2.6): n 0.43 1 e 1 0.76 Vw wgs (0.15)(2.68)

More information

- To determine the coefficient of permeability (or coefficient of hydraulic

- To determine the coefficient of permeability (or coefficient of hydraulic 39 2.6 Permeability Tests 2.6.1 General - To determine te coefficient of permeability (or coefficient of ydraulic conductivity) k. - General metod for determining k directly. 1) Constant-ead metod (for

More information

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method E. Yıldız & A.F. Gürdil Temelsu International Engineering Services Inc., Ankara, Turkey SUMMARY: Time history analyses conducted

More information

Deep Foundations 2. Load Capacity of a Single Pile

Deep Foundations 2. Load Capacity of a Single Pile Deep Foundations 2 Load Capacity of a Single Pile All calculations of pile capacity are approximate because it is almost impossible to account for the variability of soil types and the differences in the

More information

Changes in soil deformation and shear strength by internal erosion

Changes in soil deformation and shear strength by internal erosion Changes in soil deformation and shear strength by internal erosion C. Chen & L. M. Zhang The Hong Kong University of Science and Technology, Hong Kong, China D. S. Chang AECOM Asia Company Ltd., Hong Kong,

More information

FOUNDATION ENGINEERING UNIT V

FOUNDATION ENGINEERING UNIT V FOUNDATION ENGINEERING UNIT V RETAINING WALLS Plastic equilibrium in soils active and passive states Rankine s theory cohesion less and cohesive soil - Coloumb s wedge theory condition for critical failure

More information

EARTH PRESSURES ON RETAINING STRUCTURES

EARTH PRESSURES ON RETAINING STRUCTURES 12-1 12. EARTH PRESSURES ON RETAINING STRUCTURES 12.1 Active Pressure and Passive Pressure When a sudden change in level of the ground surface is to be provided for some purpose a retaining structure is

More information

Centrifuge modelling of municipal solid waste landfills under earthquake loading

Centrifuge modelling of municipal solid waste landfills under earthquake loading Centrifuge modelling of municipal solid waste landfills under earthquake loading N.I. Thusyanthan Ph.D research student, Schofield Centre, University of Cambridge, Cambridge, CB3 0EL, UK. Email: it206@cam.ac.uk

More information

Effect of Location and Angle of Cutoff Wall on Uplift Pressure in Diversion Dam

Effect of Location and Angle of Cutoff Wall on Uplift Pressure in Diversion Dam Geotech Geol Eng (2014) 32:1165 1173 DOI 10.1007/s10706-014-9774-3 ORIGINAL PAPER Effect of Location and Angle of Cutoff Wall on Uplift Pressure in Diversion Dam Behnam Mansuri Farzin Salmasi Behrooz Oghati

More information

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters.

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters. TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane Mohr-Coulomb Failure Criterion Laboratory Shear Strength Testing Direct Shear Test Triaxial Compression Test

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Hydraulic conductivity of granular materials

Hydraulic conductivity of granular materials 3 r d International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, Hydraulic conductivity of granular materials Namir K.S.Al-Saoudi Building and construction Eng. Dept.

More information