Part 4: Exponential and Logarithmic Functions

Size: px
Start display at page:

Download "Part 4: Exponential and Logarithmic Functions"

Transcription

1 Part 4: Exponential and Logarithmic Functions Chapter 5 I. Exponential Functions (5.1) II. The Natural Exponential Function (5.2) III. Logarithmic Functions (5.3) IV. Properties of Logarithms (5.4) V. Solving Exponential and Log Equations (5.5) VI. Solving Exponential and Log Inequalities (5.5) VII. Compound Interest (5.6) VIII. Exponential Growth and Decay (5.7) Note: Sections I IV are review material. Part 4 1

2 I. Exponential Functions 5.1 Recall: Some of the properties of exponents: (1) Product of powers (2) Power of powers Example: Use these properties to simplify the following expressions (1) (3) Power of a product (2) (4) Quotient of powers Part 4 2

3 Definition: The exponential function with base b is defined to be the equation Examples (Determine which are exponential functions) HOW DO YOU DETERMINE IF YOU HAVE AN EXPONENTIAL FUNCTION? Part 4 3

4 Graphing an exponential function Graph x y y x Determine the following: Domain y intercept Asymptotes Range x intercept Part 4 4

5 Recall from Part 2: Transformation of y = f(x) Overview Part 4 5

6 Ex: Based on the graph of 1) 4), graph the following. 2) 3) 5) Part 4 6

7 Compare the Properties of the graphs y = 2 x and graph domain range intercepts asymptotes end behaviour Q. Why do the two graphs differ? Part 4 7

8 Generalization of y y x x Domain = Range = y intercept = x intercept = Asymptotes: Part 4 8

9 Ex: Find an exponential function of the form f(x) = Ca x whose graph is given. ( 1, 15) 5 Part 4 9

10 ` II. The Natural Exponential Function 5.2 Given the function, complete the table of values. "Use all decimal places calculator allows" x f(x) ,000 10, ,000 1,000,000 Part 4 10

11 The Natural Exponential Function: Ex: Graph Domain = e y Range = y intercept = x intercept = Asymptotes: x Remark: Like the number π, e is an irrational number. The number e has significance in many areas & has a strong importance in several applications. Part 4 11

12 Later we will discuss solving exponential functions more generally, however, we can solve the case where we have common bases. Ex: Solve Part 4 12

13 III. Logarithmic Functions 5.3 Recall how we graphed How could we graph the inverse? Graph with its inverse & y = x. function x = inverse x y x y y x The exponential function has a inverse since it is a function! Part 4 13

14 Logarithmic Functions Def: (Alternate way to write definition) means where You should be able to change from log form to exponential form and vice versa! Ex: Complete the following Exponential Form Logarithmic Form Part 4 14

15 Ex: Evaluate Part 4 15

16 Properties: 1. WHY? Part 4 16

17 Ex: Solve the log equations Part 4 17

18 Let's look at the restrictions for exponential and log functions.. Restrictions on base b Domain: Range: Part 4 18

19 Conclusion: Domain of is You cannot take the logarithm of Example. Find the domain of the log function Part 4 19

20 Ex: Find the domain of Part 4 20

21 Graphs of log functions exponential form: exponential form: y y x 1 x Q. What do you notice? Part 4 21

22 y Domain = Range = y x Asymptote: x intercept = x Recall: y Domain = Range = y x Asymptote: y intercept = x Part 4 22

23 Ex: Graph Domain = Range = y intercept = x intercept = Asymptote: y x Part 4 23

24 Ex: Graph Domain = Range = y intercept = x intercept = Asymptote: y x Part 4 24

25 Two Special Logs What makes these logs special?? Ex: Use calculator to estimate the following to 4 decimal places. 1) log 7 2) ln7 3) log.23 4) log( 2) Part 4 25

26 IV. More Properties of Logs 5.4 Let P & Q be positive real numbers. Log Property Corresponding Exponent Property 1) 2) 3) for all real numbers r. Part 4 26

27 Proof of Property 1 Property 1: Proof: Let x = log b P and let y = log b Q Then P = & Q = Part 4 27

28 Ex: Write the following as a single logarithm. 1) 2) 3) Part 4 28

29 Ex: Using Log Properties to Expand Expressions 1) 2) Part 4 29

30 Ex: Write the following as a single logarithm. Part 4 30

31 Ex: Write the following as a single logarithm. Part 4 31

32 Ex: Using Log Properties to Expand Expressions Part 4 32

33 Ex: Using Log Properties to Expand Expressions Part 4 33

34 Ex: Using Log Properties to Expand Expressions Part 4 34

35 Example: Given that log b 2 = A and log b 6 = B, express each in terms of A and/or B Part 4 35

36 Previously, we learned how to solve exponential equations if they had a common base. What happens if we cannot make a common base??? Example: Solve Hint: Re write it in log form!! Part 4 36

37 Change of Base Theorem: What is a? In particular, What is important about these two forms?? Part 4 37

38 We could also solve by using the laws of logs. Specifically, we can apply Part 4 38

39 V. Solving Exponential and Logarithm Equations 5.5 Solve for x Note: Know the difference between an exact answer and an approximate answer. Part 4 39

40 Ex: Graph Domain = Range = y intercept = x intercept = Asymptote: y x Part 4 40

41 Ex: Graph Domain = Range = y intercept = x intercept = Asymptote: y x Part 4 41

42 Find the inverse function Part 4 42

43 Ex: Find the real roots. Write both the exact and approximate answer. (1) Part 4 43

44 (2) Part 4 44

45 Solve these equations. Find both the exact and approximate solutions. (1) (2) (3) Part 4 45

46 Solve the following equations. Find the exact and approximate answers. Part 4 46

47 Solve for x: Part 4 47

48 Solve for x: Part 4 48

49 Solve. Part 4 49

50 Example: Find the intercepts. Part 4 50

51 VI. Solving Exponential and Logarithm Inequalities!! The following are true for b > ) Refer to figure 1 2) Refer to figure 2 Figure 1 b q y = b x, b > 1 log b q y = log b x, b>1 p b p q log b p p q Figure 2 What do these properties mean??? (1) Part 4 51

52 Solve the inequality. Steps: (1) What type of inequality is it? (2) Isolate. (3) Solve appropriately. Part 4 52

53 Solve the inequality. Part 4 53

54 Recall: Example: Find the domain of Part 4 54

55 Solve the inequality. Steps to solving this log inequality: (1) Find the domain of the log part(s). (2) Isolate the log part. (3) How do you get rid of the log? (4) Simplify and solve. (5) Why did I find the domain??? Part 4 55

56 Solve the inequality. Part 4 56

57 Practice with logs. (1) Solve. Part 4 57

58 (2) Solve. Part 4 58

59 VII. Compound Interest 5.6 Where do we use exponential and log equations in real life??? Q: Why is the compound interest formula considered an exponential equation??? Part 4 59

60 What is the difference between simple interest and compound interest?? Simple interest at 10% annually. January December Compound interest at 10% annually compounded twice a year. January December Part 4 60

61 Use a calculator to answer the following. Suppose $5000 is invested into a savings account with an annual interest rate of 6%. Find the amount in the savings account after 6 years given: (1) Compounded annually (2) Compounded quarterly Part 4 61

62 Ex. Suppose that $2000 is invested at 7.5% annual interest compounded annually. How many years will it take for the money to double? Part 4 62

63 Compound Interest Continuously Ex: Suppose $5000 is invested into a savings account with an annual interest rate of 6%. Find the amount in the savings account after 6 years given that the account compounds continuously. Part 4 63

64 Ex: If Alana opens a savings account with initial deposit of $1000 that is compounded monthly with interest 8% per year, how long will it take 1) To have a balance of $ ) To double her investment. Part 4 64

65 Ex: If Alana opens a savings account with initial deposit of $1000 that is compounded continously with interest 8% per year, how long will it take 1) To have a balance of $ ) To double her investment. Part 4 65

66 VIII. Exponential Growth / Decay 5.7 In biology, economics, and social sciences we have applications where a quantity changes at a rate proportional to the amount present. These situations produce an exponential function. where n(t) = quantitiy (or population) at time t n 0 = initial quantity (or initial population) n(0) = In the applications, r must be determined. The application models growth if r > 0 and decay if r < 0. Graph of n(t) n(t) n o n o t t r > 0 (Growth) r< 0 (Decay) Part 4 66

67 Ex: A population of bacteria in a culture is increasing exponentially. The original culture of 25,000 bacteria contains 40,000 bacteria after 10 hours. How long will it be until there are 60,000 bacteria in the culture. Part 4 67

68 Ex: If 600 grams of a radioactive substance are present initially and 3 years later only 300 grams remain, how much of the substance will be present after 6 years? Part 4 68

69 Carbon Dating: Carbon 14 is a radioactive form of carbon found in all living plants and animals. After a plant or animal dies, carbon 14 decays exponentially with a half life of 5600 years. The quantity Q of Carbon 14 remaining is given by the equation Ex: Find the rate r in carbon 14 dating. Round to six decimal places. Part 4 69

70 Ex: The Lascaux caves of France contain prehistoric paintings of animals. Charcoal found in these caves contains 15% of the amount of carbon 14 in living trees. Approximate the age of the paintings. (You will need results found from previous problem) Part 4 70

71 Part 4 71

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals By the end of this chapter, you should be able to Graph exponential growth functions. (8.1) Graph exponential

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Learning Targets 1. I can evaluate, analyze, and graph exponential functions. 2. I can solve problems involving exponential growth & decay. 3. I can evaluate expressions

More information

Exponential Functions Concept Summary See pages Vocabulary and Concept Check.

Exponential Functions Concept Summary See pages Vocabulary and Concept Check. Vocabulary and Concept Check Change of Base Formula (p. 548) common logarithm (p. 547) exponential decay (p. 524) exponential equation (p. 526) exponential function (p. 524) exponential growth (p. 524)

More information

Intermediate Algebra Chapter 12 Review

Intermediate Algebra Chapter 12 Review Intermediate Algebra Chapter 1 Review Set up a Table of Coordinates and graph the given functions. Find the y-intercept. Label at least three points on the graph. Your graph must have the correct shape.

More information

Objectives. Use the number e to write and graph exponential functions representing realworld

Objectives. Use the number e to write and graph exponential functions representing realworld Objectives Use the number e to write and graph exponential functions representing realworld situations. Solve equations and problems involving e or natural logarithms. natural logarithm Vocabulary natural

More information

Unit 5: Exponential and Logarithmic Functions

Unit 5: Exponential and Logarithmic Functions 71 Rational eponents Unit 5: Eponential and Logarithmic Functions If b is a real number and n and m are positive and have no common factors, then n m m b = b ( b ) m n n Laws of eponents a) b) c) d) e)

More information

Chapter 6: Exponential and Logarithmic Functions

Chapter 6: Exponential and Logarithmic Functions Section 6.1: Algebra and Composition of Functions #1-9: Let f(x) = 2x + 3 and g(x) = 3 x. Find each function. 1) (f + g)(x) 2) (g f)(x) 3) (f/g)(x) 4) ( )( ) 5) ( g/f)(x) 6) ( )( ) 7) ( )( ) 8) (g+f)(x)

More information

Section Exponential Functions

Section Exponential Functions 121 Section 4.1 - Exponential Functions Exponential functions are extremely important in both economics and science. It allows us to discuss the growth of money in a money market account as well as the

More information

Write each expression as a sum or difference of logarithms. All variables are positive. 4) log ( ) 843 6) Solve for x: 8 2x+3 = 467

Write each expression as a sum or difference of logarithms. All variables are positive. 4) log ( ) 843 6) Solve for x: 8 2x+3 = 467 Write each expression as a single logarithm: 10 Name Period 1) 2 log 6 - ½ log 9 + log 5 2) 4 ln 2 - ¾ ln 16 Write each expression as a sum or difference of logarithms. All variables are positive. 3) ln

More information

MA Lesson 14 Notes Summer 2016 Exponential Functions

MA Lesson 14 Notes Summer 2016 Exponential Functions Solving Eponential Equations: There are two strategies used for solving an eponential equation. The first strategy, if possible, is to write each side of the equation using the same base. 3 E : Solve:

More information

Logarithms involve the study of exponents so is it vital to know all the exponent laws.

Logarithms involve the study of exponents so is it vital to know all the exponent laws. Pre-Calculus Mathematics 12 4.1 Exponents Part 1 Goal: 1. Simplify and solve exponential expressions and equations Logarithms involve the study of exponents so is it vital to know all the exponent laws.

More information

Exponential Functions

Exponential Functions Exponential Functions MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize and evaluate exponential functions with base a,

More information

p351 Section 5.5: Bases Other than e and Applications

p351 Section 5.5: Bases Other than e and Applications p351 Section 5.5: Bases Other than e and Applications Definition of Exponential Function to Base a If a is a positive real number (a 1) and x is any real number, then the exponential function to the base

More information

Homework 3. (33-40) The graph of an exponential function is given. Match each graph to one of the following functions.

Homework 3. (33-40) The graph of an exponential function is given. Match each graph to one of the following functions. Homework Section 4. (-40) The graph of an exponential function is given. Match each graph to one of the following functions. (a)y = x (b)y = x (c)y = x (d)y = x (e)y = x (f)y = x (g)y = x (h)y = x (46,

More information

Math 137 Exam #3 Review Guide

Math 137 Exam #3 Review Guide Math 7 Exam # Review Guide The third exam will cover Sections.-.6, 4.-4.7. The problems on this review guide are representative of the type of problems worked on homework and during class time. Do not

More information

Example. Determine the inverse of the given function (if it exists). f(x) = 3

Example. Determine the inverse of the given function (if it exists). f(x) = 3 Example. Determine the inverse of the given function (if it exists). f(x) = g(x) = p x + x We know want to look at two di erent types of functions, called logarithmic functions and exponential functions.

More information

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number.

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number. L7-1 Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions Recall that a power function has the form f(x) = x r where r is a real number. f(x) = x 1/2 f(x) = x 1/3 ex. Sketch the graph of

More information

Exponential Functions and Their Graphs (Section 3-1)

Exponential Functions and Their Graphs (Section 3-1) Exponential Functions and Their Graphs (Section 3-1) Essential Question: How do you graph an exponential function? Students will write a summary describing the steps for graphing an exponential function.

More information

Inverse Functions. Definition 1. The exponential function f with base a is denoted by. f(x) = a x

Inverse Functions. Definition 1. The exponential function f with base a is denoted by. f(x) = a x Inverse Functions Definition 1. The exponential function f with base a is denoted by f(x) = a x where a > 0, a 1, and x is any real number. Example 1. In the same coordinate plane, sketch the graph of

More information

Logarithmic, Exponential, and Other Transcendental Functions. Copyright Cengage Learning. All rights reserved.

Logarithmic, Exponential, and Other Transcendental Functions. Copyright Cengage Learning. All rights reserved. 5 Logarithmic, Exponential, and Other Transcendental Functions Copyright Cengage Learning. All rights reserved. 5.5 Bases Other Than e and Applications Copyright Cengage Learning. All rights reserved.

More information

Algebra 2 Honors. Logs Test Review

Algebra 2 Honors. Logs Test Review Algebra 2 Honors Logs Test Review Name Date Let ( ) = ( ) = ( ) =. Perform the indicated operation and state the domain when necessary. 1. ( (6)) 2. ( ( 3)) 3. ( (6)) 4. ( ( )) 5. ( ( )) 6. ( ( )) 7. (

More information

Math M111: Lecture Notes For Chapter 10

Math M111: Lecture Notes For Chapter 10 Math M: Lecture Notes For Chapter 0 Sections 0.: Inverse Function Inverse function (interchange and y): Find the equation of the inverses for: y = + 5 ; y = + 4 3 Function (from section 3.5): (Vertical

More information

17 Exponential and Logarithmic Functions

17 Exponential and Logarithmic Functions 17 Exponential and Logarithmic Functions Concepts: Exponential Functions Power Functions vs. Exponential Functions The Definition of an Exponential Function Graphing Exponential Functions Exponential Growth

More information

C. HECKMAN TEST 1A SOLUTIONS 170

C. HECKMAN TEST 1A SOLUTIONS 170 C. HECKMAN TEST 1A SOLUTIONS 170 1) Thornley s Bank of Atlanta offers savings accounts which earn 4.5% per year. You have $00, which you want to invest. a) [10 points] If the bank compounds the interest

More information

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 HW#1 Name Unit 4B Logarithmic Functions HW #1 Algebra II Mrs. Dailey 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 2) If the graph of y =6 x is reflected

More information

Chapter 11 Logarithms

Chapter 11 Logarithms Chapter 11 Logarithms Lesson 1: Introduction to Logs Lesson 2: Graphs of Logs Lesson 3: The Natural Log Lesson 4: Log Laws Lesson 5: Equations of Logs using Log Laws Lesson 6: Exponential Equations using

More information

CHAPTER 7. Logarithmic Functions

CHAPTER 7. Logarithmic Functions CHAPTER 7 Logarithmic Functions 7.1 CHARACTERISTICS OF LOGARITHMIC FUNCTIONS WITH BASE 10 AND BASE E Chapter 7 LOGARITHMS Logarithms are a new operation that we will learn. Similar to exponential functions,

More information

Name Date Per. Ms. Williams/Mrs. Hertel

Name Date Per. Ms. Williams/Mrs. Hertel Name Date Per. Ms. Williams/Mrs. Hertel Day 7: Solving Exponential Word Problems involving Logarithms Warm Up Exponential growth occurs when a quantity increases by the same rate r in each period t. When

More information

Evaluate the exponential function at the specified value of x. 1) y = 4x, x = 3. 2) y = 2x, x = -3. 3) y = 243x, x = ) y = 16x, x = -0.

Evaluate the exponential function at the specified value of x. 1) y = 4x, x = 3. 2) y = 2x, x = -3. 3) y = 243x, x = ) y = 16x, x = -0. MAT 205-01C TEST 4 REVIEW (CHAP 13) NAME Evaluate the exponential function at the specified value of x. 1) y = 4x, x = 3 2) y = 2x, x = -3 3) y = 243x, x = 0.2 4) y = 16x, x = -0.25 Solve. 5) The number

More information

Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions

Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions Date: Objectives: SWBAT (Graph Exponential Functions) Main Ideas: Mother Function Exponential Assignment: Parent Function: f(x) = b

More information

Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function.

Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function. Test Instructions Objectives Section 5.1 Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function. Form a polynomial whose zeros and degree are given. Graph

More information

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years.

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years. Exam 4 Review Approximate the number using a calculator. Round your answer to three decimal places. 1) 2 1.7 2) e -1.4 Use the compound interest formulas A = P 1 + r n nt and A = Pe rt to solve. 3) Find

More information

Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial

Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial Shapes of Polynomials Look at the shape of the odd degree polynomials

More information

Evaluate the expression using the values given in the table. 1) (f g)(6) x f(x) x g(x)

Evaluate the expression using the values given in the table. 1) (f g)(6) x f(x) x g(x) M60 (Precalculus) ch5 practice test Evaluate the expression using the values given in the table. 1) (f g)(6) 1) x 1 4 8 1 f(x) -4 8 0 15 x -5-4 1 6 g(x) 1-5 4 8 For the given functions f and g, find the

More information

Mock Final Exam Name. Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) A) {- 30} B) {- 6} C) {30} D) {- 28}

Mock Final Exam Name. Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) A) {- 30} B) {- 6} C) {30} D) {- 28} Mock Final Exam Name Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) 1) A) {- 30} B) {- 6} C) {30} D) {- 28} First, write the value(s) that make the denominator(s) zero. Then solve the

More information

FLC Ch 9. Ex 2 Graph each function. Label at least 3 points and include any pertinent information (e.g. asymptotes). a) (# 14) b) (# 18) c) (# 24)

FLC Ch 9. Ex 2 Graph each function. Label at least 3 points and include any pertinent information (e.g. asymptotes). a) (# 14) b) (# 18) c) (# 24) Math 5 Trigonometry Sec 9.: Exponential Functions Properties of Exponents a = b > 0, b the following statements are true: b x is a unique real number for all real numbers x f(x) = b x is a function with

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Öğr. Gör. Volkan ÖĞER FBA 1021 Calculus 1/ 40 Exponential and Logarithmic Functions Exponential Functions The functions of the form f(x) = b x, for constant b, are important in mathematics, business, economics,

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. 3 Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 3.1 Exponential Functions and Their Graphs Copyright Cengage Learning. All rights reserved. What You Should Learn

More information

for every x in the gomain of g

for every x in the gomain of g Section.7 Definition of Inverse Function Let f and g be two functions such that f(g(x)) = x for every x in the gomain of g and g(f(x)) = x for every x in the gomain of f Under these conditions, the function

More information

4. Sketch the graph of the function. Ans: A 9. Sketch the graph of the function. Ans B. Version 1 Page 1

4. Sketch the graph of the function. Ans: A 9. Sketch the graph of the function. Ans B. Version 1 Page 1 Name: Online ECh5 Prep Date: Scientific Calc ONLY! 4. Sketch the graph of the function. A) 9. Sketch the graph of the function. B) Ans B Version 1 Page 1 _ 10. Use a graphing utility to determine which

More information

Study Guide and Review - Chapter 7

Study Guide and Review - Chapter 7 Choose a word or term from the list above that best completes each statement or phrase. 1. A function of the form f (x) = b x where b > 1 is a(n) function. exponential growth 2. In x = b y, the variable

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper)

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper) Algebra 2/Trig Unit 6 Notes Packet Name: Period: # Exponential and Logarithmic Functions 1. Worksheet 2. Worksheet 3. Pg 483-484 #17-57 column; 61-73 column and 76-77 (need graph paper) 4. Pg 483-484 #20-60

More information

Summer MA Lesson 20 Section 2.7 (part 2), Section 4.1

Summer MA Lesson 20 Section 2.7 (part 2), Section 4.1 Summer MA 500 Lesson 0 Section.7 (part ), Section 4. Definition of the Inverse of a Function: Let f and g be two functions such that f ( g ( )) for every in the domain of g and g( f( )) for every in the

More information

What You Need to Know for the Chapter 7 Test

What You Need to Know for the Chapter 7 Test Score: /46 Name: Date: / / Hr: Alg 2C Chapter 7 Review - WYNTK CH 7 What You Need to Know for the Chapter 7 Test 7.1 Write & evaluate exponential expressions to model growth and decay situations. Determine

More information

1.3 Exponential Functions

1.3 Exponential Functions 22 Chapter 1 Prerequisites for Calculus 1.3 Exponential Functions What you will learn about... Exponential Growth Exponential Decay Applications The Number e and why... Exponential functions model many

More information

4 Exponential and Logarithmic Functions

4 Exponential and Logarithmic Functions 4 Exponential and Logarithmic Functions 4.1 Exponential Functions Definition 4.1 If a > 0 and a 1, then the exponential function with base a is given by fx) = a x. Examples: fx) = x, gx) = 10 x, hx) =

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

10 Exponential and Logarithmic Functions

10 Exponential and Logarithmic Functions 10 Exponential and Logarithmic Functions Concepts: Rules of Exponents Exponential Functions Power Functions vs. Exponential Functions The Definition of an Exponential Function Graphing Exponential Functions

More information

Chapter 2 Functions and Graphs

Chapter 2 Functions and Graphs Chapter 2 Functions and Graphs Section 6 Logarithmic Functions Learning Objectives for Section 2.6 Logarithmic Functions The student will be able to use and apply inverse functions. The student will be

More information

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee Numerical Methods Exponential and Logarithmic functions Jaesung Lee Exponential Function Exponential Function Introduction We consider how the expression is defined when is a positive number and is irrational.

More information

MATH 1113 Exam 2 Review. Spring 2018

MATH 1113 Exam 2 Review. Spring 2018 MATH 1113 Exam 2 Review Spring 2018 Section 3.1: Inverse Functions Topics Covered Section 3.2: Exponential Functions Section 3.3: Logarithmic Functions Section 3.4: Properties of Logarithms Section 3.5:

More information

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers Algebra 2 Notes Section 7.1: Graph Exponential Growth Functions Objective(s): To graph and use exponential growth functions. Vocabulary: I. Exponential Function: An equation of the form y = ab x where

More information

Chapter 2 Functions and Graphs

Chapter 2 Functions and Graphs Chapter 2 Functions and Graphs Section 5 Exponential Functions Objectives for Section 2.5 Exponential Functions The student will be able to graph and identify the properties of exponential functions. The

More information

SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer.

SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Math 131 Group Review Assignment (5.5, 5.6) Print Name SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Solve the logarithmic equation.

More information

Pre-Calculus Final Exam Review Units 1-3

Pre-Calculus Final Exam Review Units 1-3 Pre-Calculus Final Exam Review Units 1-3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the value for the function. Find f(x - 1) when f(x) = 3x

More information

, identify what the letters P, r, n and t stand for.

, identify what the letters P, r, n and t stand for. 1.In the formula At p 1 r n nt, identify what the letters P, r, n and t stand for. 2. Find the exponential function whose graph is given f(x) = a x 3. State the domain and range of the function (Enter

More information

Logarithmic and Exponential Equations and Inequalities College Costs

Logarithmic and Exponential Equations and Inequalities College Costs Logarithmic and Exponential Equations and Inequalities ACTIVITY 2.6 SUGGESTED LEARNING STRATEGIES: Summarize/ Paraphrase/Retell, Create Representations Wesley is researching college costs. He is considering

More information

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Evaluate exponential functions. Find the equation of an exponential function. Use compound interest formulas. Evaluate

More information

COLLEGE ALGEBRA. Practice Problems Exponential and Logarithm Functions. Paul Dawkins

COLLEGE ALGEBRA. Practice Problems Exponential and Logarithm Functions. Paul Dawkins COLLEGE ALGEBRA Practice Problems Eponential and Logarithm Functions Paul Dawkins Table of Contents Preface... ii Eponential and Logarithm Functions... Introduction... Eponential Functions... Logarithm

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents Slide 1 / 261 Algebra II Slide 2 / 261 Linear, Exponential and 2015-04-21 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 261 Linear Functions Exponential Functions Properties

More information

Logarithmic Functions

Logarithmic Functions Logarithmic Functions Definition 1. For x > 0, a > 0, and a 1, y = log a x if and only if x = a y. The function f(x) = log a x is called the logarithmic function with base a. Example 1. Evaluate the following

More information

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas Math 80 Chapter 4 Lecture Notes Professor Miguel Ornelas M. Ornelas Math 80 Lecture Notes Section 4. Section 4. Inverse Functions Definition of One-to-One Function A function f with domain D and range

More information

#2 Points possible: 1. Total attempts: 2 An exponential function passes through the points (0, 3) and (3, 375). What are the

#2 Points possible: 1. Total attempts: 2 An exponential function passes through the points (0, 3) and (3, 375). What are the Week 9 Problems Name: Neal Nelson Show Scored View #1 Points possible: 1. Total attempts: 2 For each table below, could the table represent a function that is linear, exponential, or neither? f(x) 90 81

More information

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains?

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains? Topic 33: One-to-One Functions Definition: A function f is said to be one-to-one if for every value f(x) in the range of f there is exactly one corresponding x-value in the domain of f. Ex. Are the following

More information

MAC Module 8 Exponential and Logarithmic Functions I. Rev.S08

MAC Module 8 Exponential and Logarithmic Functions I. Rev.S08 MAC 1105 Module 8 Exponential and Logarithmic Functions I Learning Objectives Upon completing this module, you should be able to: 1. Distinguish between linear and exponential growth. 2. Model data with

More information

MAC Module 8. Exponential and Logarithmic Functions I. Learning Objectives. - Exponential Functions - Logarithmic Functions

MAC Module 8. Exponential and Logarithmic Functions I. Learning Objectives. - Exponential Functions - Logarithmic Functions MAC 1105 Module 8 Exponential and Logarithmic Functions I Learning Objectives Upon completing this module, you should be able to: 1. Distinguish between linear and exponential growth. 2. Model data with

More information

MATH 1113 Exam 2 Review

MATH 1113 Exam 2 Review MATH 1113 Exam 2 Review Section 3.1: Inverse Functions Topics Covered Section 3.2: Exponential Functions Section 3.3: Logarithmic Functions Section 3.4: Properties of Logarithms Section 3.5: Exponential

More information

Algebra 2 - Classwork April 25, Review

Algebra 2 - Classwork April 25, Review Name: ID: A Algebra 2 - Classwork April 25, 204 - Review Graph the exponential function.. y 4 x 2. Find the annual percent increase or decrease that y 0.5(2.) x models. a. 20% increase c. 5% decrease b.

More information

y = b x Exponential and Logarithmic Functions LESSON ONE - Exponential Functions Lesson Notes Example 1 Set-Builder Notation

y = b x Exponential and Logarithmic Functions LESSON ONE - Exponential Functions Lesson Notes Example 1  Set-Builder Notation y = b x Exponential and Logarithmic Functions LESSON ONE - Exponential Functions Example 1 Exponential Functions Graphing Exponential Functions For each exponential function: i) Complete the table of values

More information

Day Date Assignment. 7.1 Notes Exponential Growth and Decay HW: 7.1 Practice Packet Tuesday Wednesday Thursday Friday

Day Date Assignment. 7.1 Notes Exponential Growth and Decay HW: 7.1 Practice Packet Tuesday Wednesday Thursday Friday 1 Day Date Assignment Friday Monday /09/18 (A) /1/18 (B) 7.1 Notes Exponential Growth and Decay HW: 7.1 Practice Packet Tuesday Wednesday Thursday Friday Tuesday Wednesday Thursday Friday Monday /1/18

More information

notes.notebook April 08, 2014

notes.notebook April 08, 2014 Chapter 7: Exponential Functions graphs solving equations word problems Graphs (Section 7.1 & 7.2): c is the common ratio (can not be 0,1 or a negative) if c > 1, growth curve (graph will be increasing)

More information

Review of Exponential Relations

Review of Exponential Relations Review of Exponential Relations Integrated Math 2 1 Concepts to Know From Video Notes/ HW & Lesson Notes Zero and Integer Exponents Exponent Laws Scientific Notation Analyzing Data Sets (M&M Lab & HW/video

More information

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above.

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above. INTERNET MAT 117 Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (b) Find the center and

More information

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Evaluate exponential functions. Find the equation of an exponential function. Use compound interest formulas. Evaluate

More information

7.1 Exponential Functions

7.1 Exponential Functions 7.1 Exponential Functions 1. What is 16 3/2? Definition of Exponential Functions Question. What is 2 2? Theorem. To evaluate a b, when b is irrational (so b is not a fraction of integers), we approximate

More information

UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS. Qu: What do you remember about exponential and logarithmic functions?

UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS. Qu: What do you remember about exponential and logarithmic functions? UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS 5.1 DERIVATIVES OF EXPONENTIAL FUNCTIONS, y = e X Qu: What do you remember about exponential and logarithmic functions? e, called Euler s

More information

Materials: Hw #9-6 answers handout; Do Now and answers overhead; Special note-taking template; Pair Work and answers overhead; hw #9-7

Materials: Hw #9-6 answers handout; Do Now and answers overhead; Special note-taking template; Pair Work and answers overhead; hw #9-7 Pre-AP Algebra 2 Unit 9 - Lesson 7 Compound Interest and the Number e Objectives: Students will be able to calculate compounded and continuously compounded interest. Students know that e is an irrational

More information

Solving Exponential Equations (Applied Problems) Class Work

Solving Exponential Equations (Applied Problems) Class Work Solving Exponential Equations (Applied Problems) Class Work Objective: You will be able to solve problems involving exponential situations. Quick Review: Solve each equation for the variable. A. 2 = 4e

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 6x + 4

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 6x + 4 Math1420 Review Comprehesive Final Assessment Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Add or subtract as indicated. x + 5 1) x2

More information

O5C1: Graphing Exponential Functions

O5C1: Graphing Exponential Functions Name: Class Period: Date: Algebra 2 Honors O5C1-4 REVIEW O5C1: Graphing Exponential Functions Graph the exponential function and fill in the table to the right. You will need to draw in the x- and y- axis.

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

MA Practice Questions for the Final Exam 07/10 .! 2! 7. 18! 7.! 30! 12 " 2! 3. A x y B x y C x xy x y D.! 2x! 5 y E.

MA Practice Questions for the Final Exam 07/10 .! 2! 7. 18! 7.! 30! 12  2! 3. A x y B x y C x xy x y D.! 2x! 5 y E. MA 00 Practice Questions for the Final Eam 07/0 ) Simplify:! y " [! (y " )].!! 7. 8! 7.! 0! "! A y B y C y y D.!! y E. None of these ) Which number is irrational? A.! B..4848... C. 7 D.. E.! ) The slope

More information

You identified, graphed, and described several parent functions. (Lesson 1-5)

You identified, graphed, and described several parent functions. (Lesson 1-5) You identified, graphed, and described several parent functions. (Lesson 1-5) Evaluate, analyze, and graph exponential functions. Solve problems involving exponential growth and decay. algebraic function

More information

(C) BOARDWORK: Examples: Solve w/ & w/o calculator (approx vs exact)

(C) BOARDWORK: Examples: Solve w/ & w/o calculator (approx vs exact) (A Lesson Context BIG PICTURE of this UNIT: How do algebraically & graphically work with growth and decay applications? What are logarithms and how do we invert or undo an exponential function? How do

More information

Exponents and Logarithms Exam

Exponents and Logarithms Exam Name: Class: Date: Exponents and Logarithms Exam Multiple Choice Identify the choice that best completes the statement or answers the question.. The decay of a mass of a radioactive sample can be represented

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) An initial investment of $14,000 is invested for 9 years in an account

More information

4.1 Exponential Functions

4.1 Exponential Functions Chapter 4 Exponential and Logarithmic Functions 531 4.1 Exponential Functions In this section, you will: Learning Objectives 4.1.1 Evaluate exponential functions. 4.1.2 Find the equation of an exponential

More information

The function is defined for all values of x. Therefore, the domain is set of all real numbers.

The function is defined for all values of x. Therefore, the domain is set of all real numbers. Graph each function. State the domain and range. 1. f (x) = 3 x 3 + 2 The function is defined for all values of x. Therefore, the domain is set of all real numbers. The value of f (x) tends to 2 as x tends

More information

Independent Study Project: Chapter 4 Exponential and Logarithmic Functions

Independent Study Project: Chapter 4 Exponential and Logarithmic Functions Name: Date: Period: Independent Study Project: Chapter 4 Exponential and Logarithmic Functions Part I: Read each section taken from the Algebra & Trigonometry (Blitzer 2014) textbook. Fill in the blanks

More information

(MATH 1203, 1204, 1204R)

(MATH 1203, 1204, 1204R) College Algebra (MATH 1203, 1204, 1204R) Departmental Review Problems For all questions that ask for an approximate answer, round to two decimal places (unless otherwise specified). The most closely related

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Philippe B. Laval Kennesaw State University October 30, 2000 Abstract In this handout, exponential and logarithmic functions are first defined. Then, their properties

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Graduate T.A. Department of Mathematics Dynamical Systems and Chaos San Diego State University April 9, 11 Definition (Exponential Function) An exponential function with base a is a function of the form

More information

Section 2.3: Logarithmic Functions Lecture 3 MTH 124

Section 2.3: Logarithmic Functions Lecture 3 MTH 124 Procedural Skills Learning Objectives 1. Build an exponential function using the correct compounding identifiers (annually, monthly, continuously etc...) 2. Manipulate exponents algebraically. e.g. Solving

More information

PRECAL REVIEW DAY 11/14/17

PRECAL REVIEW DAY 11/14/17 PRECAL REVIEW DAY 11/14/17 COPY THE FOLLOWING INTO JOURNAL 1 of 3 Transformations of logs Vertical Transformation Horizontal Transformation g x = log b x + c g x = log b x c g x = log b (x + c) g x = log

More information

#2. Be able to identify what an exponential decay equation/function looks like.

#2. Be able to identify what an exponential decay equation/function looks like. 1 Pre-AP Algebra II Chapter 7 Test Review Standards/Goals: G.2.a.: I can graph exponential and logarithmic functions with and without technology. G.2.b.: I can convert exponential equations to logarithmic

More information

Geometry Placement Exam Review Revised 2017 Maine East High School

Geometry Placement Exam Review Revised 2017 Maine East High School Geometry Placement Exam Review Revised 017 Maine East High School The actual placement exam has 91 questions. The placement exam is free response students must solve questions and write answer in space

More information

4.6 (Part A) Exponential and Logarithmic Equations

4.6 (Part A) Exponential and Logarithmic Equations 4.6 (Part A) Eponential and Logarithmic Equations In this section you will learn to: solve eponential equations using like ases solve eponential equations using logarithms solve logarithmic equations using

More information