Alg2H Ch6: Investigating Exponential and Logarithmic Functions WK#14 Date:

Size: px
Start display at page:

Download "Alg2H Ch6: Investigating Exponential and Logarithmic Functions WK#14 Date:"

Transcription

1 Alg2H Ch6: Investigating Exponential and Logarithmic Functions WK#14 Date: Purpose: To investigate the behavior of exponential and logarithmic functions Investigations For investigations 1 and 2, enter the function as Y 1 Complete Tables 1 and 2 using the ASK feature of the TABLE. 1. Given the exponential function: y = 2 x a. Complete Table 1: Directions to set table in Ask mode 1) Press 2 nd WINDOW to open TblSet 2) Arrow to Ask next to Indpnt and press Enter Now when you open the table, the calculator waits for you to enter a value for x. After doing so, press ENTER to set the corresponding output. x y = 2 x x y = 2 x b. As x, 2 x c. As x -, 2 x 2. Given the exponential function: y = (.5) x = (½) x a. Complete Table 1: x y = (0.5) x x y = (0.5) x b. As x, (.5) x c. As x -, (.5) x

2 3. Use the TI-83 calculator to graph y = 2 x and y = (0.5) x. Sketch each graph below. Graph of y = 2 x Graph of y = (0.5) x a. What is the domain and range of these functions in interval notation? Domain: Range: b. Which function is an increasing function and which is a decreasing function? Increasing Decreasing 4. Using the TI-83 calculator, investigate the tables and graphs associated with y = (1.1) x and y = (0.9) x a. What is the domain and range of these functions in interval notation? Domain: Range: b. Which function is an increasing function and which is a decreasing function? Increasing Decreasing 5. For the four functions graphed in investigations 3 and 4, what point do they all have in common?

3 6. Conclusions: Given the exponential function f(x) = b x, where b is a constant a. For any b such that b > 1, sketch the general shape and direction of the graph. Clearly label the y-intercept. (If necessary, use the y= key on the calculator to graph a few more graphs with b>1.) Write the domain of the function in interval notation: Write the range of the function in interval notation: b. For any b such that 0 < b < 1, sketch the general shape and direction of the graph. Clearly label the y-intercept. (If necessary, use the y= key on the calculator to graph a few more graphs with 0 < b < 1.) Write the domain of the function in interval notation: Write the range of the function in interval notation: c. What about other values of b? i. Set b = 1 and sketch the graph of f(x) = b x. What do you think? Is this the same type of function? ii. Try a value for b < 0. Use Tblset and change Tbl =.5 and Indpnt: AUTO Try to explain in your own words why the table reads as it does. Try graphing the problem. What happens? What restrictions do you think should be placed on the value of b so that f(x) = b x is a continuous function for all real values of x and maintain a general characteristic shape?

4 7. The function y = 4(1.1) x can be used to model the population of a city that is increasing at a rate of 10% per year. Assume that the population in 1995 was 4 hundred thousand. Let x represent the number of years since 1995 (x=0 on December 31, 1995) and y represent the population (measured in hundred thousands) after x years. a. What is the predicted population for the year 2000? Explain what you did. b. In what year will the population reach one million (10 hundred thousands)? Explain what you did. 8. The function y = 4(0.9) x can be used to model the population of a city that is decreasing at a rate of 10% per year. Assume that the population in 1995 was 4 hundred thousand. Let x represent the number of years since 1995 (x=0 on December 31, 1995) and y represent the population (measured in hundred thousands) after x years. a. What is the predicted population for the year 2000? Explain what you did. b. In what year will the population drop below one hundred thousand? Explain what you did.

5 9. Given the logarithmic function y = log 2 x a. Use the change of base property for logs first: Recall: log b a = log a which means log 2 x = log x log b log 2 You can use Y 1 = log x log 2 to complete Table 3 below. Table 3 x y = log 2 x x y = log 2 x x x x x10-16 b. As x, log 2 x c. As x 0, log 2 x d. Use the TI-83 calculator to graph the function. Sketch the graph here: e. Use the TI-83 calculator to graph together: Y 1 = log x and Y 2 = 2 x log 2 Sketch the results here: f. Compare the graphs and the tables (Table 1 and Table 3) of the 2 functions. Describe the relationship between them.

Chapter 2. Polynomial and Rational Functions. 2.5 Zeros of Polynomial Functions

Chapter 2. Polynomial and Rational Functions. 2.5 Zeros of Polynomial Functions Chapter 2 Polynomial and Rational Functions 2.5 Zeros of Polynomial Functions 1 / 33 23 Chapter 2 Homework 2.5 p335 6, 8, 10, 12, 16, 20, 24, 28, 32, 34, 38, 42, 46, 50, 52 2 / 33 23 3 / 33 23 Objectives:

More information

This activity is a companion to two activities previously published in the Ohio Journal, namely

This activity is a companion to two activities previously published in the Ohio Journal, namely Investigating Non-linear Asymptotes and the Graphs of Rational Functions Marvin Harrell, Emporia State University Dawn Slavens, Midwestern State University Connie Richardson, The University of Texas at

More information

A. Evaluate log Evaluate Logarithms

A. Evaluate log Evaluate Logarithms A. Evaluate log 2 16. Evaluate Logarithms Evaluate Logarithms B. Evaluate. C. Evaluate. Evaluate Logarithms D. Evaluate log 17 17. Evaluate Logarithms Evaluate. A. 4 B. 4 C. 2 D. 2 A. Evaluate log 8 512.

More information

Section 4.2 Logarithmic Functions & Applications

Section 4.2 Logarithmic Functions & Applications 34 Section 4.2 Logarithmic Functions & Applications Recall that exponential functions are one-to-one since every horizontal line passes through at most one point on the graph of y = b x. So, an exponential

More information

Logarithms Dr. Laura J. Pyzdrowski

Logarithms Dr. Laura J. Pyzdrowski 1 Names: (8 communication points) About this Laboratory An exponential function of the form f(x) = a x, where a is a positive real number not equal to 1, is an example of a one-to-one function. This means

More information

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS LEARNING OBJECTIVES In this section, you will: Identify the domain of a logarithmic function. Graph logarithmic functions. FINDING THE DOMAIN OF A LOGARITHMIC

More information

Lesson 9 Exploring Graphs of Quadratic Functions

Lesson 9 Exploring Graphs of Quadratic Functions Exploring Graphs of Quadratic Functions Graph the following system of linear inequalities: { y > 1 2 x 5 3x + 2y 14 a What are three points that are solutions to the system of inequalities? b Is the point

More information

4.4 Graphs of Logarithmic Functions

4.4 Graphs of Logarithmic Functions 590 Chapter 4 Exponential and Logarithmic Functions 4.4 Graphs of Logarithmic Functions In this section, you will: Learning Objectives 4.4.1 Identify the domain of a logarithmic function. 4.4.2 Graph logarithmic

More information

Assignment #3; Exponential Functions

Assignment #3; Exponential Functions AP Calculus Assignment #3; Exponential Functions Name: The equation identifies a family of functions called exponential functions. Notice that the ratio of consecutive amounts of outputs always stay the

More information

1.1 Prep Exercise: Greatest Common Factor. Finding the GCF. x andx 3. = x x x x x. x = x x x. greatest factor common to all expressions?

1.1 Prep Exercise: Greatest Common Factor. Finding the GCF. x andx 3. = x x x x x. x = x x x. greatest factor common to all expressions? 6 64. Prep Eercise: Greatest Common Factor Finding the GCF Greatest common factor. Think about those three words. Greatest. Common. Factor. What is the greatest factor common to all epressions? Eample.

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

Accel Alg E. L. E. Notes Solving Quadratic Equations. Warm-up

Accel Alg E. L. E. Notes Solving Quadratic Equations. Warm-up Accel Alg E. L. E. Notes Solving Quadratic Equations Warm-up Solve for x. Factor. 1. 12x 36 = 0 2. x 2 8x Factor. Factor. 3. 2x 2 + 5x 7 4. x 2 121 Solving Quadratic Equations Methods: (1. By Inspection)

More information

GUIDED NOTES 5.6 RATIONAL FUNCTIONS

GUIDED NOTES 5.6 RATIONAL FUNCTIONS GUIDED NOTES 5.6 RATIONAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identify

More information

Lesson 5: The Graph of the Equation y = f(x)

Lesson 5: The Graph of the Equation y = f(x) Lesson 5: The Graph of the Equation y = f(x) Learning targets: I can identify when a function is increasing, decreasing, positive and negative and use interval notation to describe intervals where the

More information

We want to determine what the graph of the logarithmic function. y = log a. (x) looks like for values of a such that a > 1

We want to determine what the graph of the logarithmic function. y = log a. (x) looks like for values of a such that a > 1 Section 9 A: Graphs of Increasing Logarithmic Functions We want to determine what the graph of the logarithmic function y = log a looks like for values of a such that a > We will select a value a such

More information

EXAM 3 Tuesday, March 18, 2003

EXAM 3 Tuesday, March 18, 2003 MATH 12001 Precalculus: Algebra & Trigonometry Spring 2003 Sections 2 & 3 Darci L. Kracht Name: Score: /100. 115 pts available EXAM 3 Tuesday, March 18, 2003 Part I: NO CALCULATORS. (You must turn this

More information

Lesson 6b Rational Exponents & Radical Functions

Lesson 6b Rational Exponents & Radical Functions Lesson 6b Rational Exponents & Radical Functions In this lesson, we will continue our review of Properties of Exponents and will learn some new properties including those dealing with Rational and Radical

More information

Chapter 6 Logarithmic and Exponential Functions

Chapter 6 Logarithmic and Exponential Functions Chapter 6 Logarithmic and Eponential Functions 6.1 The Definition of e Eample 1 Consider the eponential function f 1 ( ) 1 What happens to f() as gets very large? Type the function into Y=. Let Y 1 1 1/.

More information

Polynomial functions right- and left-hand behavior (end behavior):

Polynomial functions right- and left-hand behavior (end behavior): Lesson 2.2 Polynomial Functions For each function: a.) Graph the function on your calculator Find an appropriate window. Draw a sketch of the graph on your paper and indicate your window. b.) Identify

More information

Section 1.1: Functions Given by Formulas

Section 1.1: Functions Given by Formulas Section 1.1: Functions Given by Formulas Topics: Using function notation Domain Answering questions when given a formula functions Using TI to compute function values and using the Ans feature of the calculator

More information

P.5 Solving Equations Graphically, Numerically, and Algebraically

P.5 Solving Equations Graphically, Numerically, and Algebraically 0 CHAPTER P Prerequisites What you ll learn about Solving Equations Graphically Solving Quadratic Equations Approximating Solutions of Equations Graphically Approximating Solutions of Equations Numerically

More information

Examples of the Accumulation Function (ANSWERS) dy dx. This new function now passes through (0,2). Make a sketch of your new shifted graph.

Examples of the Accumulation Function (ANSWERS) dy dx. This new function now passes through (0,2). Make a sketch of your new shifted graph. Eamples of the Accumulation Function (ANSWERS) Eample. Find a function y=f() whose derivative is that f()=. dy d tan that satisfies the condition We can use the Fundamental Theorem to write a function

More information

Learning Packet. Lesson 5b Solving Quadratic Equations THIS BOX FOR INSTRUCTOR GRADING USE ONLY

Learning Packet. Lesson 5b Solving Quadratic Equations THIS BOX FOR INSTRUCTOR GRADING USE ONLY Learning Packet Student Name Due Date Class Time/Day Submission Date THIS BOX FOR INSTRUCTOR GRADING USE ONLY Mini-Lesson is complete and information presented is as found on media links (0 5 pts) Comments:

More information

Exponential Functions Dr. Laura J. Pyzdrowski

Exponential Functions Dr. Laura J. Pyzdrowski 1 Names: (4 communication points) About this Laboratory An exponential function is an example of a function that is not an algebraic combination of polynomials. Such functions are called trancendental

More information

Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function.

Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function. Test Instructions Objectives Section 5.1 Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function. Form a polynomial whose zeros and degree are given. Graph

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

A repeated root is a root that occurs more than once in a polynomial function.

A repeated root is a root that occurs more than once in a polynomial function. Unit 2A, Lesson 3.3 Finding Zeros Synthetic division, along with your knowledge of end behavior and turning points, can be used to identify the x-intercepts of a polynomial function. This information allows

More information

Graphs of Increasing Logarithmic Functions

Graphs of Increasing Logarithmic Functions Section 5 4A: Graphs of Increasing Logarithmic Functions We want to determine what the graph of the logarithmic function y = log a looks like for values of a such that a > We will select a value a such

More information

Section 2.4: The Precise Definition of a Limit

Section 2.4: The Precise Definition of a Limit Section 2.4: The Precise Definition of a Limit In the previous sections, we examined the idea of a it. However, the definitions we gave were me intuitive as opposed to precise. In mathematics, in der to

More information

In other words, we are interested in what is happening to the y values as we get really large x values and as we get really small x values.

In other words, we are interested in what is happening to the y values as we get really large x values and as we get really small x values. Polynomial functions: End behavior Solutions NAME: In this lab, we are looking at the end behavior of polynomial graphs, i.e. what is happening to the y values at the (left and right) ends of the graph.

More information

Quadratic Functions. and Equations

Quadratic Functions. and Equations Name: Quadratic Functions and Equations 1. + x 2 is a parabola 2. - x 2 is a parabola 3. A quadratic function is in the form ax 2 + bx + c, where a and is the y-intercept 4. Equation of the Axis of Symmetry

More information

Exponential Functions

Exponential Functions CONDENSED LESSON 5.1 Exponential Functions In this lesson, you Write a recursive formula to model radioactive decay Find an exponential function that passes through the points of a geometric sequence Learn

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Learning Targets 1. I can evaluate, analyze, and graph exponential functions. 2. I can solve problems involving exponential growth & decay. 3. I can evaluate expressions

More information

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2 Polynomials Patterns Task 1. To get an idea of what polynomial functions look like, we can graph the first through fifth degree polynomials with leading coefficients of 1. For each polynomial function,

More information

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph:

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph: Section 10.3: Polar Coordinates The polar coordinate system is another way to coordinatize the Cartesian plane. It is particularly useful when examining regions which are circular. 1. Cartesian Coordinates

More information

Intermediate Algebra Chapter 12 Review

Intermediate Algebra Chapter 12 Review Intermediate Algebra Chapter 1 Review Set up a Table of Coordinates and graph the given functions. Find the y-intercept. Label at least three points on the graph. Your graph must have the correct shape.

More information

IM3 Unit 1 TEST - Working with Linear Relations SEP 2015

IM3 Unit 1 TEST - Working with Linear Relations SEP 2015 Name: Date : IM 3 UNIT TEST Linear Functions Teacher: Mr. Santowski and Ms. Aschenbrenner Score: PART 1 - CALCULATOR ACTIVE QUESTIONS Maximum marks will be given for correct answers. Where an answer is

More information

Math 10 Chapter 6.10: Solving Application Problems Objectives: Exponential growth/growth models Using logarithms to solve

Math 10 Chapter 6.10: Solving Application Problems Objectives: Exponential growth/growth models Using logarithms to solve Math 10 Chapter 6.10: Solving Application Problems Objectives: Exponential growth/growth models Using logarithms to solve Exponential Growth Models Steps for Solving Application Problems: 1. Read, throw

More information

Polynomial Review Problems

Polynomial Review Problems Polynomial Review Problems 1. Find polynomial function formulas that could fit each of these graphs. Remember that you will need to determine the value of the leading coefficient. The point (0,-3) is on

More information

Lesson 5b Solving Quadratic Equations

Lesson 5b Solving Quadratic Equations Lesson 5b Solving Quadratic Equations In this lesson, we will continue our work with Quadratics in this lesson and will learn several methods for solving quadratic equations. The first section will introduce

More information

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015 CS 374: Algorithms & Models of Computation, Spring 2015 NP Completeness Lecture 23 November 19, 2015 Chandra & Lenny (UIUC) CS374 1 Spring 2015 1 / 37 Part I NP-Completeness Chandra & Lenny (UIUC) CS374

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

Rewrite logarithmic equations 2 3 = = = 12

Rewrite logarithmic equations 2 3 = = = 12 EXAMPLE 1 Rewrite logarithmic equations Logarithmic Form a. log 2 8 = 3 Exponential Form 2 3 = 8 b. log 4 1 = 0 4 0 = 1 log 12 = 1 c. 12 12 1 = 12 log 4 = 1 d. 1/4 1 4 1 = 4 GUIDED PRACTICE for Example

More information

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts.

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Math 141 Review for Final The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Part 1 (no calculator) graphing (polynomial, rational, linear, exponential, and logarithmic

More information

2015 SUMMER MATH PACKET

2015 SUMMER MATH PACKET Name: Date: 05 SUMMER MATH PACKET College Algebra Trig. - I understand that the purpose of the summer packet is for my child to review the topics they have already mastered in previous math classes and

More information

Sections 8.1 & 8.2 Systems of Linear Equations in Two Variables

Sections 8.1 & 8.2 Systems of Linear Equations in Two Variables Sections 8.1 & 8.2 Systems of Linear Equations in Two Variables Department of Mathematics Porterville College September 7, 2014 Systems of Linear Equations in Two Variables Learning Objectives: Solve Systems

More information

Homework on Rational Functions - Solutions

Homework on Rational Functions - Solutions Homework on Rational Functions - Solutions Group Work 1 Consider f () = 1. Answer the questions below, eplain your answers. 1. What is the domain of f? f is a fraction, hence to be defined, its denominator

More information

Review of Functions A relation is a function if each input has exactly output. The graph of a function passes the vertical line test.

Review of Functions A relation is a function if each input has exactly output. The graph of a function passes the vertical line test. CA-Fall 011-Jordan College Algebra, 4 th edition, Beecher/Penna/Bittinger, Pearson/Addison Wesley, 01 Chapter 5: Exponential Functions and Logarithmic Functions 1 Section 5.1 Inverse Functions Inverse

More information

Lesson 5 Practice Problems

Lesson 5 Practice Problems Name: Date: Lesson 5 Section 5.1: Linear Functions vs. Exponential Functions 1. Complete the table below. Function Linear or Exponential? Linear: Increasing or Decreasing? Exponential: Growth or Decay?

More information

USE OF THE SCIENTIFIC CALCULATOR

USE OF THE SCIENTIFIC CALCULATOR USE OF THE SCIENTIFIC CALCULATOR Below are some exercises to introduce the basic functions of the scientific calculator that you need to be familiar with in General Chemistry. These instructions will work

More information

12.3. Walking the... Curve? Domain, Range, Zeros, and Intercepts

12.3. Walking the... Curve? Domain, Range, Zeros, and Intercepts Walking the... Curve? Domain, Range, Zeros, and Intercepts.3 Learning Goals In this lesson, you will: Describe the domain and range of quadratic functions. Determine the x-intercept(s) of a graph of a

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus I - Homework Chapter 2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the graph is the graph of a function. 1) 1)

More information

2.2 BEGINS: POLYNOMIAL

2.2 BEGINS: POLYNOMIAL CHAPTER 2.2 HIGHER DEGREE POLY S 2.2 BEGINS: POLYNOMIAL Graphs of Polynomial Functions Polynomial functions are continuous. What this means to us is that the graphs of polynomial functions have no breaks,

More information

POD. A) Graph: y = 2e x +2 B) Evaluate: (e 2x e x ) 2 2e -x. e 7x 2

POD. A) Graph: y = 2e x +2 B) Evaluate: (e 2x e x ) 2 2e -x. e 7x 2 POD A) Graph: y = 2e x +2 B) Evaluate: (e 2x e x ) 2 2e -x e 7x 2 4.4 Evaluate Logarithms & Graph Logarithmic Functions What is a logarithm? How do you read it? What relationship exists between logs and

More information

Example. Determine the inverse of the given function (if it exists). f(x) = 3

Example. Determine the inverse of the given function (if it exists). f(x) = 3 Example. Determine the inverse of the given function (if it exists). f(x) = g(x) = p x + x We know want to look at two di erent types of functions, called logarithmic functions and exponential functions.

More information

8 + 6) x 2 ) y = h(x)

8 + 6) x 2 ) y = h(x) . a. Horizontal shift 6 left and vertical shift up. Notice B' is ( 6, ) and B is (0, 0). b. h(x) = 0.5(x + 6) + (Enter in a grapher to check.) c. Use the graph. Notice A' to see h(x) crosses the x-axis

More information

In this course we study

In this course we study Welcome to Math 30 1 In this course we study Transformations Functions; Radical, Rational, Exponential Logarithmic and Polynomial. Trigonometry Permutations and Combinations Aug 14 10:57 AM 1 And just

More information

Chapter REVIEW ANSWER KEY

Chapter REVIEW ANSWER KEY TEXTBOOK HELP Pg. 313 Chapter 3.2-3.4 REVIEW ANSWER KEY 1. What qualifies a function as a polynomial? Powers = non-negative integers Polynomial functions of degree 2 or higher have graphs that are smooth

More information

e. some other answer 6. The graph of the parabola given below has an axis of symmetry of: a. y = 5 b. x = 3 c. y = 3 d. x = 5 e. Some other answer.

e. some other answer 6. The graph of the parabola given below has an axis of symmetry of: a. y = 5 b. x = 3 c. y = 3 d. x = 5 e. Some other answer. Intermediate Algebra Solutions Review Problems Final Exam MTH 099 December, 006 1. True or False: (a + b) = a + b. True or False: x + y = x + y. True or False: The parabola given by the equation y = x

More information

Logarithmic Functions and Their Graphs

Logarithmic Functions and Their Graphs Section 3. Logarithmic Functions and Their Graphs Look at the graph of f(x) = x Does this graph pass the Horizontal Line Test? es What does this mean? that its inverse is a function Find the inverse of

More information

Mth 65 Section 3.4 through 3.6

Mth 65 Section 3.4 through 3.6 Section 3.4 Square Root Functions The key to identifying the equation of a square root function is that the independent variable is under the radical. Which functions are square root functions? g( x) x

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions 6 Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE 6. Eponential Functions 6. Logarithmic Properties 6. Graphs

More information

Study Resources For Algebra I. Unit 2A Graphs of Quadratic Functions

Study Resources For Algebra I. Unit 2A Graphs of Quadratic Functions Study Resources For Algebra I Unit 2A Graphs of Quadratic Functions This unit examines the graphical behavior of quadratic functions. Information compiled and written by Ellen Mangels, Cockeysville Middle

More information

Higher-Degree Polynomial Functions. Polynomials. Polynomials

Higher-Degree Polynomial Functions. Polynomials. Polynomials Higher-Degree Polynomial Functions 1 Polynomials A polynomial is an expression that is constructed from one or more variables and constants, using only the operations of addition, subtraction, multiplication,

More information

Calculus I Homework: Linear Approximation and Differentials Page 1

Calculus I Homework: Linear Approximation and Differentials Page 1 Calculus I Homework: Linear Approximation and Differentials Page Example (3..8) Find the linearization L(x) of the function f(x) = (x) /3 at a = 8. The linearization is given by which approximates the

More information

change in position change in time

change in position change in time CHAPTER. THE DERIVATIVE Comments. The problems in this section are at the heart of Calculus and lead directly to the main idea in Calculus, limits. But even more important than the problems themselves

More information

Non-Linear Regression

Non-Linear Regression Non-Linear Regression Recall that linear regression is a technique for finding the equation of the line of best fit (LOBF) when two variables have a linear association (i.e. changes in one variable tend

More information

CHAPTER 5: Exponential and Logarithmic Functions

CHAPTER 5: Exponential and Logarithmic Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 5: Exponential and Logarithmic Functions 5.1 Inverse Functions 5.2 Exponential Functions and Graphs 5.3 Logarithmic Functions

More information

College Algebra Through Problem Solving (2018 Edition)

College Algebra Through Problem Solving (2018 Edition) City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College Winter 1-25-2018 College Algebra Through Problem Solving (2018 Edition) Danielle Cifone

More information

July 11, Capacitor CBL 23. Name Date: Partners: CAPACITORS. TI-83 calculator with unit-tounit. Resistor (about 100 kω) Wavetek multimeter

July 11, Capacitor CBL 23. Name Date: Partners: CAPACITORS. TI-83 calculator with unit-tounit. Resistor (about 100 kω) Wavetek multimeter July 11, 2008 - CBL 23 Name Date: Partners: CAPACITORS Materials: CBL unit TI-83 calculator with unit-tounit link cable Resistor (about 100 kω) Connecting wires Wavetek multimeter TI voltage probe Assorted

More information

Calculus I Homework: Linear Approximation and Differentials Page 1

Calculus I Homework: Linear Approximation and Differentials Page 1 Calculus I Homework: Linear Approximation and Differentials Page Questions Example Find the linearization L(x) of the function f(x) = (x) /3 at a = 8. Example Find the linear approximation of the function

More information

3.2 Quadratic Equations by Graphing

3.2 Quadratic Equations by Graphing www.ck12.org Chapter 3. Quadratic Equations and Quadratic Functions 3.2 Quadratic Equations by Graphing Learning Objectives Identify the number of solutions of quadratic equations. Solve quadratic equations

More information

AP Calculus BC Summer Assignment Mrs. Comeau

AP Calculus BC Summer Assignment Mrs. Comeau AP Calculus BC Summer Assignment 2015-2016 Mrs. Comeau Please complete this assignment DUE: the first day of class, SEPTEMBER 2nd. Email me if you have questions, or need help over the summer. I would

More information

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above.

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above. INTERNET MAT 117 Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (b) Find the center and

More information

Sect The Slope-Intercept Form

Sect The Slope-Intercept Form 0 Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

More information

IM3 - Lesson 5: Forms of Equations for Linear Functions Unit 1 Basics of Functions

IM3 - Lesson 5: Forms of Equations for Linear Functions Unit 1 Basics of Functions A. Lesson Contet BIG PICTURE of this UNIT: CONTEXT of this LESSON: What is meant by the term FUNCTIONS and how do we work with them? mastery with working with basics & applications of linear functions

More information

Intermediate Algebra Summary - Part I

Intermediate Algebra Summary - Part I Intermediate Algebra Summary - Part I This is an overview of the key ideas we have discussed during the first part of this course. You may find this summary useful as a study aid, but remember that the

More information

The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number

The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number Chapter 4: 4.1: Exponential Functions Definition: Graphs of y = b x Exponential and Logarithmic Functions The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number Graph:

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 3: The Exponential Distribution and the Poisson process Section 4.8 The Exponential Distribution 1 / 21 Exponential Distribution

More information

Part 4: Exponential and Logarithmic Functions

Part 4: Exponential and Logarithmic Functions Part 4: Exponential and Logarithmic Functions Chapter 5 I. Exponential Functions (5.1) II. The Natural Exponential Function (5.2) III. Logarithmic Functions (5.3) IV. Properties of Logarithms (5.4) V.

More information

Chapter 4. Section Derivatives of Exponential and Logarithmic Functions

Chapter 4. Section Derivatives of Exponential and Logarithmic Functions Chapter 4 Section 4.2 - Derivatives of Exponential and Logarithmic Functions Objectives: The student will be able to calculate the derivative of e x and of lnx. The student will be able to compute the

More information

Applied 30S Unit 1 Quadratic Functions

Applied 30S Unit 1 Quadratic Functions Applied 30S Unit 1 Quadratic Functions Mrs. Kornelsen Teulon Collegiate Institute Learning checklist Quadratics Learning increases when you have a goal to work towards. Use this checklist as guide to track

More information

8.1 Polynomial Functions

8.1 Polynomial Functions 8.1 Polynomial Functions Algebra Goal 1: Evaluate polynomial functions. Goal : Identify general shapes of the graphs of polynomial functions. 1. What is a polynomial in one variable? Example 1: Determine

More information

AdvAlg9.7LogarithmsToBasesOtherThan10.notebook. March 08, 2018

AdvAlg9.7LogarithmsToBasesOtherThan10.notebook. March 08, 2018 AdvAlg9.7LogarithmsToBasesOtherThan10.notebook In order to isolate a variable within a logarithm of an equation, you need to re write the equation as the equivalent exponential equation. In order to isolate

More information

MINI LESSON. Lesson 2a Linear Functions and Applications

MINI LESSON. Lesson 2a Linear Functions and Applications MINI LESSON Lesson 2a Linear Functions and Applications Lesson Objectives: 1. Compute AVERAGE RATE OF CHANGE 2. Explain the meaning of AVERAGE RATE OF CHANGE as it relates to a given situation 3. Interpret

More information

APPM 1235 Exam 2 Spring 2018

APPM 1235 Exam 2 Spring 2018 APPM 1235 Exam 2 Spring 2018 INSTRUCTIONS: Outside paper and electronic devices are not permitted. Exam is worth 100 points. Neatness counts. Unless indicated, answers with no supporting work may receive

More information

Point of intersection

Point of intersection Name: Date: Period: Exploring Systems of Linear Equations, Part 1 Learning Goals Define a system of linear equations and a solution to a system of linear equations. Identify whether a system of linear

More information

Chapter 1- Polynomial Functions

Chapter 1- Polynomial Functions Chapter 1- Polynomial Functions WORKBOOK MHF4U W1 1.1 Power Functions MHF4U Jensen 1) Identify which of the following are polynomial functions: a) p x = cos x b) h x = 7x c) f x = 2x, d) y = 3x / 2x 0

More information

Section 4.5 Graphs of Logarithmic Functions

Section 4.5 Graphs of Logarithmic Functions 6 Chapter 4 Section 4. Graphs of Logarithmic Functions Recall that the eponential function f ( ) would produce this table of values -3 - -1 0 1 3 f() 1/8 ¼ ½ 1 4 8 Since the arithmic function is an inverse

More information

A Cubic Regression Group Activity 4 STEM Project Week #7

A Cubic Regression Group Activity 4 STEM Project Week #7 A Cubic Regression Group Activity 4 STEM Project Week #7 In the first activity we looked at a set of data that was modeled by a line (a linear regression). In the second and third activities we looked

More information

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities 1 MATH 1 REVIEW SOLVING AN ABSOLUTE VALUE EQUATION Absolute value is a measure of distance; how far a number is from zero. In practice,

More information

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 236 ELAC FALL 207 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) 27 p 3 27 p 3 ) 2) If 9 t 3 4t 9-2t = 3, find t. 2) Solve the equation.

More information

Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial

Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial Shapes of Polynomials Look at the shape of the odd degree polynomials

More information

The highest degree term is x $, therefore the function is degree 4 (quartic) c) What are the x-intercepts?

The highest degree term is x $, therefore the function is degree 4 (quartic) c) What are the x-intercepts? L3 1.3 Factored Form Polynomial Functions Lesson MHF4U Jensen In this section, you will investigate the relationship between the factored form of a polynomial function and the x-intercepts of the corresponding

More information

3 9 Curve Fitting with Polynomials

3 9 Curve Fitting with Polynomials 3 9 Curve Fitting with Polynomials Relax! You will do fine today! We will review for quiz!!! (which is worth 10 points, has 20 questions, group, graphing calculator allowed, and will not be on your first

More information

10-2: Exponential Function Introduction

10-2: Exponential Function Introduction Math 95 10-2: Exponential Function Introduction Quadratic functions, like y = x B, are made of a sum of powers of the independent variable. In a quadratic function, the variables are in the base of the

More information

Absolute Value Functions

Absolute Value Functions By: OpenStaxCollege Distances in deep space can be measured in all directions. As such, it is useful to consider distance in terms of absolute values. (credit: "s58y"/flickr) Until the 1920s, the so-called

More information

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x 1. Let f(x) = x 3 + 7x 2 x 2. Use the fact that f( 1) = 0 to factor f completely. (2x-1)(3x+2)(x+1). 2. Find x if log 2 x = 5. x = 1/32 3. Find the vertex of the parabola given by f(x) = 2x 2 + 3x 4. (Give

More information

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4)

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4) Advanced College Prep Pre-Calculus Midyear Exam Review Name Date Per List the intercepts for the graph of the equation. 1) x2 + y - 81 = 0 1) Graph the equation by plotting points. 2) y = -x2 + 9 2) List

More information

Logarithmic Functions

Logarithmic Functions Name Student ID Number Group Name Group Members Logarithmic Functions 1. Solve the equations below. xx = xx = 5. Were you able solve both equations above? If so, was one of the equations easier to solve

More information