Chapter 1 - Soil Mechanics Review Part A

Size: px
Start display at page:

Download "Chapter 1 - Soil Mechanics Review Part A"

Transcription

1 Chapter 1 - Soil Mechanics Review Part A 1.1 Introduction Geotechnical Engineer is concerned with predicting / controlling Failure/Stability Deformations Influence of water (Seepage etc.) Soil behavour is complex: - Anisotropic - Non-homogeneous - Non-linear - Stress and stress history dependant Complexity gives rise to importance of: - Theory - Lab tests - Field tests - Empirical relations - Computer applications - Experience, Judgement, FOS Unlike steel, soil properties can t be easily determined with a single grade#: - the best we can do: Soil Texture Phase relationships Atterberg Limits Clay mineralogy Fabric and structure Genetic Factors Classification 1.2 Soil Texture Particle size, shape and size distribution - Coarse-textured (Gravel, Sand) - Fine-textured (Silt, Clay) - visibility by the naked eye (0.05mm is the approx limit) CE Class Notes I.R. Fleming Page 1

2 There are several Classification systems with some differences: we use USCS: Particle size distribution - Sieve/Mechanical analysis or Gradation Test - Hydrometer analysis for smaller than.05 to.075 mm (#200 US Standard sieve) Particle size distribution curves - Well graded - Poorly graded D C u = D Cu & Cc together provides a better indication of if a soil is well graded Particle Shape: Roundness vs Angularity Sphericity Higher angularity tends to give higher strength for gravels and sands. Modulus: Not certain Table 1.1 Effect of Particle size: Gravels, Sands Silt Clay generally High Strength High modulus High permeability Granular Cohesionless Effect of water unimportant (except for cyclic loading) generally Lower strength Lower modulus Lower permeability Granular Cohesionless Effect of water important generally Lowest strength Lowest modulus Lowest permeability Non-granular Cohesive Effect of water v. important CE Class Notes I.R. Fleming Page 2

3 Particle size distribution: Important for gravels and sands - well graded material gives higher strength and higher modulus For some sands D 10 can be related to Permeability, but D 10 relates poorly to K for silts and clays Soil is Particulate in Nature Properties of interest strength (stability) and compressibility (settlement) Phases solid, liquid, vapour and others? 1.3 Basic Volume/Mass Relationships The three main physical phases of soil can be represented in graphical form: Figure 1.1 Volume/Mass Relationships. CE Class Notes I.R. Fleming Page 3

4 Based on the volume/mass relationships the following relationships can be defined: Void ratio, e = V V v s Vv Porosity, n(%) = x100% V Vw Degree of saturation, S(%) = x100% V M w Water content, ω(%) = x100% M t Vw Volumetric water content, θ(%) = x100% V M Density, ρ = V t t s v Dry density, ρ = dry M V t s Specific gravity of solids, Ms G s = ρ V water s Based on the above definitions the following relationships may be derived: ρ d ρ ρ s = 1 + e =ρd( 1 w) B + e n = 1+ e ρ B 1+ Se / G = 1+ e Se = wg n e = 1 n s s CE Class Notes I.R. Fleming Page 4

5 When solving problems with phase relations: if possible, choose one quantity to be UNITY and determine the remaining quantities similar to solving a crossword puzzle (i.e. filling the remaining blanks on the phase diagram) Void Ratio: Generally (for the same soil) - modulus increases with decreasing void ratio - strength increases with decreasing void ratio - provides an indication of stress history Moisture content: Saturated moisture content is directly proportional to void ratio. Given that G s is typically between 2.6 to 2.8, all other phase relations depend on w and e. Generally, water content or void ratio alone may not tell much about soil properties when comparing two soils. 1.4 Atterberg Limits Atterberg limits are defined as limits of engineering behavior based on water contents Liquid limit (LL) the water content, in percent, at which the soil changes from a liquid to a plastic state Plastic limit (PL) the water content, in percent, at which the soil changes from a plastic to a semisolid state Shrinkage limit (SL) the water content, in percent, at which the soil changes from a semisolid to a solid state Plasticity index (PI) the difference between the liquid limit and plastic limit of a soil, PI = LL PL CE Class Notes I.R. Fleming Page 5

6 Figure 1.2 Definition of Atterberg Limits. 1.5 Clay mineralogy Clay fraction, clay size particles Particle size < 2 µm (.002 mm) Clay minerals Kaolinite, Illite, Montmorillonite (Smectite) - negatively charged, large surface areas Non-clay minerals - e.g. finely ground quartz, feldspar or mica of "clay" size Implication of the clay particle surface being negatively charged - double layer Exchangeable ions - Li + <Na + <H + <K + <NH + 4 <<Mg ++ <Ca ++ <<Al Valance, Size of Hydrated cation, Concentration Thickness of double layer decreases when replaced by higher valence cation - higher potential to have flocculated structure When double layer is larger swelling and shrinking potential is larger CE Class Notes I.R. Fleming Page 6

7 Soils containing clay minerals tend to be cohesive and plastic. Given the existence of a double layer, clay minerals have an affinity for water and hence has a potential for swelling (e.g. during wet season) and shrinking (e.g. during dry season). Smectites such as Montmorillonite have the highest potential, Kaolinite has the lowest. Generally, a flocculated soil has higher strength, lower compressibility and higher permeability compared to a non-flocculated soil. Sands and gravels (cohesionless ) : Relative density can be used to compare the same soil. However, the fabric may be different for a given relative density and hence the behaviour. Effect of moisture content on strength of Cohesive Soils Lower water content more elastic, more brittle, stiffer and of higher strength (compared to the same soil with higher water content) Higher water content (same material) more plastic, less stiff and of lower strength (compared to the same soil with lower water content) Plasticity - material can be molded to various shapes without breaking it. CE Class Notes I.R. Fleming Page 7

8 Atterberg Limits are water contents, simple and inexpensive Plastic Limit (PL, w P ) Liquid Limit (LL, w L ) Plasticity index (PI, I P ) = LL - PL Water content itself does not tell the whole story about two soils Engineering behaviour expressed by relative position of water content Liquidity Index (LI, I L ) = (w-pl)/pi I L <0 = w<pl - brittle, stiff, high strength 0<I L <1 = PL<w<LL - plastic, lower stiffness, lower strength I L >1 = w>ll - viscous liquid or quick clay Ultra sensitive (Quick) w > LL or LI > 1 Plasticity (PI = LL - PL) increases with %clay - depends on clay mineral Activity = slope of the PI vs % Clay plot Depends on - type of clay mineral present (not just % clay) Sodium smectites A > 4 Calcium smectites A 1.5 Illite A = Kaolinite A = Quartz A = 0 Swell Potential depends on: Type of Clay mineral and % clay A soil that would develop to a thicker double layer: Higher LL and Higher PI Higher PL - not certain There is a relationship between PI and LL indicated the type of clay mineral. Knowing index properties (PI, LL, PL, LI) we have a better idea about the 3 main properties e.g. LI - Strength and modulus, Swell Potential Some empirical relations use PI etc to estimate Strength or modulus CE Class Notes I.R. Fleming Page 8

9 1.6 Soil Classification Systems Classification may be based on grain size, genesis, Atterberg Limits, behavior, etc. In Engineering, descriptive or behaviourbased classification is more useful than genetic classification. American Assoc of State Highway & Transportation Officials (AASHTO) Originally proposed in 1945 Classification system based on eight major groups (A-1 to A-8) and a group index Based on grain size distribution, liquid limit and plasticity indices Mainly used for highway subgrades in USA Unified Soil Classification System (UCS) Originally proposed in 1942 by A. Casagrande Classification system pursuant to ASTM Designation D-2487 Classification system based on group symbols and group names The USCS is used in most geotechnical work in Canada Figure 1.3 Plasticity Chart for Clays and Silts. Group symbols G (gravel), S (sand), M (silt), C (clay), O (organic silts and clay), Pt (peat and highly organic soils), H (high plasticity), L (low plasticity), W (well graded) and P (poorly graded) Group names several descriptions CE Class Notes I.R. Fleming Page 9

10 Table 1.2 Group Symbols According to the UCS. CE Class Notes I.R. Fleming Page 10

11 Table 1.3 Group Names for Course Grained Soils. CE Class Notes I.R. Fleming Page 11

12 Table 1.4 Group Names for Inorganic Fine Grained Soils. CE Class Notes I.R. Fleming Page 12

13 Table 1.4 (cont) Group Names for Organic Fine Grained Soils. CE Class Notes I.R. Fleming Page 13

14 Table 1.5 Flow Cart for USCS (from Codutto, 2001) CE Class Notes I.R. Fleming Page 14

15 1.7 Permeability & Seepage Flow through soils affect several material properties such as shear strength and compressibility If there were no water in soil, there would be no geotechnical engineering Darcy s Law Developed in 1856 h Unit flow, q = K L Where: K = hydraulic conductivity h =difference in piezometric or total head L = length along the drainage path Figure 1.4 Definition of Darcy s Law. Example: For a sandy sample with K=3E-03 cm/s, if h =0.1 m and L = 1 m, what is Q? q = Q/A = k h / L = 3E-05 m/s x 0.1 = 3E-06 m/s (i.e. m 3 /s/m 2 ) CE Class Notes I.R. Fleming Page 15

16 1-D Seepage Q = k i A i = hydraulic gradient = h / L h = change in TOTAL head Downward seepage increases effective stress Upward seepage decreases effective stress 2-D Seepage (flow nets) Reservoir elevation = 168 masl 140 m 40 metres Tailwater Elevation 139 ASL A B Bedrock Elevation variable, i t l 95 ASL CE Class Notes I.R. Fleming Page 16

17 1.7 Effective Stress Effective stress is defined as the effective pressure that occurs at a specific point within a soil profile The total stress is carried partially by the pore water and partially by the soil solids, the effective stress, σ, is defined as the total stress, σ t, minus the pore water pressure, u, σ' = σ u Changes in effective stress is responsible for volume change The effective stress is responsible for producing frictional resistance between the soil solids Therefore, effective stress is an important concept in geotechnical engineering t Overconsolidation ratio, σ OCR = σ ' c ' z Where: σ c = preconsolidation pressure Critical hydraulic gradient σ =0 when i = (γb-γw) /γw σ = 0 CE Class Notes I.R. Fleming Page 17

18 Example: Determine the effective stress distribution with depth if the head in the gravel layer is a) 2 m below ground surface b) 4 m below ground surface; and c) at the ground surface. Steps in solving seepage and effective stress problems: 1. set a datum 2. evaluate distribution of total head with depth 3. subtract elevation head from total head to yield pressure head 4. calculate distribution with depth of vertical total stress subtract pore pressure (=pressure head x γ w ) from total stress 2m Sandy silt till γ B =19 kn/m 3 8 m Sandy Gravel γ B =21.5 kn/m 3 2m CE Class Notes I.R. Fleming Page 18

Geotechnical Properties of Soil

Geotechnical Properties of Soil Geotechnical Properties of Soil 1 Soil Texture Particle size, shape and size distribution Coarse-textured (Gravel, Sand) Fine-textured (Silt, Clay) Visibility by the naked eye (0.05 mm is the approximate

More information

4. Soil Consistency (Plasticity) (Das, chapter 4)

4. Soil Consistency (Plasticity) (Das, chapter 4) 4. Soil Consistency (Plasticity) (Das, chapter 4) 1 What is Consistency? Consistency is a term used to describe the degree of firmness of fine-grained soils (silt and clay). The consistency of fine grained

More information

Chapter I Basic Characteristics of Soils

Chapter I Basic Characteristics of Soils Chapter I Basic Characteristics of Soils Outline 1. The Nature of Soils (section 1.1 Craig) 2. Soil Texture (section 1.1 Craig) 3. Grain Size and Grain Size Distribution (section 1.2 Craig) 4. Particle

More information

CE 240 Soil Mechanics & Foundations Lecture 3.2. Engineering Classification of Soil (AASHTO and USCS) (Das, Ch. 4)

CE 240 Soil Mechanics & Foundations Lecture 3.2. Engineering Classification of Soil (AASHTO and USCS) (Das, Ch. 4) CE 240 Soil Mechanics & Foundations Lecture 3.2 Engineering Classification of Soil (AASHTO and USCS) (Das, Ch. 4) Outline of this Lecture 1. Particle distribution and Atterberg Limits 2. Soil classification

More information

Module 1 GEOTECHNICAL PROPERTIES OF SOIL AND OF REINFORCED SOIL (Lectures 1 to 4)

Module 1 GEOTECHNICAL PROPERTIES OF SOIL AND OF REINFORCED SOIL (Lectures 1 to 4) Module 1 GEOTECHNICAL PROPERTIES OF SOIL AND OF REINFORCED SOIL (Lectures 1 to 4) Topics 1.1 INTRODUCTION 1.2 GRAIN-SIZE DISTRIBUTION Sieve Analysis Hydrometer Analysis 1.3 SIZE LIMITS FOR SOILS 1.4 WEIGHT-VOLUME

More information

Principles of Foundation Engineering 8th Edition Das SOLUTIONS MANUAL

Principles of Foundation Engineering 8th Edition Das SOLUTIONS MANUAL Principles of Foundation Engineering 8th Edition SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-foundation-engineering- 8th-edition-das-solutions-manual/

More information

Geology 229 Engineering Geology. Lecture 8. Elementary Soil Mechanics (West, Ch. 7)

Geology 229 Engineering Geology. Lecture 8. Elementary Soil Mechanics (West, Ch. 7) Geology 229 Engineering Geology Lecture 8 Elementary Soil Mechanics (West, Ch. 7) Outline of this Lecture 1. Introduction of soil properties 2. Index properties of soils Soil particles Phase relationship

More information

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials 1.3 Scope of This Book 1.4 Historical Development of Geotechnical

More information

Solution:Example 1. Example 2. Solution: Example 2. clay. Textural Soil Classification System (USDA) CE353 Soil Mechanics Dr.

Solution:Example 1. Example 2. Solution: Example 2. clay. Textural Soil Classification System (USDA) CE353 Soil Mechanics Dr. CE353 Soil Mechanics CE353 Lecture 5 Geotechnical Engineering Laboratory SOIL CLASSIFICATION Lecture 5 SOIL CLASSIFICATION Dr. Talat A Bader Dr. Talat Bader 2 Requirements of a soil Systems Why do we need

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 06 Index properties Review Clay particle-water interaction Identification of clay minerals Sedimentation analysis Hydrometer analysis 0.995 20-40 Hydrometer is a device which is used to measure the specific

More information

Chapter 2. 53% v. 2.2 a. From Eqs. (2.11) and (2.12), it can be seen that, 2.67

Chapter 2. 53% v. 2.2 a. From Eqs. (2.11) and (2.12), it can be seen that, 2.67 Chapter 2 2.1 d. (87.5)(9.81) (1000)(0.05) 3 17.17 kn/m c. d 1 w 17.17 1 0.15 3 14.93 kn/m G a. Eq. (2.12): s w (2.68)(9.81). 14.93 ; e 0.76 1 e 1 e e 0.76 b. Eq. (2.6): n 0.43 1 e 1 0.76 Vw wgs (0.15)(2.68)

More information

Class Principles of Foundation Engineering CEE430/530

Class Principles of Foundation Engineering CEE430/530 Class Principles of Foundation Engineering CEE430/530 1-1 General Information Lecturer: Scott A. Barnhill, P.E. Lecture Time: Thursday, 7:10 pm to 9:50 pm Classroom: Kaufmann, Room 224 Office Hour: I have

More information

P.E. Civil Exam Review: GEOMECHANICS. Jerry Vandevelde, P.E.

P.E. Civil Exam Review: GEOMECHANICS. Jerry Vandevelde, P.E. P.E. Civil Exam Review: GEOMECHANICS Jerry Vandevelde, P.E. gtv@gemeng.com GEOMECHANICS National Council of Examiners for Engineering and Surveying http://www.ncees.org/ 3 STUDY REFERENCES Foundation Engineering;

More information

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet. Geology and Soil Mechanics 55401 /1A (2003-2004) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1 Geology and Soil Mechanics 55401 /1A (2002-2003) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Tikrit University College of Engineering Civil engineering Department

Tikrit University College of Engineering Civil engineering Department Tikrit University SOIL CLASSIFICATION College of Engineering Civil engineering Department Soil Mechanics 3 rd Class Lecture notes Up Copyrights 2016 Classification of soil is the separation of soil into

More information

Dr. Ravi Kant mittal. CE C361 Soil Mechanics and Foundation Engg. 1

Dr. Ravi Kant mittal. CE C361 Soil Mechanics and Foundation Engg. 1 Dr. Ravi Kant mittal Assistant Professor, BITS Pilani E- Mail: ravi.mittal@rediffmai.com ravimittal@bits-pilani.ac.in Mobile: 9887692025 CE C361 Soil Mechanics and Foundation Engg. 1 Contents Soil Formation

More information

Geotechnical Engineering I CE 341

Geotechnical Engineering I CE 341 Geotechnical Engineering I CE 341 What do we learn in this course? Introduction to Geotechnical Engineering (1) Formation, Soil Composition, Type and Identification of Soils (2) Soil Structure and Fabric

More information

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6)

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6) CE 40 Soil Mechanics & Foundations Lecture 5. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. -6) Outline of this Lecture 1. Getting the in situ hydraulic conductivity 1.1 pumping

More information

Soil Properties - I. Amit Prashant. Indian Institute of Technology Gandhinagar. Short Course on. Geotechnical Aspects of Earthquake Engineering

Soil Properties - I. Amit Prashant. Indian Institute of Technology Gandhinagar. Short Course on. Geotechnical Aspects of Earthquake Engineering Soil Properties - I Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Geotechnical Aspects of Earthquake Engineering 04 08 March, 2013 Regional Soil Deposits of India Alluvial deposits

More information

Copyright SOIL STRUCTURE and CLAY MINERALS

Copyright SOIL STRUCTURE and CLAY MINERALS SOIL STRUCTURE and CLAY MINERALS Soil Structure Structure of a soil may be defined as the mode of arrangement of soil grains relative to each other and the forces acting between them to hold them in their

More information

SOIL FORMATION SOIL CLASSIFICATION FOR GEOTECHNICAL ENGINEERS. Soil Properties and Classification

SOIL FORMATION SOIL CLASSIFICATION FOR GEOTECHNICAL ENGINEERS. Soil Properties and Classification SOIL CLASSIFICATION FOR GEOTECHNICAL ENGINEERS Soil Properties and Classification Soil Formation Soil Types Particle Size Analysis and Grading Characteristics Consistency Indices Engineering classification

More information

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business SOIL MECHANICS FUNDAMENTALS Isao Ishibashi Hemanta Hazarika >C\ CRC Press J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an Informa business

More information

Project: ITHACA-TOMPKINS REGIONAL AIRPORT EXPANSION Project Location: ITHACA, NY Project Number: 218-34 Key to Soil Symbols and Terms TERMS DESCRIBING CONSISTENCY OR CONDITION COARSE-GRAINED SOILS (major

More information

Introduction to Soil Mechanics Geotechnical Engineering-II

Introduction to Soil Mechanics Geotechnical Engineering-II Introduction to Soil Mechanics Geotechnical Engineering-II ground SIVA Dr. Attaullah Shah 1 Soil Formation Soil derives from Latin word Solum having same meanings as our modern world. From Geologist point

More information

Soil Mechanics Brief Review. Presented by: Gary L. Seider, P.E.

Soil Mechanics Brief Review. Presented by: Gary L. Seider, P.E. Soil Mechanics Brief Review Presented by: Gary L. Seider, P.E. 1 BASIC ROCK TYPES Igneous Rock (e.g. granite, basalt) Rock formed in place by cooling from magma Generally very stiff/strong and often abrasive

More information

Course Scheme -UCE501: SOIL MECHANICS L T P Cr

Course Scheme -UCE501: SOIL MECHANICS L T P Cr Course Scheme -UCE501: SOIL MECHANICS L T P Cr 3 1 2 4.5 Course Objective: To expose the students about the various index and engineering properties of soil. Introduction: Soil formation, various soil

More information

Tikrit University. College of Engineering Civil engineering Department SOIL PROPERTES. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016

Tikrit University. College of Engineering Civil engineering Department SOIL PROPERTES. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016 Tikrit University SOIL PROPERTES College of Engineering Civil engineering Department Soil Mechanics 3 rd Class Lecture notes Up Copyrights 2016 1-Soil Composition -Solids -Water -Air 2-Soil Phases -Dry

More information

Soil Mechanics I CE317

Soil Mechanics I CE317 Soil Mechanics I CE317 Civil Engineering Department/ Third Stage Semester (Fall 2016-2017) 1 Course Name: Soil Mechanics I Code: CE317 Name of Lecturer Office No.: Room # 217, 1 st floor Classroom and

More information

QUESTION BANK DEPARTMENT: CIVIL SUBJECT CODE / Name: CE 2251 / SOIL MECHANICS SEMESTER: IV UNIT 1- INTRODUCTION PART - A (2 marks) 1. Distinguish between Residual and Transported soil. (AUC May/June 2012)

More information

Chapter 7 Permeability and Seepage

Chapter 7 Permeability and Seepage Permeability and Seepage - N. Sivakugan (2005) 1 7.1 INTRODUCTION Chapter 7 Permeability and Seepage Permeability, as the name implies (ability to permeate), is a measure of how easily a fluid can flow

More information

Calculation of 1-D Consolidation Settlement

Calculation of 1-D Consolidation Settlement Calculation of 1-D Consolidation Settlement A general theory for consolidation, incorporating threedimensional flow is complicated and only applicable to a very limited range of problems in geotechnical

More information

Tikrit University. College of Engineering Civil engineering Department CONSOILDATION. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016

Tikrit University. College of Engineering Civil engineering Department CONSOILDATION. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016 Tikrit University CONSOILDATION College of Engineering Civil engineering Department Soil Mechanics 3 rd Class Lecture notes Up Copyrights 2016 Stresses at a point in a soil mass are divided into two main

More information

Assessment of accuracy in determining Atterberg limits for four Iraqi local soil laboratories

Assessment of accuracy in determining Atterberg limits for four Iraqi local soil laboratories IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Assessment of accuracy in determining Atterberg limits for four Iraqi local soil laboratories To cite this article: H O Abbas

More information

CIVE.5370 EXPERIMENTAL SOIL MECHANICS Soil Sampling, Testing, & Classification Review

CIVE.5370 EXPERIMENTAL SOIL MECHANICS Soil Sampling, Testing, & Classification Review DATA COLLECTION, INTERPRETATION, & ANALYSIS TO GEOTECHNICAL SOLUTIONS FLOW CHART PRIOR INFORMATION Reconnaissance Topography Geology Hydrology Environment SITE EXPLORATION Geophysics Drilling and Coring

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF CIVIL ENGINEERING SUBJECT CODE : CE6405 YEAR : II SUBJECT NAME : SOIL MECHANICS SEM : IV QUESTION BANK (As per Anna University 2013 regulation) UNIT 1- SOIL

More information

Clay Robinson, PhD, CPSS, PG copyright 2009

Clay Robinson, PhD, CPSS, PG   copyright 2009 Engineering: What's soil got to do with it? Clay Robinson, PhD, CPSS, PG crobinson@wtamu.edu, http://www.wtamu.edu/~crobinson, copyright 2009 Merriam-Webster Online Dictionary soil, noun 1 : firm land

More information

Soil Mechanics Course Contents

Soil Mechanics Course Contents / Soil Mechanics Course Contents Instructor: Asst. Prof. Mahdi O. Karkush (Ph.D., CE, MISSMGE)) E-mail: mahdi_karkush@coeng.uobaghdad.edu.iq Tel.: Prerequisite: Solid Mechanics, Engineering Mechanics and

More information

CONSOLIDATION OF SOIL

CONSOLIDATION OF SOIL Lecture-6 Soil consolidation Dr. Attaullah Shah 1 CONSOLIDATION OF SOIL When a soil mass is subjected to a compressive force there is a decrease in volume of soil mass. The reduction in volume of a saturated

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 Special10(7): pages 386-391 Open Access Journal Shear Modulus

More information

Soils. Technical English - I 10 th week

Soils. Technical English - I 10 th week Technical English - I 10 th week Soils Soil Mechanics is defined as the branch of engineering science which enables an engineer to know theoretically or experimentally the behavior of soil under the action

More information

PRINCIPLES OF GEOTECHNICAL ENGINEERING

PRINCIPLES OF GEOTECHNICAL ENGINEERING PRINCIPLES OF GEOTECHNICAL ENGINEERING Fourth Edition BRAJA M. DAS California State University, Sacramento I(T)P Boston Albany Bonn Cincinnati London Madrid Melbourne Mexico City New York Paris San Francisco

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 05 Clay particle-water interaction & Index properties Electrical nature of clay particles a) Electrical charges i) The two faces of all platy particles have a negative charge. Resulting due to isomorphous

More information

Effect of Lime on the Compressibility Characteristics of a Highly Plastic Clay

Effect of Lime on the Compressibility Characteristics of a Highly Plastic Clay Effect of Lime on the Compressibility Characteristics of a Highly Plastic Clay Abstract İnci Süt-Ünver Ph.D. Candidate Istanbul Technical University Istanbul - Turkey Musaffa Ayşen Lav Prof. Dr. Istanbul

More information

APPLIED SOIL MECHANICS

APPLIED SOIL MECHANICS APPLIED SOIL MECHANICS Applied Soil Mechanics: with ABAQUS Applications. Sam Helwany 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-79107-2 APPLIED SOIL MECHANICS with ABAQUS Applications SAM HELWANY JOHN

More information

Soil Mechanics I 1 Basic characteristics for soils. Introduction Description State Classification

Soil Mechanics I 1 Basic characteristics for soils. Introduction Description State Classification Soil Mechanics I 1 Basic characteristics for soils Introduction Description State Classification 1 Introduction GEOTECHNICAL STRUCTURES [1] 2 Introduction Geotechnical (Engineering Geology) Site Investigation

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

Correlation of unified and AASHTO soil classification systems for soils classification

Correlation of unified and AASHTO soil classification systems for soils classification Journal of Earth Sciences and Geotechnical Engineering, vol. 8, no. 1, 2018, 39-50 ISSN: 1792-9040 (print version), 1792-9660 (online) Scienpress Ltd, 2018 Correlation of unified and AASHTO classification

More information

APPENDIX A. Borehole Logs Explanation of Terms and Symbols

APPENDIX A. Borehole Logs Explanation of Terms and Symbols APPENDIX A Borehole Logs Explanation of Terms and Symbols Page 153 of 168 EXPLANATION OF TERMS AND SYMBOLS The terms and symbols used on the borehole logs to summarize the results of field investigation

More information

Introduction to Soil Mechanics

Introduction to Soil Mechanics Introduction to Soil Mechanics Sela Sode and Colin Jones WILEY Blackwell Contents Preface Dedication and Acknowledgments List of Symbols Soil Structure 1.1 Volume relationships 1.1.1 Voids ratio (e) 1.1.2

More information

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength Shear strength Common cases of shearing Strength Near any geotechnical construction (e.g. slopes, excavations, tunnels and foundations) there will be both mean and normal stresses and shear stresses. The

More information

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading. Hatanaka and Uchida (1996); ' 20N 20 12N 20 ' 45 A lower bound for the above equation is given as; 12N 15 ' 45 Table 3. Empirical Coefficients for BS 8002 equation A Angularity 1) A (degrees) Rounded 0

More information

- solid particles - pore fluid - pore gas

- solid particles - pore fluid - pore gas 1. INTRODUCTION TO SOIL MATERIALS 1.1 Definitions Soil: uncemented or weakly cemented accumulation of mineral and organic particles and sediments found above the bedrock, or any unconsolidated material

More information

EFFECTS OF SATURATION AND DRY DENSITY ON SOIL THERMAL CONDUCTIVITY. Bryan R. Becker, Ph.D., P.E. Associate Professor. and

EFFECTS OF SATURATION AND DRY DENSITY ON SOIL THERMAL CONDUCTIVITY. Bryan R. Becker, Ph.D., P.E. Associate Professor. and EFFECTS OF SATURATION AND DRY DENSITY ON SOIL THERMAL CONDUCTIVITY by Bryan R. Becker, Ph.D., P.E. Associate Professor and Brian A. Fricke Research Assistant Department of Mechanical and Aerospace Engineering

More information

1. Introduction 2 Introduction to Soil Mechanics and Soil Engineering; Complexity of soil nature; Soil formation and soil types. 2.

1. Introduction 2 Introduction to Soil Mechanics and Soil Engineering; Complexity of soil nature; Soil formation and soil types. 2. CONTENTS PAGE NO 1. Introduction 2 Introduction to Soil Mechanics and Soil Engineering; Complexity of soil nature; Soil formation and soil types. 2. Simple Soil Properties 5 Basic definitions; Phase relations;

More information

Civil Engineering Department College of Engineering

Civil Engineering Department College of Engineering Civil Engineering Department College of Engineering Course: Soil Mechanics (CE 359) Lecturer: Dr. Frederick Owusu-Nimo FREQUENCY CE 260 Results (2013) 30 25 23 25 26 27 21 20 18 15 14 15 Civil Geological

More information

Chapter -4 GRAIN SIZE PROPERTIES V_V

Chapter -4 GRAIN SIZE PROPERTIES V_V Chapter -4 GRAIN SIZE PROPERTIES Q V_V Chapter - 4 GRAIN SIZE PROPERTIES 4.1 Introduction The size of soil materials in a soil mass may range from the finest (colloidal size) to the coarsest (boulders).

More information

The more common classification systems are enlisted below:

The more common classification systems are enlisted below: A number of systems of classification have been evolved for categorizing various types of soil. Some of these have been developed specifically in connection with ascertaining the suitability of soil for

More information

Intro to Soil Mechanics: the what, why & how. José E. Andrade, Caltech

Intro to Soil Mechanics: the what, why & how. José E. Andrade, Caltech Intro to Soil Mechanics: the what, why & how José E. Andrade, Caltech The What? What is Soil Mechanics? erdbaumechanik The application of the laws of mechanics (physics) to soils as engineering materials

More information

Chapter 5 Shear Strength of Soil

Chapter 5 Shear Strength of Soil Page 5 Chapter 5 Shear Strength of Soil. The internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it is called (a) strength (b) shear strength

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2011 Undrained response of mining sand with fines contents Thian S. Y, Lee C.Y Associate Professor, Department of Civil Engineering, Universiti Tenaga Nasional, Malaysia siawyin_thian@yahoo.com ABSTRACT This

More information

Principal Symbols. f. Skin friction G Shear modulus. Cu Coefficient of uniformity Cc Coefficient of curvature

Principal Symbols. f. Skin friction G Shear modulus. Cu Coefficient of uniformity Cc Coefficient of curvature Principal Symbols A, a Area A Air content A, A Pore pre.ssure coefficients a' Modified shear strength parameter (effective stress) a Dial gauge reading in oedometer test B Width of footing B, B Pore pressure

More information

Soil Profiles (West, Ch. 8)

Soil Profiles (West, Ch. 8) Geology 229 Engineering Geology Lecture 24 Soil Profiles (West, Ch. 8) We have just finished the discussion of rock weathering. One direct consequence of weathering is the formation of the soil profile.

More information

GEOTECHNICAL INVESTIGATION REPORT

GEOTECHNICAL INVESTIGATION REPORT GEOTECHNICAL INVESTIGATION REPORT SOIL INVESTIGATION REPORT FOR STATIC TEST FACILITY FOR PROPELLANTS AT BDL, IBRAHIMPATNAM. Graphics Designers, M/s Architecture & Engineering 859, Banjara Avenue, Consultancy

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

GeoShanghai 2010 International Conference Paving Materials and Pavement Analysis

GeoShanghai 2010 International Conference Paving Materials and Pavement Analysis Particle Shape, Type and Amount of Fines, and Moisture Affecting Resilient Modulus Behavior of Unbound Aggregates Debakanta Mishra 1, Erol Tutumluer 2, M. ASCE, Yuanjie Xiao 3 1 Graduate Research Assistant,

More information

GEOTECHNICAL LABORATORY

GEOTECHNICAL LABORATORY 14.333 GEOTECHNICAL LABORATORY BERNOULLI S EQUATION h u w v 2 2g Z h = Total Head u = Pressure v = Velocity g = Acceleration due to Gravity w = Unit Weight of Water Slide 1 of 14 h 14.333 GEOTECHNICAL

More information

Water in Soil Sections in Craig

Water in Soil Sections in Craig Water in Soil Sections 2.1-2.6 in Craig Outlines Introduction Darcy s Law Volume of water flowing per unit time Measuring K in laboratory Seepage Theory Flow Net Introduction All soils are permeable materials,

More information

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground Soil Mechanics I 3 Water in Soils 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground 1 Influence of Water - Basics WATER IN SOIL - affects soil

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 OCD59 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 MODULE NO: CIE4009 Date: Saturday 14 January

More information

1. INTRODUCTION 1.1 DEFINITIONS

1. INTRODUCTION 1.1 DEFINITIONS 1. INTRODUCTION 1.1 DEFINITIONS The definition given to the word soil differs from one discipline to another. To a geologist, soil is the material found in the relatively thin surface region of the earth's

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 13 Permeability and Seepage -2 Conditions favourable for the formation quick sand Quick sand is not a type of sand but a flow condition occurring within a cohesion-less soil when its effective stress is

More information

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests APPENDIX F 1 APPENDIX F CORRELATION EQUATIONS F 1 In-Situ Tests 1. SPT (1) Sand (Hatanaka and Uchida, 1996), = effective vertical stress = effective friction angle = atmosphere pressure (Shmertmann, 1975)

More information

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens)

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens) Spring 2008 CIVE 462 HOMEWORK #1 1. Print out the syllabus. Read it. Write the grade percentages in the first page of your notes. 2. Go back to your 301 notes, internet, etc. and find the engineering definition

More information

Site Investigation and Landfill Construction I

Site Investigation and Landfill Construction I Site Investigation and Landfill Construction I Gernot Döberl Vienna University of Technology Institute for Water Quality, Resources and Waste Management Contents Site Investigation Base Liners Base Drainage

More information

THE GEOTECHNICAL INDEX PROPERTIES OF SOIL IN WARRI, DELTA STATE, NIGERIA

THE GEOTECHNICAL INDEX PROPERTIES OF SOIL IN WARRI, DELTA STATE, NIGERIA THE GEOTECHNICAL INDEX PROPERTIES OF SOIL IN WARRI, DELTA STATE, NIGERIA Oghonyon Rorome 1 and Ekeocha N. E 2 1,2 Department of Geology, University of Port Harcourt, Port Harcourt, Nigeria. ABSTRACT The

More information

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3. Implementation Boreholes 1. Auger Boring 2. Wash Boring 3. Rotary Drilling Boring Boreholes may be excavated by one of these methods: 4. Percussion Drilling The right choice of method depends on: Ground

More information

Shear Strength of Soils

Shear Strength of Soils Shear Strength of Soils STRESSES IN A SOIL ELEMENT t s v Analyze Effective Stresses (s ) Load carried by Soil t Where: s H t t s H s = t f = s v = s H = t = s v Stresses in a Soil Element after Figure

More information

B-1 BORE LOCATION PLAN. EXHIBIT Drawn By: 115G BROOKS VETERINARY CLINIC CITY BASE LANDING AND GOLIAD ROAD SAN ANTONIO, TEXAS.

B-1 BORE LOCATION PLAN. EXHIBIT Drawn By: 115G BROOKS VETERINARY CLINIC CITY BASE LANDING AND GOLIAD ROAD SAN ANTONIO, TEXAS. N B-1 SYMBOLS: Exploratory Boring Location Project Mngr: BORE LOCATION PLAN Project No. GK EXHIBIT Drawn By: 115G1063.02 GK Scale: Checked By: 1045 Central Parkway North, Suite 103 San Antonio, Texas 78232

More information

Effect of cyclic loading on undrained behavior of compacted sand/clay mixtures

Effect of cyclic loading on undrained behavior of compacted sand/clay mixtures Effect of cyclic loading on undrained behavior of compacted sand/clay mixtures H.R. TAVAKOLI 1, A. SHAFIEE 2 and M.K. JAFARI 3 1 Ph.D. Student, Geotechnical Engineering Research Center, International Institute

More information

Soil and Rock Strength. Chapter 8 Shear Strength. Steel Strength. Concrete Strength. Dr. Talat Bader May Steel. Concrete.

Soil and Rock Strength. Chapter 8 Shear Strength. Steel Strength. Concrete Strength. Dr. Talat Bader May Steel. Concrete. Chapter 8 Shear Strength Dr. Talat Bader May 2006 Soil and Rock Strength Unconfined compressive strength (MPa) Steel Concrete 20 100 250 750 0.001 0.01 Soil 0.1 1.0 10 Rock 100 250 F y = 250 to 750 MPa

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1.1 Statement of the Problem Engineering properties of geomaterials are very important for civil engineers because almost everything we build - tunnels, bridges, dams and others

More information

SOIL AND AGGREGATE FUNDAMENTALS STUDENT GUIDE AMRC April, 2006 AREA MANAGER ROADS CERTIFICATION PROGRAM FOR EDUCATIONAL PURPOSES ONLY

SOIL AND AGGREGATE FUNDAMENTALS STUDENT GUIDE AMRC April, 2006 AREA MANAGER ROADS CERTIFICATION PROGRAM FOR EDUCATIONAL PURPOSES ONLY AREA MANAGER ROADS CERTIFICATION PROGRAM AMRC 2011 SOIL AND AGGREGATE FUNDAMENTALS STUDENT GUIDE FOR EDUCATIONAL PURPOSES ONLY April, 2006 WPC #28013 07/09 2009 by British Columbia Institute of Technology

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

Chapter (5) Allowable Bearing Capacity and Settlement

Chapter (5) Allowable Bearing Capacity and Settlement Chapter (5) Allowable Bearing Capacity and Settlement Introduction As we discussed previously in Chapter 3, foundations should be designed for both shear failure and allowable settlement. So the allowable

More information

Assistant Prof., Department of Civil Engineering Bhagwant University,Ajmer,Rajasthan,India ABSTRACT

Assistant Prof., Department of Civil Engineering Bhagwant University,Ajmer,Rajasthan,India ABSTRACT Study of Index Properties of the Soil 1 Mr Utkarsh Mathur 2 Mr Nitin Kumar 3 Mr Trimurti Narayan Pandey 4 Mr.Amit Choudhary 1 PG Scholar, Department of Civil Engineering Bhagwant University,Ajmer,Rajasthan,India

More information

Foundations for Concrete Structures

Foundations for Concrete Structures 14 Foundations for Concrete Structures Manjriker Gunaratne, Ph.D., P.E. * 14.1 Foundation Engineering...14-1 Soil Classification Strength of Soils Compressibility and Settlement Groundwater and Seepage

More information

1. Water in Soils: Infiltration and Redistribution

1. Water in Soils: Infiltration and Redistribution Contents 1 Water in Soils: Infiltration and Redistribution 1 1a Material Properties of Soil..................... 2 1b Soil Water Flow........................... 4 i Incorporating K - θ and ψ - θ Relations

More information

SOIL CLASSIFICATION CHART COARSE-GRAINED SOILS MORE THAN 50% RETAINED ON NO.200 SIEVE FINE-GRAINED SOILS 50% OR MORE PASSES THE NO.200 SIEVE PRIMARY DIVISIONS GRAVELS MORE THAN 50% OF COARSE FRACTION RETAINED

More information

Effects Of The Soil Properties On The Maximum Dry Density Obtained Fro

Effects Of The Soil Properties On The Maximum Dry Density Obtained Fro University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Effects Of The Soil Properties On The Maximum Dry Density Obtained Fro 2004 Andres Arvelo University of Central

More information

GEOLOGICAL PROCESSES AND MATERIALS SGM210

GEOLOGICAL PROCESSES AND MATERIALS SGM210 University of Pretoria GEOLOGICAL PROCESSES AND MATERIALS SGM210 22 April 2014 1 GEOLOGICAL MAPS 1. Dip 2. Strike 3. Faults 2 1 2 FAULTS 3 San Andreas Fault 3 14 18" 26" JJJ' 22 4 (.) 5I cr w o(aigcegroup,

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil

The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil Arpan Laskar *1 and Sujit Kumar Pal 2 *1 Department of Civil Engineering, National Institute of Technology Agartala, Tripura, India.

More information

SOIL TYPE INVESTIGATION OF THE DOĞANHİSAR CLAYS, CENTRAL ANATOLIA, TURKEY. İ.İnce* and A. Özdemir

SOIL TYPE INVESTIGATION OF THE DOĞANHİSAR CLAYS, CENTRAL ANATOLIA, TURKEY. İ.İnce* and A. Özdemir Ozean Journal of Applied Sciences 3(3), 2010 ISSN 1943-2429 2010 Ozean Publication SOIL TYPE INVESTIGATION OF THE DOĞANHİSAR CLAYS, CENTRAL ANATOLIA, TURKEY İ.İnce* and A. Özdemir Department of Geological

More information

12 th ICSGE Dec Cairo - Egypt

12 th ICSGE Dec Cairo - Egypt 12 th ICSGE 10-12 Dec. 2007 Cairo - Egypt Ain Shams University Faculty of Engineering Department of Structural Engineering Twelfth International Colloquium on Structural and Geotechnical Engineering CORRELATIONS

More information

Depth (ft) USCS Soil Description TOPSOIL & FOREST DUFF

Depth (ft) USCS Soil Description TOPSOIL & FOREST DUFF Test Pit No. TP-6 Location: Latitude 47.543003, Longitude -121.980441 Approximate Ground Surface Elevation: 1,132 feet Depth (ft) USCS Soil Description 0 1.5 1.5 5.0 SM 5.0 8.0 SM Loose to medium dense,

More information

1.91. kg m s. Solving for m s yields m s kg. Now we can use the fundamental definition of water content to get the mass of water. m w = 0.

1.91. kg m s. Solving for m s yields m s kg. Now we can use the fundamental definition of water content to get the mass of water. m w = 0. 1 CE 46 - Homework #1 Solutions Problem #.1. Problem - A contractor will want to charge you more for coring through that "soft rock layer". However, your expertise tells you that that layer is not rock

More information

APPENDIX A GEOTECHNICAL REPORT

APPENDIX A GEOTECHNICAL REPORT The City of Winnipeg Bid Opportunity No. 529-2017 Template Version: C420170317 - RW APPENDIX A GEOTECHNICAL REPORT Quality Engineering Valued Relationships KGS Group 2017 Industrial Street Rehabilitation

More information